US4894259A - Process of making a unified pressure-sensitive adhesive tape - Google Patents

Process of making a unified pressure-sensitive adhesive tape Download PDF

Info

Publication number
US4894259A
US4894259A US07/212,596 US21259688A US4894259A US 4894259 A US4894259 A US 4894259A US 21259688 A US21259688 A US 21259688A US 4894259 A US4894259 A US 4894259A
Authority
US
United States
Prior art keywords
layers
pressure
layer
sensitive adhesive
monomers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US07/212,596
Inventor
Douglas H. Kuller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Co
Original Assignee
Minnesota Mining and Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minnesota Mining and Manufacturing Co filed Critical Minnesota Mining and Manufacturing Co
Priority to US07/212,596 priority Critical patent/US4894259A/en
Assigned to MINNESOTA MINING AND MANUFACTURING COMPANY, A CORP. OF DE reassignment MINNESOTA MINING AND MANUFACTURING COMPANY, A CORP. OF DE ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: KULLER, DOUGLAS H., ZIMMERMAN, PATRICK G.
Application granted granted Critical
Publication of US4894259A publication Critical patent/US4894259A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/20Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive itself
    • C09J2301/208Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive itself the adhesive layer being constituted by at least two or more adjacent or superposed adhesive layers, e.g. multilayer adhesive
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/302Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier the adhesive being pressure-sensitive, i.e. tacky at temperatures inferior to 30°C

Definitions

  • the invention concerns photopolymerizable pressure-sensitive adhesive tapes comprising a plurality of contiguous layers which cannot be delaminated. Each of the layers comprises a photopolymerized matrix of polymeric chains, and at least one of the outer layers is photopolymerized to a pressure-sensitive adhesive state. This invention also concerns a process for concurrently coating tapes incorporating such layers.
  • the invention concerns photopolymerizable pressure-sensitive adhesive tapes.
  • U.S. Pat. RE No. 24,906 Ulrich
  • reissued on Dec. 20, 1960 discloses pressure-sensitive adhesive tapes, the adhesive layers of which comprise copolymers consisting essentially of monomers of acrylic acid esters of non-tertiary alkyl alcohols having from 1-14 carbon atoms, and at least one monomer copolymerizable therewith.
  • U.S. Pat. No. 4,181,752 discloses a process for making pressure-sensitive adhesive tape which involves the photopolymerization of the alkyl esters of acrylic acid and the modifying monomers to form the acrylate copolymers. It is also disclosed that the intensity and spectral distribution of the irradiation must be controlled in order to attain desirably high peel resistance and cohesive strength.
  • the process disclosed is preferably carried out in the absence of oxygen and air which inhibit the polymerization reaction. Thus, it is normally carried out in an inert atmosphere such as nitrogen, carbon dioxide, helium, argon, etc. Air can also be excluded by sandwiching the liquid photopolymerizable mixture between layers of solid sheet material and irradiating through the sheet material. Each layer must be coated and cured before the addition of another layer.
  • U.S. Pat. No. 4,243,500 discloses a pressure-sensitive adhesive formed from a composition comprising mono-functional unsaturated acrylate ester monomer, essentially saturated tackifying resin polymer dissolved in the acrylate ester, non-crystallizing elastomeric material also dissolved in the acrylate ester and an initiator responsive to ultraviolet light or other penetrating radiation such as electron beam, gamma, or X-ray radiation.
  • the intensity of the lamps taught by Glennon is much greater than those taught by Martens.
  • a pressure-sensitive adhesive tape is commonly called a "transfer tape" in that it typically has a low-adhesion liner from which it is transferred when used.
  • a tape can also be linerless as disclosed in U.S. Pat. Nos. 2,889,038 (Kalleberg) and 4,522,870 (Esmay).
  • One embodiment of the invention like those tapes of U.S. Pat. Nos. 4,223,067 (Levens), and 4,514,615 (Esmay), has a foam-like appearance and character, even though it is not a foam.
  • the double-coated pressure-sensitive adhesive tape of U.S. Pat. No. 2,889,038 comprises a flexible support having on opposite faces chemically different pressure-sensitive adhesive layers which are physically incompatible, thus enabling the tape to be wound directly upon itself into a roll for storage and shipment.
  • the tape is made by successively coating and drying solutions of two different pressure-sensitive adhesives onto opposite faces of a flexible web.
  • a solution of one of the pressure-sensitive adhesives is coated onto an undried coating of the other, and the coatings are simultaneously dried at room temperature for 24 hours to evaporate the solvents. Physical incompatibility is demonstrated by peeling the dried layers apart.
  • the double-coated pressure-sensitive adhesive tape of the above-cited Esmay patent is similar to that of the Kalleberg patent except that both adhesive faces can have truly high performance, and the adhesive layers at the two faces of the flexible web do not need to be either chemically different or physically incompatible. This is achieved when the pressure-sensitive adhesive at each of the faces is a polymer of predominantly alkyl acrylate, substantially solvent-free, and crosslinked.
  • the Esmay patent states: "It is surmised that if the adhesive were not substantially solvent-free, the solvent would allow the polymer chains to knit across adjacent convolutions during prolonged storage in roll form, such that perfect separation could no longer be assured.
  • the (Esmay) tape is preferably made using photopolymerization as in U.S. Pat. No. 4,181,752 (Martens et al.)" (col. 2, lines 21-32).
  • the Esmay patent discloses that a "technique for enhancing immediate adhesion to relatively rough or uneven surfaces is to incorporate glass microbubbles into the pressure-sensitive adhesive as taught in U.S. Pat. No. 4,223,067 (Levens)" (col. 4, lines 31,35). Because the microbubble-containing tape of the Levens patent has a foam-like appearance and character, it is sometimes called a "foam-like" tape even though its pressure-sensitive adhesive layer is substantially free of voids except for the hollow spaces within the microbubbles.
  • the Levens patent in turn teaches that where it is desired to adhere the foam-like tape "to a surface to which its pressure-sensitive adhesive layer would not form a strong bond, it may be desirable to apply to one or both of its faces of its microbubble-filled adhesive layer a layer of unfilled pressure-sensitive adhesive which is especially selected for adhesion to that surface" (col. 4, lines 9-15).
  • Such microbubble-free surface layers can also provide substantially increased cohesive strength, especially at high temperatures. Multiple microbubble-free surface layers can have different adhesive properties, each selected for good adhesion to a certain surface. Because the application of those added layers substantially increase the cost of the foam-like tape, less expensive foam-backed tapes have dominated the market for uses requiring immediate adhesion to rough or uneven surfaces.
  • microbubbles can be glass as in the examples of the Levens patent, or they can be polymeric as described in U.S. Pat. No. 3,615,472 (Morehouse et al.) or U.S. Pat. No. 4,287,308 (Nakayama et al.).
  • the invention relates to a pressure-sensitive adhesive tape comprising a plurality of concurrently coated superimposed layers, the layers having been simultaneously photopolymerized, at least one outer layer being a pressure-sensitive adhesive layer containing at least one alkyl acrylate ester of a nontertiary alcohol and a photoinitiator, contiguous layers defining an interface therebetween, each of the layers comprising a photopolymerized matrix of polymeric chains; the polymeric chains extending from the matrix of one of the layers through the interface into the matrix of a contiguous layer; the polymeric chains comprising polymerized monomers having migrated from the matrix of each contiguous layer prior to polymerization, whereby the layers cannot be delaminated.
  • the novel product differs from tapes of the prior art in that the monomers of the pressure-sensitive adhesive matrix migrate across the interface prior to and during photopolymerization so that after photopolymerization the polymer chains extending through the interface comprise a substantial amount of monomers originally from both sides of the interface. This yields layers which cannot be physically delaminated.
  • the present invention embraces a variety of embodiments.
  • One group of preferred embodiments of the present invention is that of pressure-sensitive adhesive tapes which are at least equal in performance to multi-layer foam-like tapes of the Levens and Esmay patents, but can be produced at significantly lower cost.
  • a second group of preferred embodiments is that of cost-effective, double-coated, pressure-sensitive adhesive tapes.
  • Such tapes may have identical or differing adhesives at each surface.
  • Such tapes may further comprise one or more non-adhesive layers selected from a multitude of polymeric matrices, i.e., flexible or foam-like supports between the adhesive layers, or releasable liners.
  • An especially preferred embodiment of the present invention is a pressure-sensitive adhesive tape comprising thin layers heretofore not possible in photopolymerized tapes.
  • Such tapes have layers ranging in thickness from about 2.5 micrometers (0.10 mil) to about 38 micrometers (1.5 mil) each.
  • tape includes but is not limited to, those adhesive strips which are single-coated adhesive layers permanently attached to a backing or support, double-coated adhesive strips having flexible supports with an adhesive layer on both sides thereof, and adhesive strips with no support or backing, such being typically though not necessarily releasably attached to a low-adhesion liner, and commonly called "transfer tapes".
  • the terms “concurrent coating” and “concurrently coated” and the like refer to any method of coating wherein the layers to be coated contact each other prior to any contact with the carrier web.
  • the present invention also relates to a process for making a pressure-sensitive adhesive tape comprising the steps of:
  • each of the coatable compositions comprising at least one photopolymerizable monomer; at least one of the coatable compositions being curable to a pressure-sensitive adhesive state, monomers of each of the coatable compositions being copolymerizable when blended and subjected to photopolymerization conditions;
  • Each of the layers of tapes of the invention comprises a photopolymerizable matrix comprising polymeric chains.
  • These matrices may comprise a multitude of polymers; however, all matrices must be photopolymerizable, preferably by the ultraviolet portion of the spectrum (220-440 nm). At least one outer layer must be photopolymerizable to a pressure-sensitive adhesive state.
  • Such pressure-sensitive adhesive layer of the novel tape has a photopolymerizable matrix comprising an acrylic pressure-sensitive adhesive.
  • the acrylic pressure-sensitive adhesives useful in the present invention are alkyl acrylates, preferably monofunctional unsaturated acrylate esters of non-tertiary alkyl alcohols, the molecules of which have from 1 to about 14 carbon atoms. Included within this class of monomers are, for example, isooctyl acrylate, isononyl acrylate, 2-ethyl-hexyl acrylate, decyl acrylate, dodecyl acrylate, n-butyl acrylate, and hexyl acrylate. Preferred monomers include isooctyl acrylate, isononyl acrylate, and butyl acrylate.
  • the polar copolymerizable monomers can be selected from strongly polar copolymerizable monomers such as acrylic acid, itaconic acid, hydroxyalkyl acrylates, cyanoalkyl acrylates, acrylamides or substituted acrylamides, or from moderately polar copolymerizable monomers such as N-vinyl pyrrolidone, acrylonitrile, vinyl chloride or diallyl phthalate.
  • the strongly polar copolymerizable monomer preferably comprises up to about 25%, more preferably up to about 15%.
  • the moderately polar copolymerizable monomer preferably comprises up to about 30%, more preferably from 5% to about 30% of the photopolymerizable polymer.
  • Crosslinking is especially easy to control when photopolymerizing the monomer in admixture with a multiacrylate crosslinking agent.
  • Other useful crosslinking agents include the substituted triazines, such as those disclosed in U.S. Pat. Nos. 4,329,384 and 4,330,590 (Vesley), both incorporated herein by reference, e.g., 2,4-bis(trichloromethyl)-6-p-methoxystyrene-5-triazine and the chromophore halomethyl-5-triazines.
  • Each of the crosslinking agents is typically present in the range of from about 0.01% to about 5% of the total weight of the monomers.
  • pressure-sensitive adhesives which are useful for the pressure-sensitive adhesive layer of the novel tape are those which become tacky only at elevated temperatures, e.g., acrylic copolymers having average carbon-to-carbon chains of less than 4 carbon atoms or those comprising a polymer wherein methacrylic acid esters are substituted for portions of acrylic acid esters.
  • Tapes of the invention may comprise more than one pressure-sensitive adhesive layer.
  • the pressure-sensitive adhesive layers may comprise similar or different adhesive compositions, in like or unlike thicknesses, having similar or different additives.
  • one layer of the pressure-sensitive adhesive tape comprises a phase-separated pressure-sensitive adhesive containing
  • TEM Transmission Electron Microscopy
  • the phase-separated morphology is clearly visible.
  • the elastomeric phase is continuous, and the acrylic copolymer phase exists as relatively uniform inclusions averaging from 0.1 micrometer to about 1 micrometer in size.
  • highly preferred elastomers such as DuradeneTM710 are utilized, the inclusions are about 0.5 micrometer.
  • a monomer blend comprising microbubbles may be used as a backing or core layer.
  • the microbubbles may be glass as taught in the Levens patent, supra, or they may be polymeric.
  • the microbubbles should have an average diameter of 10 to 200 micrometers, and comprise from about 5 to about 65 volume percent of the pressure-sensitive adhesion layer.
  • Preferred glass microspheres have average diameters of about 80 micrometers.
  • the thickness of the foam-like layer should be at least six times, preferably at least twenty times that of each microbubble-free layer.
  • the thickness of the layer should preferably exceed three times the average diameter of the microbubbles and twice the diameter of substantially every microbubble.
  • the thickness of foam-like layers in preferred tapes of the invention range from 0.3 mm to about 4.0 mm in thickness.
  • the film, or "core” layer may comprise substantially the same monomers described for the pressure-sensitive adhesive layer, with different ratios of the acrylic acid ester of non-tertiary alcohol and at least one polar copolymerizable monomer.
  • the preferred range of the polar copolymerizable monomer in such a layer ranges from 10% to about 60% of the total monomer mix.
  • the core layer may also comprise a crosslinking agent and other photopolymerizable ingredients including, but not limited to alkyl vinyl ethers, vinylidene chloride, styrene, and vinyl toluene, only in amounts that do not detract from the desired properties.
  • a preferred additional ingredient is a poly(methylmethacrylate) polymer, (PMMA), which may be present in amounts up to 70% of the total monomer weight, preferably from 30% to about 50% of the total monomer weight.
  • PMMA poly(methylmethacrylate) polymer
  • the core layer may also comprise the elastomer containing phase-separated pressure-sensitive adhesive described herein.
  • Other materials which can be blended with the polymerizable monomer mixture include fillers, tackifiers, foaming agents, antioxidants, plasticizers, reinforcing agents, dyes, pigments, fibers, fire retardants and viscosity adjusting agents.
  • Tackifiers useful in tapes of the invention include aliphatic polymeric resins which may also contain an aromatic component, and which have a number average molecular weight of from about 300 to about 2500, preferably from about 900 to about 2000, a polydispersity index of less than about 5, a glass transition temperature of about 40° C. to about 120° C., and a solubility parameter of about 7 to 9.5 (cal/cc) -1/2 .
  • the aliphatic polymeric resins or the aliphatic component of the polymeric resins containing both aliphatic and aromatic components is derived from C-5 or (C-5) 2 monomer fractions as described in Satas, Handbook of Pressure Sensitive Adhesive Technology, Van Nostrand Reinhold Co., New York, 1982, pp. 353-369, incorporated herein by reference.
  • tackifier When tackifier is present, it typically comprises from about 5 parts to about 50 parts per hundred parts resin (phr).
  • Especially preferred tackifiers are hydrogenated rosin ester tackifying agents.
  • Rosin esters have a higher softening point than unmodified rosins, and higher molecular weight. Ethylene glycol, glycerol, and pentaerythritol are the most common alcohols used for esterification. Rosin esters are quite stable, and resistant to hydrolysis, and such stability increases with hydrogenation.
  • acrylic ultraviolet-radiation photopolymerized pressure-sensitive adhesives tackified with hydrogenated rosin ester tackifying agents show improved adhesion over solvent-polymerized acrylic pressure-sensitive adhesives containing about 4 to 8 times as much rosin ester tackifier.
  • Tapes of the invention may also comprise a woven or nonwoven scrim. Presence of such a scrim will not inhibit migration of the monomers from one layer through the interface to a contiguous layer of the tape.
  • the present invention also relates to a process for making the pressure-sensitive adhesive tape of the invention, comprising the steps of:
  • Concurrently coating the coatable compositions herein provides advantages not seen with sequential coating of the compositions.
  • the coatable compositions containing the monomers are coated sequentially, some mechanical mixing of the layers occurs when each contiguous layer is coated.
  • the layers are coated concurrently, no such mechanical mixing occurs. It is theorized that migration occurs through a diffusion of the monomers into contiguous layers. Minimizing mechanical mixing means better control of the amount of monomer migration between the layers. This enables the skilled artisan to select the processing method that results in the desired amount of migration, even combining concurrently coated layers with sequentially coated layers for certain applications.
  • concurrent coating processes allow multi-layer pressure-sensitive adhesive tapes to be coated and cured in one step, resulting in faster and more economical processing of such tapes.
  • Various means of achieving concurrent coatings are encompassed within the invention including, but not limited to multi-layer curtain coating, co-extrusion coating wherein the dies contain multiple manifolds, and use of multiple extrusion dies.
  • the preferred method involves the use of a co-extrusion die having multiple manifolds, as shown in FIG. 1.
  • a single-coated pressure-sensitive tape of the invention may be made by the process above applying the layers concurrently to a low-adhesion carrier, with one outer layer being a coatable compositions comprising monomers which are photopolymerizable to a pressure-sensitive adhesive state, and one or more contiguous layers being coatable compositions of monomer blends which are photopolymerizable to a non-tacky film state, and being copolymerizable with the pressure-sensitive adhesive outer layer.
  • a double-coated tape may be made by following these steps wherein coatable compositions of both outer layers comprise monomers which are photopolymerizable to a pressure-sensitive adhesive state.
  • the photopolymerizable monomers in the pressure-sensitive adhesive layers may be identical, or may be selected to provide differing specific adhesive properties at each surface of the tape.
  • a foam-like pressure-sensitive adhesive tape of the invention may be made by a process of the invention comprising the steps of:
  • step 1 concurrently coating the coatable compositions of step 1, and step 2 onto a low-adhesion carrier to form superimposed layers, contiguous layers defining an interface therebetween;
  • step 3) of the above-outlined process may involve concurrently applying a thin layer of a microbubble-free coatable composition onto the low-adhesion carrier, a thick coating of the coatable composition containing microbubbles, and a thin coating of a microbubble-free coatable composition. After simultaneously irradiating these coatings, the resulting pressure-sensitive adhesive layer has a thick foam-like core and a thin microbubble-free portion at each of its two surfaces.
  • compositions comprising different photopolymerizable monomers may be used in the first and third layers where such would advantageous for the application desired.
  • the coatable compositions used in tapes of the invention are preferably prepared by premixing together the photopolymerizable monomers and the polar copolymerizable monomer, if used, and photoinitiator. This premix is then partially polymerized to a viscosity in the range of from about 500 cps to about 50,000 cps to achieve a coatable syrup.
  • the monomers can be mixed with a soluble polymeric resin or a thixotropic agent such as fumed silica to achieve a coatable syrup composition.
  • Elastomer containing phase-separated adhesive compositions are preferably prepared by dissolving or dispersing the elastomer into the alkyl acrylate monomer, and then adding the polar copolymerizable monomer, and photoinitiator.
  • Optional crosslinking agent or other additives may also be incorporated into the syrup.
  • Photopolymerization is preferably carried out in an inert atmosphere, such as nitrogen.
  • An inert atmosphere can be achieved by temporarily covering the photopolymerizable coating with a plastic film which is transparent to ultraviolet radiation, and irradiating through the film in air. If the photopolymerizable coating is not covered during photopolymerization, the permissible oxygen content of the inert atmosphere can be increased by mixing the coating with a combustible tin compound as taught in U.S. Pat. No. 4,303,485 (Levens), which also teaches such technique for making thick coatings in air.
  • FIG. 1 schematically illustrates the manufacture of a preferred pressure-sensitive adhesive tape of the invention.
  • die-coated coatings 12, 14, and 16 each being a syrup comprising a monomer blend which is photopolymerizable, 12 and 16 being photopolymerizable to a pressure-sensitive adhesive state, 14 being polymerizable to a non-tacky polymeric state are concurrently coated onto ultraviolet-transparent, low-adhesion carrier 10 is concurrently coated by means of a multiple manifold co-extrusion die, 20.
  • the co-extrusion die, 20 is adjacent to the back-up roller, 18. It has three manifolds, 22, 24, and 26 which extrude the photopolymerizable layers 12, 14, and 16 respectively onto the low-adhesion carrier 10.
  • the layers are simultaneously subjected to ultraviolet radiation from a bank of lamps 28, thus photopolymerizing the monomers to provide a layer of pressure-sensitive adhesive which comprises a matrix of polymeric chains that extend across the interfaces between a core and the two surface layers resulting from the polymerization of the coatings 12, 14 and 16.
  • the carrier 10 instead of being low-adhesion, can have an adhesion-promoting treatment, if necessary, in order to create a permanent bond between the pressure-sensitive adhesive layer and the carrier.
  • a permanently bonded carrier can be selected to provide a tape affording good abrasion resistance and/or corrosion resistance and/or environmental protection.
  • a permanently bonded carrier can be a hot-melt adhesive by which the pressure-sensitive adhesive layer can be bonded to a substrate such as gasketing rubber.
  • FIG. 1 also shows a close-up view of the co-extrusion die, 20.
  • the three manifolds, 22, 24, and 26 extrude the photopolymerizable layers, bottom, center or "core” layer, and top layer respectively onto the carrier web, 10.
  • the adhesive layer to be tested is transferred to a chemically primed, 50 micrometer aluminum foil backing which then is slit to a width of 2.54 cm (1 inch).
  • the resulting tape is self-adhered to a smooth stainless steel plate under the weight of a 2.04-kg hard-rubber-covered steel roller, 2 passes in each direction.
  • "90° Peel Adhesion” is measured by moving the free end of the tape away from the steel plate at 90° and at a rate of about 0.5 cm per second (using a tensile tester).
  • This test employs two 25.4-mm wide stainless steel straps as follows: Type 304-2BA, 0.38 mm in thickness, surface roughness 0.05 micrometer arithmetic average deviation from the main line. The strips are washed with heptane (also with MEK if heavy oils are present). A strip of 25.4-mm wide double-coated pressure-sensitive adhesive tape, carried on a low-adhesion liner, is adhered to one end of one of the straps and trimmed to a length of 25.4-mm. The liner is then removed, and the other strap adhered to the exposed adhesive surface The specimen is placed in a horizontal position and rolled down with a 1-kg weight and rested on the assembly for 15 minutes at room temperature.
  • the panel with the adhered tape is placed in an air-circulating oven which has been preheated to the indicated temperature, and after 15 minutes, a weight is hung from the free end of the tape, with the top strap vertical.
  • the time at which the weight falls is the "Static Shear Value". If no failure, the test is discontinued at 10,000 minutes (in the 70° C. test) or sometimes at 1440 minutes (in the 121° C. test). Only cohesive failures are reported.
  • a specimen of the tape is immersed in a bath of ethyl acetate at ordinary room temperature, then visually examined periodically. Any visual evidence of delamination is reported as a failure. The test is discontinued if there has been no failure after 24 hours.
  • a 5 cm long by 2.5 cm wide strip of the tape is placed between two jaws of an Instron at 21° C. (70° F.) and 50% relative humidity. The jaws are separated at a constant speed of 13 cm/min. The elongation is reported as the percent elongation required for the sample to break. The tensile strength is measures as the actual force on the sample immediately at break. The force is converted to newtons per square centimeter units.
  • the cross-sectional area of the nonpressure-sensitive backing is used to compute the tensile strength.
  • the glass microbubbles used in the examples had a density of 0.15 g/cm 3 and were 20-150 micrometers in diameter (average 55 micrometers).
  • Two syrups were prepared from 90 parts of isooctyl acrylate and 10 parts of acrylic acid.
  • the first syrup (Syrup #1) was modified with 0.04 phr (phr - parts per hundred resin) of 2,2-dimethoxy-2-phenyl acetophenone photoinitiator, IrgacureTM 651, and was partially polymerized by ultraviolet radiation to a viscosity of approximately 3300 cps (Brookfield), and a degree of polymerization of about 8%.
  • the polymer had an inherent viscosity of about 4.0.
  • An additional 0.15 phr of IrgacureTM 651 was added.
  • 0.10 phr of a 4-(p-methoxyphenyl)-2,6-bis trichloromethyl s-triazine crosslinking agent was also added.
  • the second syrup (Syrup #2) comprised 90 parts isooctyl acrylate and 10 parts of acrylic acid along with 65 phr of n-butyl/methyl methacrylate copolymer, Acryloid B-66TM from The Rohm and Haas Company, 2 phr of trimethylopropane ethoxylate triacrylate (OxychemTM Photomer 4149TM), and 0.25 phr of the triazine crosslinking agent described above.
  • An ultraviolet photopolymerized coating of this syrup will yield a non-tacky polymeric material, useful as a nonpressure-sensitive backing.
  • Two double coated tapes were prepared by casting three layers of syrup against a low-adhesion carrier followed by irradiation with 350 mJ/cm 2 (Dynachem RadiometerTM Model 500) UV energy from a bank of lamps, 90% of the emissions of which were between 300 and 400 nm with a maximum at 351 nm. Coating was done using a three manifold co-extrusion die such that the three layers were concurrently coated. The thickness of the layers were as follows:
  • Double-coated tapes were made in an identical manner to Examples 1 and 2, except that coating was sequentially accomplished using three consecutive knife coaters. These tapes along with the tapes of Examples 1 and 2 were tested, and the results reported in Table 1.
  • Double-coated pressure-sensitive adhesive tapes were made as described in Example 1, and coated to the constructions described above. It was observed during coating of Example 6, that the microbubbles from syrup 3# were clearly seen in the "rolling bank” of syrup #1 in the next sequential knife coater, thus indicating physical mixing of the layers.
  • Syrup #3 is prepared by adding 0.5 phr of polymeric microbubbles (MiraliteTM-177) to syrup #2.
  • Examples 3-6 are coated as described in Example 1. The layers have the following thicknesses:
  • Syrup #4 was prepared in a manner similar to syrup #1 except that the monomers consisted of 80 parts of isooctyl acrylate and 20 parts of N-vinyl-2-pyrrolidone. The levels of photoinitiator and photoactive crosslinker remain the same as in Syrup #1.
  • Two two-layer pressure-sensitive adhesive tapes were made as in Example 1, except that they were irradiated with 200 mJ/cm 2 UV energy. Both tapes had the following construction, and were coated using a multiple manifold co-extrusion die for Example 7, and sequential notched bar coating for Comparative Example 7 respectively:
  • Syrup #5 was prepared using a partially polymerized mixture of 75 parts of isooctyl acrylate and 25 parts of acrylic acid.
  • the syrup contained 0.16 phr IrgacureTM 651 and 0.08 phr of the triazine crosslinker described in Example 1.
  • a double-coated pressure-sensitive adhesive tape was produced as in Example 11 using three sequential notched bar coatings.
  • the construction was as follows:
  • Syrup #6 was prepared using a partially polymerized mixture consisting of 96 parts isooctyl acrylate and 4 parts acrylic acid, along with 0.19 phr IrgacureTM 651 and 0.10 phr of the triazine crosslinker described in Example 1.
  • Syrup #7 was prepared using a partially polymerized mixture consisting of 93.5 parts isooctyl acrylate and 6.5 parts acrylic acid, along with 0.39 phr IrgacureTM 184 crosslinker and 0.15 phr of the triazine crosslinker described in Example 1. Three separate syrups were then made by adding the indicated amount of ForalTM 85 tackifying agent to syrup #7.
  • Three pressure-sensitive adhesive tapes were then made by coating a layer of the tackified syrup #7 against a low-adhesion carrier and concurrently coating a center layer of Syrup #1 over this layer, and an outer layer of tackified syrup #7 over this layer.
  • the thicknesses, and level of tackification of the individual layers are as listed below.
  • Syrup #8 was prepared using a mixture consisting of 90 parts isooctyl acrylate and 10 parts acrylic acid, along with 0.18 phr IrgacureTM 651, and adding 20 phr StereonTM 845A, a styrene-butadiene multiblock copolymer with 48% styrene, available from Firestone.
  • Syrup #9 was prepared using a mixture consisting of 85 parts isooctyl acrylate and 15 parts acrylic acid, along with 0.18 phr IrgacureTM 651, and adding 20 phr DuradeneTM 710, a butadiene styrene copolymer having 27% styrene, available from Firestone.
  • Syrup #10 was prepared using a mixture consisting of 85 parts isooctyl acrylate and 15 parts acrylic acid, along with 0.18 phr IrgacureTM 651, and adding 20 phr KratonTM D1101, a styrene/butadiene/styrene block copolymer with 30% styrene, available from Shell Chemical Company.
  • Three pressure-sensitive adhesive tapes were then made by coating a 55 ⁇ m thick layer of syrup #6 against a low-adhesion carrier and concurrently coating a 164 ⁇ m thick center layer of Syrup #1 over this layer, and then coating a 55 ⁇ m thick outer layer of syrups #8, 9 and 10, respectively, over this layer. All samples passed the delamination test.

Abstract

A process of making pressure-sensitive adhesive tape comprising a plurality of concurrently coated superimposed layers, at least one outer layer being a pressure-sensitive adhesive layer, contiguous layers defining an interface therebetween, each of the layers comprising a photopolymerized matrix of polymeric chains; the polymeric chains extending from the matrix of one of the layers through the interface into the matrix of a contiguous layer; the polymeric chains comprising photopolymerized monomers having migrated from the matrix of each contiguous layer prior to photopolymerization, whereby the layers cannot be delaminated.

Description

RELATED APPLICATION
This application is a continuation-in-part of U.S. Ser. No. 90,671, filed on Aug. 27, 1987, which is a continuation-in-part of U.S. Ser. No. 084,781 (Zimmerman et al.), filed Aug. 17, 1987, which is a continuation-in-part of U.S. Ser. No. 900,372 (Zimmerman et al.), filed on Aug. 29, 1986, now abandoned.
BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention concerns photopolymerizable pressure-sensitive adhesive tapes comprising a plurality of contiguous layers which cannot be delaminated. Each of the layers comprises a photopolymerized matrix of polymeric chains, and at least one of the outer layers is photopolymerized to a pressure-sensitive adhesive state. This invention also concerns a process for concurrently coating tapes incorporating such layers.
2. Description of the Related Art
The invention concerns photopolymerizable pressure-sensitive adhesive tapes. U.S. Pat. RE No. 24,906 (Ulrich), reissued on Dec. 20, 1960, discloses pressure-sensitive adhesive tapes, the adhesive layers of which comprise copolymers consisting essentially of monomers of acrylic acid esters of non-tertiary alkyl alcohols having from 1-14 carbon atoms, and at least one monomer copolymerizable therewith.
U.S. Pat. No. 4,181,752 (Martens et al.) discloses a process for making pressure-sensitive adhesive tape which involves the photopolymerization of the alkyl esters of acrylic acid and the modifying monomers to form the acrylate copolymers. It is also disclosed that the intensity and spectral distribution of the irradiation must be controlled in order to attain desirably high peel resistance and cohesive strength. The process disclosed is preferably carried out in the absence of oxygen and air which inhibit the polymerization reaction. Thus, it is normally carried out in an inert atmosphere such as nitrogen, carbon dioxide, helium, argon, etc. Air can also be excluded by sandwiching the liquid photopolymerizable mixture between layers of solid sheet material and irradiating through the sheet material. Each layer must be coated and cured before the addition of another layer.
U.S. Pat. No. 4,243,500 (Glennon) discloses a pressure-sensitive adhesive formed from a composition comprising mono-functional unsaturated acrylate ester monomer, essentially saturated tackifying resin polymer dissolved in the acrylate ester, non-crystallizing elastomeric material also dissolved in the acrylate ester and an initiator responsive to ultraviolet light or other penetrating radiation such as electron beam, gamma, or X-ray radiation. The intensity of the lamps taught by Glennon is much greater than those taught by Martens.
One embodiment of a pressure-sensitive adhesive tape is commonly called a "transfer tape" in that it typically has a low-adhesion liner from which it is transferred when used. Such a tape can also be linerless as disclosed in U.S. Pat. Nos. 2,889,038 (Kalleberg) and 4,522,870 (Esmay). One embodiment of the invention, like those tapes of U.S. Pat. Nos. 4,223,067 (Levens), and 4,514,615 (Esmay), has a foam-like appearance and character, even though it is not a foam.
The double-coated pressure-sensitive adhesive tape of U.S. Pat. No. 2,889,038 (Kalleberg) comprises a flexible support having on opposite faces chemically different pressure-sensitive adhesive layers which are physically incompatible, thus enabling the tape to be wound directly upon itself into a roll for storage and shipment. The tape is made by successively coating and drying solutions of two different pressure-sensitive adhesives onto opposite faces of a flexible web. To test for the incompatibility of the two pressure-sensitive adhesives, a solution of one of the pressure-sensitive adhesives is coated onto an undried coating of the other, and the coatings are simultaneously dried at room temperature for 24 hours to evaporate the solvents. Physical incompatibility is demonstrated by peeling the dried layers apart.
The double-coated pressure-sensitive adhesive tape of the above-cited Esmay patent is similar to that of the Kalleberg patent except that both adhesive faces can have truly high performance, and the adhesive layers at the two faces of the flexible web do not need to be either chemically different or physically incompatible. This is achieved when the pressure-sensitive adhesive at each of the faces is a polymer of predominantly alkyl acrylate, substantially solvent-free, and crosslinked. The Esmay patent states: "It is surmised that if the adhesive were not substantially solvent-free, the solvent would allow the polymer chains to knit across adjacent convolutions during prolonged storage in roll form, such that perfect separation could no longer be assured. In the present state of the art, it would not be commercially feasible to coat a pressure-sensitive adhesive from solution and obtain a pressure-sensitive adhesive layer which is substantially solvent-free. To keep the amount of solvent to a minimum, the (Esmay) tape is preferably made using photopolymerization as in U.S. Pat. No. 4,181,752 (Martens et al.)" (col. 2, lines 21-32).
The Esmay patent discloses that a "technique for enhancing immediate adhesion to relatively rough or uneven surfaces is to incorporate glass microbubbles into the pressure-sensitive adhesive as taught in U.S. Pat. No. 4,223,067 (Levens)" (col. 4, lines 31,35). Because the microbubble-containing tape of the Levens patent has a foam-like appearance and character, it is sometimes called a "foam-like" tape even though its pressure-sensitive adhesive layer is substantially free of voids except for the hollow spaces within the microbubbles. The Levens patent in turn teaches that where it is desired to adhere the foam-like tape "to a surface to which its pressure-sensitive adhesive layer would not form a strong bond, it may be desirable to apply to one or both of its faces of its microbubble-filled adhesive layer a layer of unfilled pressure-sensitive adhesive which is especially selected for adhesion to that surface" (col. 4, lines 9-15). Such microbubble-free surface layers can also provide substantially increased cohesive strength, especially at high temperatures. Multiple microbubble-free surface layers can have different adhesive properties, each selected for good adhesion to a certain surface. Because the application of those added layers substantially increase the cost of the foam-like tape, less expensive foam-backed tapes have dominated the market for uses requiring immediate adhesion to rough or uneven surfaces.
The microbubbles can be glass as in the examples of the Levens patent, or they can be polymeric as described in U.S. Pat. No. 3,615,472 (Morehouse et al.) or U.S. Pat. No. 4,287,308 (Nakayama et al.).
U.S. Pat. Nos. 4,710,536 and 4,749,590, (Klingen, et al.), disclose the use of certain hydrophobic silicas as fillers for photopolymerized pressure-sensitive adhesive tapes. Preferred silicas have surface areas of at least 10 m2 /g. It is disclosed that the presence of the filler increases the internal strength of the tape.
SUMMARY OF THE INVENTION
The invention relates to a pressure-sensitive adhesive tape comprising a plurality of concurrently coated superimposed layers, the layers having been simultaneously photopolymerized, at least one outer layer being a pressure-sensitive adhesive layer containing at least one alkyl acrylate ester of a nontertiary alcohol and a photoinitiator, contiguous layers defining an interface therebetween, each of the layers comprising a photopolymerized matrix of polymeric chains; the polymeric chains extending from the matrix of one of the layers through the interface into the matrix of a contiguous layer; the polymeric chains comprising polymerized monomers having migrated from the matrix of each contiguous layer prior to polymerization, whereby the layers cannot be delaminated.
The novel product differs from tapes of the prior art in that the monomers of the pressure-sensitive adhesive matrix migrate across the interface prior to and during photopolymerization so that after photopolymerization the polymer chains extending through the interface comprise a substantial amount of monomers originally from both sides of the interface. This yields layers which cannot be physically delaminated.
The present invention embraces a variety of embodiments. One group of preferred embodiments of the present invention is that of pressure-sensitive adhesive tapes which are at least equal in performance to multi-layer foam-like tapes of the Levens and Esmay patents, but can be produced at significantly lower cost. A second group of preferred embodiments is that of cost-effective, double-coated, pressure-sensitive adhesive tapes. Such tapes may have identical or differing adhesives at each surface. Such tapes may further comprise one or more non-adhesive layers selected from a multitude of polymeric matrices, i.e., flexible or foam-like supports between the adhesive layers, or releasable liners.
An especially preferred embodiment of the present invention is a pressure-sensitive adhesive tape comprising thin layers heretofore not possible in photopolymerized tapes. Such tapes have layers ranging in thickness from about 2.5 micrometers (0.10 mil) to about 38 micrometers (1.5 mil) each.
As used herein, the term "tape" includes but is not limited to, those adhesive strips which are single-coated adhesive layers permanently attached to a backing or support, double-coated adhesive strips having flexible supports with an adhesive layer on both sides thereof, and adhesive strips with no support or backing, such being typically though not necessarily releasably attached to a low-adhesion liner, and commonly called "transfer tapes".
As used herein, the terms "concurrent coating" and "concurrently coated" and the like refer to any method of coating wherein the layers to be coated contact each other prior to any contact with the carrier web.
The present invention also relates to a process for making a pressure-sensitive adhesive tape comprising the steps of:
(1) preparing a plurality of coatable compositions, each of the coatable compositions comprising at least one photopolymerizable monomer; at least one of the coatable compositions being curable to a pressure-sensitive adhesive state, monomers of each of the coatable compositions being copolymerizable when blended and subjected to photopolymerization conditions;
(2) concurrently coating the coatable compositions to provide a plurality of superimposed layers with contiguous layers defining an interface therebetween, with one composition which is curable to a pressure-sensitive adhesive state being coated as an outer layer;
(3) permitting migration of photopolymerizable monomers through the interface between contiguous layers; and
(4) subjecting the superimposed layers to irradiation to simultaneously photopolymerize the monomers in each layer, and to provide polymeric chains comprised of copolymers of photopolymerizable monomers originating from contiguous layers extending through the interface therebetween thereby to produce a tape having layers which cannot be delaminated.
All parts, percentages and ratios described herein are by weight unless otherwise identified.
DETAILED DESCRIPTION OF THE INVENTION
Each of the layers of tapes of the invention comprises a photopolymerizable matrix comprising polymeric chains. These matrices may comprise a multitude of polymers; however, all matrices must be photopolymerizable, preferably by the ultraviolet portion of the spectrum (220-440 nm). At least one outer layer must be photopolymerizable to a pressure-sensitive adhesive state.
Such pressure-sensitive adhesive layer of the novel tape has a photopolymerizable matrix comprising an acrylic pressure-sensitive adhesive.
The acrylic pressure-sensitive adhesives useful in the present invention are alkyl acrylates, preferably monofunctional unsaturated acrylate esters of non-tertiary alkyl alcohols, the molecules of which have from 1 to about 14 carbon atoms. Included within this class of monomers are, for example, isooctyl acrylate, isononyl acrylate, 2-ethyl-hexyl acrylate, decyl acrylate, dodecyl acrylate, n-butyl acrylate, and hexyl acrylate. Preferred monomers include isooctyl acrylate, isononyl acrylate, and butyl acrylate. The alkyl acrylate monomers can be used to form homopolymers for the photopolymerizable polymer or they can be copolymerized with polar copolymerizable monomers. When copolymerized with strongly polar copolymerizable monomers, the alkyl acrylate monomer generally comprises at least about 75% of the photopolymerizable polymers. When copolymerized with moderately polar copolymerizable monomers, the alkyl acrylate monomer generally comprises at least about 70% of the photopolymerizable polymer.
The polar copolymerizable monomers can be selected from strongly polar copolymerizable monomers such as acrylic acid, itaconic acid, hydroxyalkyl acrylates, cyanoalkyl acrylates, acrylamides or substituted acrylamides, or from moderately polar copolymerizable monomers such as N-vinyl pyrrolidone, acrylonitrile, vinyl chloride or diallyl phthalate. The strongly polar copolymerizable monomer preferably comprises up to about 25%, more preferably up to about 15%.The moderately polar copolymerizable monomer preferably comprises up to about 30%, more preferably from 5% to about 30% of the photopolymerizable polymer.
The pressure-sensitive adhesive matrix of the novel tape of the invention also contains a photoinitiator to induce polymerization of the monomers. Photoinitiators that are useful for polymerizing the acrylate monomer include the benzoin ethers, substituted benzoin ethers such as benzoin methyl ether or benzoin isopropyl ether, substituted acetophenones such as 2,2-diethoxyacetophenone, and 2,2-dimethoxy-2-phenyl-acetophenone, substituted alpha-ketols such as 2-methyl-2-hydroxypropiophenone, aromatic sulphonyl chlorides such as 2-naphthalene sulphonyl chloride, and photoactive oximes such as 1-phenyl-1,1-propanedione-2-(O-ethoxycarbonyl) oxime. Generally, the photoinitiator is present in an amount of from about 0.01 part to about 1.0 parts based on 100 parts monomer weight.
Where superior cohesive strengths are desired, the pressure-sensitive adhesive matrix of the novel tape should be cross-linked. The mixtures of the elastomer and the photopolymerizable monomers may also contain a crosslinking agent. Preferred crosslinking agents for an acrylic pressure-sensitive adhesive are multifunctional acrylates such as 1,6-hexanediol diacrylate as well as those disclosed in U.S. Pat. No. 4,379,201 (Heilmann et al.), incorporated herein by reference, such as trimethylolpropane triacrylate, pentaerythritol tetracrylate, 1,2-ethylene glycol diacrylate, and 1,2-dodecanediol diacrylate. Crosslinking is especially easy to control when photopolymerizing the monomer in admixture with a multiacrylate crosslinking agent. Other useful crosslinking agents include the substituted triazines, such as those disclosed in U.S. Pat. Nos. 4,329,384 and 4,330,590 (Vesley), both incorporated herein by reference, e.g., 2,4-bis(trichloromethyl)-6-p-methoxystyrene-5-triazine and the chromophore halomethyl-5-triazines. Each of the crosslinking agents is typically present in the range of from about 0.01% to about 5% of the total weight of the monomers.
Among pressure-sensitive adhesives which are useful for the pressure-sensitive adhesive layer of the novel tape are those which become tacky only at elevated temperatures, e.g., acrylic copolymers having average carbon-to-carbon chains of less than 4 carbon atoms or those comprising a polymer wherein methacrylic acid esters are substituted for portions of acrylic acid esters.
Tapes of the invention may comprise more than one pressure-sensitive adhesive layer. In such tapes, the pressure-sensitive adhesive layers may comprise similar or different adhesive compositions, in like or unlike thicknesses, having similar or different additives.
In one particularly preferred embodiment of the invention, one layer of the pressure-sensitive adhesive tape comprises a phase-separated pressure-sensitive adhesive containing
(a) from about 70 parts to about 98 parts of an acrylic copolymer of monomers containing:
(i) from about 60 to about 99 parts of an alkyl acrylate monomer, the alkyl groups of which have an average of 4 to 12 carbon atoms, and
(ii) from about 1 part to about 40 parts of a monoethylenically unsaturated polar copolymerizable monomer, and
(iii) from about 0.01 part to about 1 part of a photoinitiator, and
(b) correspondingly, from about 30 parts to about 2 parts of a hydrocarbon elastomer or blend of hydrocarbon elastomers containing at least one segment having a lower Tg than the acrylic copolymer,
wherein the adhesive has at least a first phase and a second phase, the first phase consisting primarily of the elastomer, and preferably being a continuous phase.
While any layer of the pressure-sensitive adhesive tapes of the invention may contain the phase-separated adhesive, it is most preferably contained in the outer layer.
Elastomers preferred for use in such adhesive layers are those multisegmented elastomers having at least one unsaturated segment, as such segments have lower Tg values than saturated hydrocarbon segments, and are able to co-react with growing acrylic polymer chains. Such preferred elastomers include Stereon™ 840A and Stereon™ 845A, styrene-butadiene multiblock copolymers available commercially from Firestone, Duradene™ 710, a butadiene-styrene copolymer with 27% styrene, also available from Firestone; Kraton™ D1118, a styrene butadiene diblock copolymer, and Kraton™ D1101, a styrene butadiene-styrene triblock copolymer, both Kraton™ copolymers available commercially from Shell Chemical Company. The addition of elastomers having at least, one unsaturated segment to the acrylic copolymers at preferred levels yields phase-separated pressure-sensitive adhesives having at least two phases, wherein the elastomer forms a continuous first phase and the acrylic copolymer forms the second phase. Such a composition provides substantial improvement in low temperature shock properties to the adhesive tape while maintaining otherwise acceptable adhesive properties such as shear and peel.
When a composition incorporating such an elastomer is examined by Transmission Electron Microscopy (TEM), the phase-separated morphology is clearly visible. In preferred compositions, the elastomeric phase is continuous, and the acrylic copolymer phase exists as relatively uniform inclusions averaging from 0.1 micrometer to about 1 micrometer in size. When highly preferred elastomers such as Duradene™710 are utilized, the inclusions are about 0.5 micrometer.
Where a foam-like pressure-sensitive adhesive tape is desirable, a monomer blend comprising microbubbles may be used as a backing or core layer. The microbubbles may be glass as taught in the Levens patent, supra, or they may be polymeric. The microbubbles should have an average diameter of 10 to 200 micrometers, and comprise from about 5 to about 65 volume percent of the pressure-sensitive adhesion layer.
Preferred glass microspheres have average diameters of about 80 micrometers. When glass microbubbles are used, the thickness of the foam-like layer should be at least six times, preferably at least twenty times that of each microbubble-free layer. The thickness of the layer should preferably exceed three times the average diameter of the microbubbles and twice the diameter of substantially every microbubble. The thickness of foam-like layers in preferred tapes of the invention range from 0.3 mm to about 4.0 mm in thickness.
Especially preferred microspheres are polymeric microspheres, such as those described in U.S. Pat. Nos. 3,615,972, 4,075,238, and 4,287,308, all of which are incorporated herein by reference. The microspheres are available from the Pierce & Stevens Company under the trade name "Microlite" in unexpanded form and "Miralite" in expanded form. Similar microspheres are available from Kema Nord Plastics under the trade name "Expancel" and from Matsumoto Yushi Seiyaku under the trade name "Micropearl". In expanded form, the microspheres have a specific density of approximately 0.02-0.036 g/cc. It is possible to include the unexpanded microspheres in the core layer and subsequently heat them to cause expansion, but it is generally preferred to mix in the expanded microspheres. This process ensures that the hollow microspheres in the final core layer are substantially surrounded by at least a thin layer of adhesive.
When a microbubble-free pressure-sensitive adhesive tape is desired to be provided on a substantially non-tacky flexible support film, the film, or "core" layer may comprise substantially the same monomers described for the pressure-sensitive adhesive layer, with different ratios of the acrylic acid ester of non-tertiary alcohol and at least one polar copolymerizable monomer. The preferred range of the polar copolymerizable monomer in such a layer ranges from 10% to about 60% of the total monomer mix.
The core layer may also comprise a crosslinking agent and other photopolymerizable ingredients including, but not limited to alkyl vinyl ethers, vinylidene chloride, styrene, and vinyl toluene, only in amounts that do not detract from the desired properties. A preferred additional ingredient is a poly(methylmethacrylate) polymer, (PMMA), which may be present in amounts up to 70% of the total monomer weight, preferably from 30% to about 50% of the total monomer weight. The core layer may also comprise the elastomer containing phase-separated pressure-sensitive adhesive described herein.
Other materials which can be blended with the polymerizable monomer mixture include fillers, tackifiers, foaming agents, antioxidants, plasticizers, reinforcing agents, dyes, pigments, fibers, fire retardants and viscosity adjusting agents.
An especially useful filler material is hydrophobic silica as disclosed in U.S. Pat. Nos. 4,710,536 and 4,749,590, (Klingen, et al.), both of which are incorporated herein by reference. In one preferred embodiment of the present invention, the pressure-sensitive adhesive layer further comprises from about 2 to about 15 phr of a hydrophobic silica having a surface area of at least 10 m2 /g.
Tackifiers useful in tapes of the invention include aliphatic polymeric resins which may also contain an aromatic component, and which have a number average molecular weight of from about 300 to about 2500, preferably from about 900 to about 2000, a polydispersity index of less than about 5, a glass transition temperature of about 40° C. to about 120° C., and a solubility parameter of about 7 to 9.5 (cal/cc)-1/2. The aliphatic polymeric resins or the aliphatic component of the polymeric resins containing both aliphatic and aromatic components is derived from C-5 or (C-5)2 monomer fractions as described in Satas, Handbook of Pressure Sensitive Adhesive Technology, Van Nostrand Reinhold Co., New York, 1982, pp. 353-369, incorporated herein by reference. When tackifier is present, it typically comprises from about 5 parts to about 50 parts per hundred parts resin (phr).
Especially preferred tackifiers are hydrogenated rosin ester tackifying agents. Rosin esters have a higher softening point than unmodified rosins, and higher molecular weight. Ethylene glycol, glycerol, and pentaerythritol are the most common alcohols used for esterification. Rosin esters are quite stable, and resistant to hydrolysis, and such stability increases with hydrogenation. Surprisingly, acrylic ultraviolet-radiation photopolymerized pressure-sensitive adhesives tackified with hydrogenated rosin ester tackifying agents show improved adhesion over solvent-polymerized acrylic pressure-sensitive adhesives containing about 4 to 8 times as much rosin ester tackifier.
Preferred tackifying agents are highly hydrogenated, e.g., hydrogenated glycerine esters commercially available from companies such as Hercules Inc., under such trade names as Foral™, and Pentalyn™. Individual tackifiers include Foral™ 65, Foral™ 85, and Foral™ 105. Tackifiers useful in the invention having softening temperatures of from about 65° to about 110°. Use of these tackifiers in tapes of the invention do not significantly prohibit the UV curing when used in the moderate amounts required for compositions of the invention. Many rosin and rosin ester based systems prevent or substantially inhibit ultraviolet-radiation curing when used in effective amounts, and so are not useful in tapes of the invention.
Tapes of the invention may also comprise a woven or nonwoven scrim. Presence of such a scrim will not inhibit migration of the monomers from one layer through the interface to a contiguous layer of the tape.
The present invention also relates to a process for making the pressure-sensitive adhesive tape of the invention, comprising the steps of:
(1) preparing a plurality of coatable compositions, each of the coatable compositions comprising at least one photopolymerizable monomer; at least one of the coatable compositions being curable to a pressure-sensitive adhesive state, monomers of each of the coatable compositions being copolymerizable when blended and subjected to photopolymerization conditions;
(2) concurrently coating the coatable compositions to provide a plurality of superimposed layers with contiguous layers defining an interface therebetween, with one composition which is curable to a pressure-sensitive adhesive state being coated as an outer layer;
(3) permitting migration of photopolymerizable monomers through the interface between contiguous layers; and
(4) subjecting the superimposed layers to irradiation to simultaneously photopolymerize the monomers in each layer, and to provide polymeric chains comprised of copolymers of photopolymerizable monomers originating from contiguous layers extending through the interface therebetween, thereby to produce a tape having layers which cannot be delaminated.
Concurrently coating the coatable compositions herein provides advantages not seen with sequential coating of the compositions. When the coatable compositions containing the monomers are coated sequentially, some mechanical mixing of the layers occurs when each contiguous layer is coated. When the layers are coated concurrently, no such mechanical mixing occurs. It is theorized that migration occurs through a diffusion of the monomers into contiguous layers. Minimizing mechanical mixing means better control of the amount of monomer migration between the layers. This enables the skilled artisan to select the processing method that results in the desired amount of migration, even combining concurrently coated layers with sequentially coated layers for certain applications. Further, concurrent coating processes allow multi-layer pressure-sensitive adhesive tapes to be coated and cured in one step, resulting in faster and more economical processing of such tapes.
It has further been discovered that pressure-sensitive tapes may be made by the process of the invention wherein the layers are extremely thin. When the layers are coated in a sequential manner, a minimum layer thickness is about 38 micrometers (1.5 mil). When attempts are made to obtain thinner layers via sequential coating, extreme processing difficulties are encountered. When contact-type sequential coating techniques, i.e., notch bar or reverse roll coating are attempted with layers of less than about 50 micrometers (2.0 mils), the precise machine control required along with the increased solution and web handling difficulties renders the processing line vulnerable to shut down if even a single speck of dirt intrudes. When non-contact type sequential coating techniques, i.e., sequential extrusion or curtain coating, are attempted, normal flow rates will not maintain the fluid film stability of the system. However, when the layers are coated concurrently, layers as thin as 2.5 micrometers may be coated and cured so long as the total thickness of all layers is at least about 38 micrometers (1.5 mils). Without wishing to be bound by theory, it is believed that the increased ability to create thin layers results from the contact of the layers with each other prior to their contact with any carrier web. This creates a multi-layer "superlayer" comprising all concurrently coated layers. The fluid film stability is now dependent on the thickness of this "superlayer", rather than the thickness of each individual layer. Thus, for the first time, thin multi-layered photopolymerized pressure-sensitive adhesive tapes can be made effectively and efficiently by the use of concurrent coating techniques.
Various means of achieving concurrent coatings are encompassed within the invention including, but not limited to multi-layer curtain coating, co-extrusion coating wherein the dies contain multiple manifolds, and use of multiple extrusion dies. The preferred method involves the use of a co-extrusion die having multiple manifolds, as shown in FIG. 1.
A single-coated pressure-sensitive tape of the invention may be made by the process above applying the layers concurrently to a low-adhesion carrier, with one outer layer being a coatable compositions comprising monomers which are photopolymerizable to a pressure-sensitive adhesive state, and one or more contiguous layers being coatable compositions of monomer blends which are photopolymerizable to a non-tacky film state, and being copolymerizable with the pressure-sensitive adhesive outer layer. A double-coated tape may be made by following these steps wherein coatable compositions of both outer layers comprise monomers which are photopolymerizable to a pressure-sensitive adhesive state. The photopolymerizable monomers in the pressure-sensitive adhesive layers may be identical, or may be selected to provide differing specific adhesive properties at each surface of the tape.
A foam-like pressure-sensitive adhesive tape of the invention may be made by a process of the invention comprising the steps of:
(1) preparing a coatable composition having ultraviolet-transparent microbubbles dispersed therein which comprises at least one monomer photopolymerizable to a pressure-sensitive adhesive state;
(2) preparing one or more coatable compositions which are microbubble-free, and comprises at least one photopolymerizable monomer, the monomer being copolymerizable with the monomer in step 1 when blended and subjected to photopolymerization conditions;
(3) concurrently coating the coatable compositions of step 1, and step 2 onto a low-adhesion carrier to form superimposed layers, contiguous layers defining an interface therebetween;
(4) permitting migration of photopolymerizable monomers through the interface between the contiguous layers; and
(5) subjecting the superimposed layers to irradiation to simultaneously photopolymerize the monomers in each layer, and to provide polymeric chains of copolymers of polymerizable monomers originating from contiguous layers extending through the interface therebetween, thereby to produce a tape having layers which cannot be delaminated. In this process as well as the more general process described above, monomers from each, contiguous layer have migrated across the interface, so that after polymerization, a matrix of polymeric chains extends across the interface, substantially comprising monomers from each contiguous layer. It is the formation of such polymeric chains that prevents the layers from being delaminated. Generally, in the preferred foam-like pressure-sensitive adhesive tapes of the invention, the layer containing the microbubbles is thicker than the microbubble-free layer. In making such a foam-like tape of the invention, step 3) of the above-outlined process may involve concurrently applying a thin layer of a microbubble-free coatable composition onto the low-adhesion carrier, a thick coating of the coatable composition containing microbubbles, and a thin coating of a microbubble-free coatable composition. After simultaneously irradiating these coatings, the resulting pressure-sensitive adhesive layer has a thick foam-like core and a thin microbubble-free portion at each of its two surfaces. In this tape, as in all double-coated tapes of the invention, compositions comprising different photopolymerizable monomers may be used in the first and third layers where such would advantageous for the application desired.
The coatable compositions used in tapes of the invention, especially the pressure-sensitive compositions are preferably prepared by premixing together the photopolymerizable monomers and the polar copolymerizable monomer, if used, and photoinitiator. This premix is then partially polymerized to a viscosity in the range of from about 500 cps to about 50,000 cps to achieve a coatable syrup. Alternatively, the monomers can be mixed with a soluble polymeric resin or a thixotropic agent such as fumed silica to achieve a coatable syrup composition.
Elastomer containing phase-separated adhesive compositions are preferably prepared by dissolving or dispersing the elastomer into the alkyl acrylate monomer, and then adding the polar copolymerizable monomer, and photoinitiator. Optional crosslinking agent or other additives may also be incorporated into the syrup.
Photopolymerization is preferably carried out in an inert atmosphere, such as nitrogen. An inert atmosphere can be achieved by temporarily covering the photopolymerizable coating with a plastic film which is transparent to ultraviolet radiation, and irradiating through the film in air. If the photopolymerizable coating is not covered during photopolymerization, the permissible oxygen content of the inert atmosphere can be increased by mixing the coating with a combustible tin compound as taught in U.S. Pat. No. 4,303,485 (Levens), which also teaches such technique for making thick coatings in air.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 schematically illustrates the manufacture of a preferred pressure-sensitive adhesive tape of the invention.
DETAILED DESCRIPTION OF THE DRAWINGS
As shown in FIG. 1, die-coated coatings 12, 14, and 16, each being a syrup comprising a monomer blend which is photopolymerizable, 12 and 16 being photopolymerizable to a pressure-sensitive adhesive state, 14 being polymerizable to a non-tacky polymeric state are concurrently coated onto ultraviolet-transparent, low-adhesion carrier 10 is concurrently coated by means of a multiple manifold co-extrusion die, 20. The co-extrusion die, 20 is adjacent to the back-up roller, 18. It has three manifolds, 22, 24, and 26 which extrude the photopolymerizable layers 12, 14, and 16 respectively onto the low-adhesion carrier 10. The layers are simultaneously subjected to ultraviolet radiation from a bank of lamps 28, thus photopolymerizing the monomers to provide a layer of pressure-sensitive adhesive which comprises a matrix of polymeric chains that extend across the interfaces between a core and the two surface layers resulting from the polymerization of the coatings 12, 14 and 16.
The carrier 10, instead of being low-adhesion, can have an adhesion-promoting treatment, if necessary, in order to create a permanent bond between the pressure-sensitive adhesive layer and the carrier. A permanently bonded carrier can be selected to provide a tape affording good abrasion resistance and/or corrosion resistance and/or environmental protection. A permanently bonded carrier can be a hot-melt adhesive by which the pressure-sensitive adhesive layer can be bonded to a substrate such as gasketing rubber.
FIG. 1 also shows a close-up view of the co-extrusion die, 20. The three manifolds, 22, 24, and 26 extrude the photopolymerizable layers, bottom, center or "core" layer, and top layer respectively onto the carrier web, 10.
90° Peel Adhesion
The adhesive layer to be tested is transferred to a chemically primed, 50 micrometer aluminum foil backing which then is slit to a width of 2.54 cm (1 inch). The resulting tape is self-adhered to a smooth stainless steel plate under the weight of a 2.04-kg hard-rubber-covered steel roller, 2 passes in each direction. After exposure to the indicated conditions, "90° Peel Adhesion" is measured by moving the free end of the tape away from the steel plate at 90° and at a rate of about 0.5 cm per second (using a tensile tester).
Static Shear Test
This test employs two 25.4-mm wide stainless steel straps as follows: Type 304-2BA, 0.38 mm in thickness, surface roughness 0.05 micrometer arithmetic average deviation from the main line. The strips are washed with heptane (also with MEK if heavy oils are present). A strip of 25.4-mm wide double-coated pressure-sensitive adhesive tape, carried on a low-adhesion liner, is adhered to one end of one of the straps and trimmed to a length of 25.4-mm. The liner is then removed, and the other strap adhered to the exposed adhesive surface The specimen is placed in a horizontal position and rolled down with a 1-kg weight and rested on the assembly for 15 minutes at room temperature. Then the panel with the adhered tape is placed in an air-circulating oven which has been preheated to the indicated temperature, and after 15 minutes, a weight is hung from the free end of the tape, with the top strap vertical. The time at which the weight falls is the "Static Shear Value". If no failure, the test is discontinued at 10,000 minutes (in the 70° C. test) or sometimes at 1440 minutes (in the 121° C. test). Only cohesive failures are reported.
Delamination Test
A specimen of the tape is immersed in a bath of ethyl acetate at ordinary room temperature, then visually examined periodically. Any visual evidence of delamination is reported as a failure. The test is discontinued if there has been no failure after 24 hours.
Tensile Strength/Elongation
A 5 cm long by 2.5 cm wide strip of the tape is placed between two jaws of an Instron at 21° C. (70° F.) and 50% relative humidity. The jaws are separated at a constant speed of 13 cm/min. The elongation is reported as the percent elongation required for the sample to break. The tensile strength is measures as the actual force on the sample immediately at break. The force is converted to newtons per square centimeter units. When the sample consists of a double-coated tape with a nonpressure-sensitive backing, the cross-sectional area of the nonpressure-sensitive backing is used to compute the tensile strength.
In the following examples, parts are given by weight. The glass microbubbles used in the examples had a density of 0.15 g/cm3 and were 20-150 micrometers in diameter (average 55 micrometers).
Examples 1 and 2
Two syrups were prepared from 90 parts of isooctyl acrylate and 10 parts of acrylic acid. The first syrup (Syrup #1) was modified with 0.04 phr (phr - parts per hundred resin) of 2,2-dimethoxy-2-phenyl acetophenone photoinitiator, Irgacure™ 651, and was partially polymerized by ultraviolet radiation to a viscosity of approximately 3300 cps (Brookfield), and a degree of polymerization of about 8%. The polymer had an inherent viscosity of about 4.0. An additional 0.15 phr of Irgacure™ 651 was added. 0.10 phr of a 4-(p-methoxyphenyl)-2,6-bis trichloromethyl s-triazine crosslinking agent was also added.
The second syrup (Syrup #2) comprised 90 parts isooctyl acrylate and 10 parts of acrylic acid along with 65 phr of n-butyl/methyl methacrylate copolymer, Acryloid B-66™ from The Rohm and Haas Company, 2 phr of trimethylopropane ethoxylate triacrylate (Oxychem™ Photomer 4149™), and 0.25 phr of the triazine crosslinking agent described above. An ultraviolet photopolymerized coating of this syrup will yield a non-tacky polymeric material, useful as a nonpressure-sensitive backing.
Two double coated tapes were prepared by casting three layers of syrup against a low-adhesion carrier followed by irradiation with 350 mJ/cm2 (Dynachem Radiometer™ Model 500) UV energy from a bank of lamps, 90% of the emissions of which were between 300 and 400 nm with a maximum at 351 nm. Coating was done using a three manifold co-extrusion die such that the three layers were concurrently coated. The thickness of the layers were as follows:
______________________________________                                    
         Example 1  Example 2                                             
______________________________________                                    
Layer 1    50 μm-Syrup #1                                              
                        50 μm-Syrup #1                                 
Layer 2    75 μm-Syrup #2                                              
                        178 μm-Syrup #2                                
Layer 3    50 μm-Syrup #1                                              
                        50 μm-Syrup #1                                 
______________________________________                                    
Comparative Examples 1 and 2
Double-coated tapes were made in an identical manner to Examples 1 and 2, except that coating was sequentially accomplished using three consecutive knife coaters. These tapes along with the tapes of Examples 1 and 2 were tested, and the results reported in Table 1.
              TABLE 1                                                     
______________________________________                                    
                     Comp.           Comp.                                
               Ex. 1 Ex. 1   Ex. 2   Ex. 2                                
______________________________________                                    
Tensile Strength (N/cm.sup.2)                                             
                 986     147     924   199                                
Elongation (%)   283     464     210   311                                
90° Adhesion (N/dm)                                                
15 min @ 23° C./50% R.H.                                           
                 28      63                                               
72 hr. @ 23° C./50% R.H.                                           
                 123     127                                              
72 hr. @ 70° C.                                                    
                 186     182                                              
Delamination Test (minutes)                                               
                 Passed  Passed  Passed                                   
                                       Passed                             
______________________________________                                    
Comparative Examples 3-6
Double-coated pressure-sensitive adhesive tapes were made as described in Example 1, and coated to the constructions described above. It was observed during coating of Example 6, that the microbubbles from syrup 3# were clearly seen in the "rolling bank" of syrup #1 in the next sequential knife coater, thus indicating physical mixing of the layers.
Examples 3-6
Syrup #3 is prepared by adding 0.5 phr of polymeric microbubbles (Miralite™-177) to syrup #2. Examples 3-6 are coated as described in Example 1. The layers have the following thicknesses:
              TABLE 1.1                                                   
______________________________________                                    
                         Example        Example                           
Layer Syrup #  Example 3 4      Example 5                                 
                                        6                                 
______________________________________                                    
1     1        50 μm  50 μm                                         
                                75 μm                                  
                                        75 μm                          
2     3        300 μm 400 μm                                        
                                550 μm                                 
                                        750 μm                         
3     1        50 μm  50 μm                                         
                                50 μm                                  
                                        75 μm                          
______________________________________                                    
Example 7 and Comparative Example 7
Syrup #4 was prepared in a manner similar to syrup #1 except that the monomers consisted of 80 parts of isooctyl acrylate and 20 parts of N-vinyl-2-pyrrolidone. The levels of photoinitiator and photoactive crosslinker remain the same as in Syrup #1.
Two two-layer pressure-sensitive adhesive tapes were made as in Example 1, except that they were irradiated with 200 mJ/cm2 UV energy. Both tapes had the following construction, and were coated using a multiple manifold co-extrusion die for Example 7, and sequential notched bar coating for Comparative Example 7 respectively:
______________________________________                                    
Layers       Thickness                                                    
______________________________________                                    
Layer 1      75 μm-syrup #1                                            
Layer 2      50 μm-syrup #4                                            
______________________________________                                    
Layer 2 was the layer against the low-adhesion carrier. The test results are shown in Table 3.
              TABLE 3                                                     
______________________________________                                    
                 Ex. 7 Comp. Ex. 7                                        
______________________________________                                    
90° Peel Adhesion (N/dm)                                           
15 min @ 23° C./50% R.H.                                           
                   77      83                                             
72 hr. @ 23° C./50% R.H.                                           
                   151     164                                            
72 hr. @ 70° C.                                                    
                   245     50                                             
Static Shear (min.)-70° C.                                         
                   3227    49                                             
23° C.      10000   5366                                           
Delamination Test (minutes)                                               
                   Passed  Passed                                         
______________________________________                                    
Examples 8-12
Syrup #5 was prepared using a partially polymerized mixture of 75 parts of isooctyl acrylate and 25 parts of acrylic acid. The syrup contained 0.16 phr Irgacure™ 651 and 0.08 phr of the triazine crosslinker described in Example 1.
Five double-coated pressure-sensitive adhesive tapes were made. In each case, three tape layers were superimposed in the following order; syrup #1, syrup #5, and syrup #1 respectively. In each case, the total thickness of all three layers was 178 μm, and the two layers of syrup #1 were the same thickness as described below. All samples were irradiated with 400 mJ/cm2 of Uv energy.
______________________________________                                    
Example No.     Syrup #1 Syrup #5                                         
______________________________________                                    
8               13 μm 150 μm                                        
9               25 μm 128 μm                                        
10              38 μm 102 μm                                        
11              50 μm 78 μm                                         
12              64 μm 50 μm                                         
______________________________________                                    
Comparative Example 11
A double-coated pressure-sensitive adhesive tape was produced as in Example 11 using three sequential notched bar coatings. The construction was as follows:
______________________________________                                    
Layer 1           40 μm-syrup #1                                       
Layer 2           75 μm-syrup #5                                       
Layer 3           48 μm-syrup #1                                       
______________________________________                                    
The tapes were tested for 90° Peel Adhesion and the tapes of Examples 8-12 were tested for Delamination. The test results are reported in Table 4.
              TABLE 4                                                     
______________________________________                                    
           90° Peel Adhesion (N/dm)                                
           15 min.                                                        
                 72 hr.    72 hr.  Delamin-                               
           23° C.                                                  
                 23° C.                                            
                           70° C.                                  
                                   tion Test                              
______________________________________                                    
Example 8    22      26        22    Passed                               
Example 9    28      48        28    Passed                               
Example 10   79      66        77    Passed                               
Example 11   74      147       193   Passed                               
Example 12   92      223       256   Passed                               
Comp. Example 11                                                          
             35      70        206   --                                   
______________________________________                                    
Examples 12-15
Syrup #6 was prepared using a partially polymerized mixture consisting of 96 parts isooctyl acrylate and 4 parts acrylic acid, along with 0.19 phr Irgacure™ 651 and 0.10 phr of the triazine crosslinker described in Example 1.
Four pressure-sensitive adhesive tapes were then made with one surface being made nonpressure-sensitive by coating a layer of syrup #6 against a low-adhesion carrier and concurrently coating a 90 μm (3.5 mils) layer of Syrup #2 over this layer. The layers were irradiated simultaneously with 200 mJ/cm2 of UV energy. The thicknesses of the layers were as follows:
______________________________________                                    
Example No.  Syrup #6 Layer                                               
                         Syrup #2 Layer                                   
______________________________________                                    
Example 12   13 μm    90 μm                                         
Example 13   25 μm    90 μm                                         
Example 14   38 μm    90 μm                                         
Example 15   50 μm    90 μm                                         
______________________________________                                    
The tapes were tested for 90° Peel Adhesion and Delamination. The results are listed in Table 5.
              TABLE 5                                                     
______________________________________                                    
               Ex. 12                                                     
                     Ex. 13  Ex. 14  Ex. 15                               
______________________________________                                    
90° Peel Adhesion (N/dm)                                           
(Stainless Steel)                                                         
15 min @ 23° C./50% R.H.                                           
                 0        4       9     9                                 
72 hr. @ 23° C./50% R.H.                                           
                 4       11      24    42                                 
72 Hr. @ 70° C.                                                    
                 9       31      85    --                                 
Delamination Test (minutes)                                               
                 Passed  Passed  Passed                                   
                                       Passed                             
______________________________________                                    
Examples 16-19
Syrup #7 was prepared using a partially polymerized mixture consisting of 93.5 parts isooctyl acrylate and 6.5 parts acrylic acid, along with 0.39 phr Irgacure™ 184 crosslinker and 0.15 phr of the triazine crosslinker described in Example 1. Three separate syrups were then made by adding the indicated amount of Foral™ 85 tackifying agent to syrup #7.
Three pressure-sensitive adhesive tapes were then made by coating a layer of the tackified syrup #7 against a low-adhesion carrier and concurrently coating a center layer of Syrup #1 over this layer, and an outer layer of tackified syrup #7 over this layer. The thicknesses, and level of tackification of the individual layers are as listed below.
These tapes were then tested for adhesion to varying substrates, static shear and delamination. The results are listed in Table 6.
______________________________________                                    
Example No.                                                               
          Syrup #7  Syrup #1  Syrup #7                                    
                                     Foral ™ 85                        
______________________________________                                    
16        10 μm  105 μm 10 μm                                    
                                     46.8 phr                             
17        3.75 μm                                                      
                    117.5 μm                                           
                              3.75 μm                                  
                                     30 phr                               
18        12.5 μm                                                      
                    100 μm 12.5 μm                                  
                                     20 phr                               
______________________________________                                    
              TABLE 6                                                     
______________________________________                                    
*90° Peel Adhesion (N/dm)                                          
                Ex. 16     Ex. 17  Ex. 18                                 
______________________________________                                    
Stainless Steel                                                           
15 min @ 23° C./50% R.H.                                           
                154        158     --                                     
72 hr. @ 23° C./50% R.H.                                           
                189        189     --                                     
72 Hr. @ 70° C.                                                    
                279        270     --                                     
ABS                                                                       
15 min @ 23° C./50% R.H.                                           
                121        147     --                                     
72 hr. @ 23° C./50% R.H.                                           
                121        158     --                                     
72 Hr. @ 70° C.                                                    
                134        140     --                                     
Polypropylene                                                             
15 min @ 23° C./50% R.H.                                           
                101        68      --                                     
72 hr. @ 23° C./50% R.H.                                           
                86         66      --                                     
72 Hr. @ 70° C.                                                    
                86         66      --                                     
Static Shear (min.)                                                       
                887        10000   10000                                  
23° C.                                                             
Delamination Test                                                         
                Passed     Passed  Passed                                 
______________________________________                                    
 *These 90° Peel Adhesion tests were conducted using a 200         
 micrometer (8 mil) aluminum backing rather than the standard 50 micromete
 (2 mil) backing.                                                         
Examples 20-23
Syrup #8 was prepared using a mixture consisting of 90 parts isooctyl acrylate and 10 parts acrylic acid, along with 0.18 phr Irgacure™ 651, and adding 20 phr Stereon™ 845A, a styrene-butadiene multiblock copolymer with 48% styrene, available from Firestone. Syrup #9 was prepared using a mixture consisting of 85 parts isooctyl acrylate and 15 parts acrylic acid, along with 0.18 phr Irgacure™ 651, and adding 20 phr Duradene™ 710, a butadiene styrene copolymer having 27% styrene, available from Firestone. Syrup #10 was prepared using a mixture consisting of 85 parts isooctyl acrylate and 15 parts acrylic acid, along with 0.18 phr Irgacure™ 651, and adding 20 phr Kraton™ D1101, a styrene/butadiene/styrene block copolymer with 30% styrene, available from Shell Chemical Company.
Three pressure-sensitive adhesive tapes were then made by coating a 55 μm thick layer of syrup #6 against a low-adhesion carrier and concurrently coating a 164 μm thick center layer of Syrup #1 over this layer, and then coating a 55 μm thick outer layer of syrups #8, 9 and 10, respectively, over this layer. All samples passed the delamination test.

Claims (3)

What is claimed is:
1. A process for making a pressure-sensitive adhesive tape comprising a plurality of concurrently coated simultaneously photopolymerized superimposed layers, said layers having been simultaneously photopolymerized, at least one outer layer being a pressure-sensitive adhesive layer, said pressure-sensitive adhesive layer comprising at least one alkyl acrylate ester of a nontertiary alcohol, and a photoinitiator, contiguous layers defining an interface therebetween, each of said layers comprising a photopolymerized matrix of polymeric chains; said polymeric chains extending from the matrix of one of said layers through said interface into the matrix of a contiguous layer; said polymeric chains comprising polymerized monomers having migrated from the matrix of each contiguous layers, said process comprising the steps of:
(1) preparing a plurality of coatable compositions, each of said coatable compositions comprising at least one photopolymerizable monomer; at least one of said coatable compositions being curable to a pressure-sensitive adhesive state, monomers of each of said coatable compositions being copolymerizable when blended and subjected to photopolymerization conditions;
(2) concurrently coating said coatable compositions to provide a plurality of superimposed layers with contiguous layers defining an interface therebetween, with one composition which is curable to a pressure-sensitive adhesive state being coated as an outer layer;
(3) permitting migration of photopolymerizable monomers through said interface between contiguous layers; and
(4) subjecting said superimposed layers to irradiation to simultaneously photopolymerize said monomers in each layer, and to provide polymeric chains comprised of copolymers of photopolymerizable monomers originating from contiguous layers extending through said interface therebetween;
thereby to produce a tape having layers which cannot be delaminated.
2. A process according to claim for making a pressure-sensitive adhesive tape having an adhesive layer comprising from about 40% to about 95% isooctyl acrylate, and from 5% to about 60% of a polar copolymerizable monomer selected from the group consisting of N-vinyl pyrrolidone and acrylic acid, said process comprising the steps of:
(1) preparing one or more coatable compositions which are photopolymerizable to yield a non-tacky polymeric material;
(2) preparing a coatable composition containing at least one monomer which is photopolymerizable to a pressure-sensitive adhesive state, said monomer being copolymerizable with the monomer in step 1 when blended and subjected to photopolymerization conditions;
(3) concurrently coating said coatable compositions of step 1, and step 2 onto a carrier to form superimposed layers, contiguous layer defining an interface therebetween;
(4) permitting migration of photopolymerizable monomers through said interface between said contiguous layers; and
(5) subjecting said superimposed layers to irradiation to simultaneously photopolymerize said monomers in each layer, and to provide polymeric chains comprised of copolymers of photopolymerizable monomers originating from contiguous layers extending through said interface therebetween;
thereby to produce a tape having which cannot be delaminated.
3. A process according to claim 1 for making a pressure-sensitive tape wherein at least one layer further comprises from about 5% to about 65% volume percent ultraviolet transparent microbubbles having a specific gravity of no more than 1.0, said process comprising the steps of:
(1) preparing a coatable composition having said ultraviolet-transparent microbubbles dispersed therein which comprises at least one monomer photopolymerizable to a pressure-sensitive adhesive state;
(2) preparing one or more coatable compositions which are microbubble-free, and comprise at least one photopolymerizable monomer, said monomer being copolymerizable with the monomer in step 1 when blended and subjected to photopolymerization conditions;
(3) concurrently coating said coatable compositions of step 1, and step 2 onto a low-adhesion carrier to form superimposed layers, said contiguous layers defining an interface therebetween;
(4) permitting migration of photopolymerizable monomers through said interface between said contiguous layers; and
(5) subjecting said superimposed layers to irradiation to simultaneously photopolymerize the monomers in each layer, and to provide polymeric chains of copolymers of polymerizable monomers originating from contiguous layers extending through the interface therebetween;
thereby to produce a tape having layers which cannot be delaminated.
US07/212,596 1986-08-29 1988-06-28 Process of making a unified pressure-sensitive adhesive tape Expired - Lifetime US4894259A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US07/212,596 US4894259A (en) 1986-08-29 1988-06-28 Process of making a unified pressure-sensitive adhesive tape

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US90037286A 1986-08-29 1986-08-29
US07/212,596 US4894259A (en) 1986-08-29 1988-06-28 Process of making a unified pressure-sensitive adhesive tape

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US9067187A Continuation-In-Part 1987-08-28 1987-08-28

Publications (1)

Publication Number Publication Date
US4894259A true US4894259A (en) 1990-01-16

Family

ID=26907299

Family Applications (1)

Application Number Title Priority Date Filing Date
US07/212,596 Expired - Lifetime US4894259A (en) 1986-08-29 1988-06-28 Process of making a unified pressure-sensitive adhesive tape

Country Status (1)

Country Link
US (1) US4894259A (en)

Cited By (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4988742A (en) * 1988-09-02 1991-01-29 Minnesota Mining And Manufacturing Company Tackified terpolymer adhesives
US5147938A (en) * 1991-04-02 1992-09-15 Minnesota Mining And Manufacturing Company Acrylate adhesives containing polymerizable fluorochemical surfactants
US5308887A (en) * 1991-05-23 1994-05-03 Minnesota Mining & Manufacturing Company Pressure-sensitive adhesives
US5464659A (en) * 1991-05-23 1995-11-07 Minnesota Mining And Manufacturing Company Silicone/acrylate vibration dampers
US5514730A (en) * 1991-03-20 1996-05-07 Minnesota Mining And Manufacturing Company Radiation-curable acrylate/silicone pressure-sensitive adhesive compositions
US5674341A (en) * 1993-02-22 1997-10-07 Mcneil-Ppc, Inc. Application of adhesive to a non-planar surface
US5695837A (en) * 1995-04-20 1997-12-09 Minnesota Mining And Manufacturing Company Tackified acrylic adhesives
US5718958A (en) * 1995-06-07 1998-02-17 Avery Dennison Corporation Repulpable pressure-sensitive adhesive constructions having multiple layers
US5728430A (en) * 1995-06-07 1998-03-17 Avery Dennison Corporation Method for multilayer coating using pressure gradient regulation
US5741543A (en) * 1995-02-10 1998-04-21 Minnesota Mining And Manufacturing Company Process for the production of an article coated with a crosslinked pressure sensitive adhesive
US5773485A (en) * 1994-07-29 1998-06-30 Minnesota Mining And Manufacturing Company Acrylic syrup curable to a crosslinked viscoelastomeric material
US5827609A (en) * 1995-06-07 1998-10-27 Avery Dennison Corporation Multilayer Pressure-sensitive adhesive construction
US5840783A (en) * 1995-04-24 1998-11-24 Minnesota Mining And Manufacturing Company Pressure-sensitive adhesives for polyolefin surfaces
US5993961A (en) * 1995-06-07 1999-11-30 Avery Dennison Corporation Use of pressure-sensitive adhesive as a barrier coating
US6045895A (en) * 1997-12-01 2000-04-04 3M Innovative Properties Company Multilayer films having pressure sensitive adhesive layers
EP1026215A1 (en) * 1999-02-02 2000-08-09 Avery Dennison Corporation Dry peel label laminates and processes of making same
US6183862B1 (en) * 1998-09-23 2001-02-06 Avery Dennison Corporation Multilayer PSA construction exhibiting reduced tackifier migration
US6187432B1 (en) 1997-03-11 2001-02-13 Avery Dennison Corporation Composite pressure sensitive adhesive
EP1127934A1 (en) * 2000-02-28 2001-08-29 Nitto Denko Corporation Ultraviolet crosslinking pressure-sensitive adhesive composition, process for producing same, pressure-sensitive adhesive sheet and process for producing same
US6316099B1 (en) 1999-03-31 2001-11-13 3M Innovative Properties Company Multi-layered sealant
US6379791B1 (en) 2000-02-08 2002-04-30 3M Innovative Properties Company Compatibilized pressure-sensitive adhesives
US6423392B1 (en) 1998-12-15 2002-07-23 Avery Dennison Corporation Label adhesives and constructions exhibiting low adhesive residue in printers
WO2002079336A1 (en) * 2001-03-30 2002-10-10 3M Innovative Properties Company Transparent pressure-sensitive adhesive layer
US6503620B1 (en) 1999-10-29 2003-01-07 Avery Dennison Corporation Multilayer composite PSA constructions
US6547887B1 (en) 1998-12-15 2003-04-15 Avery Dennison Corporation Multilayer pressure-sensitive adhesive label constructions
US6579941B1 (en) 2000-06-12 2003-06-17 Avery Dennison Corporatoin Adhesive compositions and constructions with outstanding cutting performance
US6699326B2 (en) 2000-09-22 2004-03-02 Regents Of The University Of Minnesota Applicator
US6756095B2 (en) * 2001-01-10 2004-06-29 Avery Dennison Corporation Heat-sealable laminate
US20040137222A1 (en) * 2001-03-30 2004-07-15 Welke Siegfried K. Transparent pressure-sensitive adhesive layer
US6824828B2 (en) 1995-06-07 2004-11-30 Avery Dennison Corporation Method for forming multilayer release liners
US6842288B1 (en) 2003-10-30 2005-01-11 3M Innovative Properties Company Multilayer optical adhesives and articles
US6894204B2 (en) 2001-05-02 2005-05-17 3M Innovative Properties Company Tapered stretch removable adhesive articles and methods
US20050252600A1 (en) * 2004-05-13 2005-11-17 Van Driesten Sjoerd J Method of making a container
EP1655079A2 (en) * 2004-11-04 2006-05-10 Tesa AG Process for coating of strip substrates with at least two adhesives, resulting adhesive tape and its use
US20060099411A1 (en) * 2004-11-10 2006-05-11 Jianhui Xia Multi-layer pressure sensitive adhesive for optical assembly
US7078582B2 (en) 2001-01-17 2006-07-18 3M Innovative Properties Company Stretch removable adhesive articles and methods
US20070231552A1 (en) * 2004-06-14 2007-10-04 Masaki Yoda Multi-Layered Thermally Conductive Sheet
CN101321840A (en) * 2005-12-05 2008-12-10 共同技研化学株式会社 Adhesive film
EP2207675A1 (en) * 2007-10-29 2010-07-21 3M Innovative Properties Company Pressure sensitive adhesive article
US20100330372A1 (en) * 2007-05-17 2010-12-30 Johnsondiversey, Inc. Surface coating system and method
WO2011052490A1 (en) * 2009-10-27 2011-05-05 日東電工株式会社 Process for production of pressure-sensitive adhesive sheets
US20110159225A1 (en) * 2009-12-31 2011-06-30 Bostik, Inc. High Performance Foam Adhesive Tape
WO2011094385A1 (en) 2010-01-29 2011-08-04 3M Innovative Properties Company Continuous process for forming a multilayer film and multilayer film prepared by such method
US20110287253A1 (en) * 2010-05-19 2011-11-24 Nitto Denko Corporation Pressure-sensitive adhesive tape
US20120058329A1 (en) * 2008-11-28 2012-03-08 Sakurai Aizoh pressure sensitive adhesive composition and a pressure sensitive adhesive tape
US20120064336A1 (en) * 2009-05-22 2012-03-15 Akiko Tanaka Ultraviolet-curable adhesive agent composite, adhesive agent layer, adhesive sheet, and manufacturing method therefor
US20120100378A1 (en) * 2009-06-26 2012-04-26 Basf Se Paint coating system and method of producing multilayered paint coating
EP2551024A1 (en) 2011-07-29 2013-01-30 3M Innovative Properties Co. Multilayer film having at least one thin layer and continuous process for forming such a film
US8557378B2 (en) 2008-12-31 2013-10-15 3M Innovative Properties Company Stretch releasable adhesive tape
US9260632B2 (en) 2011-10-14 2016-02-16 3M Innovative Properties Company Primerless multilayer adhesive film for bonding glass substrates
EP3225577A1 (en) 2016-03-31 2017-10-04 Olympic Holding B.V. Cantilever expansion shaft
US9868862B2 (en) 2011-05-25 2018-01-16 Diversey, Inc. Surface coating system and method of using surface coating system
US10167386B2 (en) 2014-12-08 2019-01-01 3M Innovative Properties Company Acrylic polyvinyl acetal films and composition
US10344188B2 (en) 2015-12-22 2019-07-09 3M Innovative Properties Company Acrylic polyvinyl acetal films comprising an adhesive layer
US10457455B2 (en) * 2006-09-26 2019-10-29 Intertape Polymer Corp. Member for use in undersea applications
US10479058B2 (en) 2014-08-08 2019-11-19 Nitto Denko Corporation Pressure-sensitive adhesive sheet
US10493738B2 (en) 2015-12-22 2019-12-03 3M Innovative Properties Company Acrylic polyvinyl acetal graphic films
US10619019B2 (en) 2014-12-08 2020-04-14 3M Innovative Properties Company Acrylic polyvinyl acetal films, composition, and heat bondable articles
US11034830B2 (en) 2015-12-22 2021-06-15 3M Innovative Properties Company Acrylic polyvinyl acetal films comprising a second layer
US11167523B2 (en) 2015-12-22 2021-11-09 3M Innovative Properties Company Acrylic films comprising a structured layer
US11186751B2 (en) * 2017-04-28 2021-11-30 3M Innovative Properties Company Multilayer PSA foam particles
US11397286B2 (en) 2016-06-07 2022-07-26 3M Innovative Properties Company Acrylic polyvinyl acetal film for a light directing article
US11752731B2 (en) 2017-06-30 2023-09-12 3M Innovative Properties Company Articles having adhesive layers including urethane acrylate polymer or acrylate copolymer

Cited By (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4988742A (en) * 1988-09-02 1991-01-29 Minnesota Mining And Manufacturing Company Tackified terpolymer adhesives
US5514730A (en) * 1991-03-20 1996-05-07 Minnesota Mining And Manufacturing Company Radiation-curable acrylate/silicone pressure-sensitive adhesive compositions
US5147938A (en) * 1991-04-02 1992-09-15 Minnesota Mining And Manufacturing Company Acrylate adhesives containing polymerizable fluorochemical surfactants
US5308887A (en) * 1991-05-23 1994-05-03 Minnesota Mining & Manufacturing Company Pressure-sensitive adhesives
US5464659A (en) * 1991-05-23 1995-11-07 Minnesota Mining And Manufacturing Company Silicone/acrylate vibration dampers
US5624763A (en) * 1991-05-23 1997-04-29 Minnesota Mining And Manufacturing Company Silicone/acrylate vibration dampers
US5674341A (en) * 1993-02-22 1997-10-07 Mcneil-Ppc, Inc. Application of adhesive to a non-planar surface
US5773485A (en) * 1994-07-29 1998-06-30 Minnesota Mining And Manufacturing Company Acrylic syrup curable to a crosslinked viscoelastomeric material
US5902836A (en) * 1994-07-29 1999-05-11 Minnesota Mining And Manufacturing Company Acrylic syrup curable to a crosslinked viscoelastomeric material
US5741543A (en) * 1995-02-10 1998-04-21 Minnesota Mining And Manufacturing Company Process for the production of an article coated with a crosslinked pressure sensitive adhesive
US5695837A (en) * 1995-04-20 1997-12-09 Minnesota Mining And Manufacturing Company Tackified acrylic adhesives
US5840783A (en) * 1995-04-24 1998-11-24 Minnesota Mining And Manufacturing Company Pressure-sensitive adhesives for polyolefin surfaces
US5728430A (en) * 1995-06-07 1998-03-17 Avery Dennison Corporation Method for multilayer coating using pressure gradient regulation
US5827609A (en) * 1995-06-07 1998-10-27 Avery Dennison Corporation Multilayer Pressure-sensitive adhesive construction
US5718958A (en) * 1995-06-07 1998-02-17 Avery Dennison Corporation Repulpable pressure-sensitive adhesive constructions having multiple layers
US5993961A (en) * 1995-06-07 1999-11-30 Avery Dennison Corporation Use of pressure-sensitive adhesive as a barrier coating
US6824828B2 (en) 1995-06-07 2004-11-30 Avery Dennison Corporation Method for forming multilayer release liners
US20050100677A1 (en) * 1995-06-07 2005-05-12 Avery Dennison Corporation Method for forming multilayer release liners and liners formed thereby
US20050074549A1 (en) * 1995-06-07 2005-04-07 Avery Dennison Corporation Method for forming multilayer release liners and liners formed thereby
US6187432B1 (en) 1997-03-11 2001-02-13 Avery Dennison Corporation Composite pressure sensitive adhesive
US6045895A (en) * 1997-12-01 2000-04-04 3M Innovative Properties Company Multilayer films having pressure sensitive adhesive layers
US6183862B1 (en) * 1998-09-23 2001-02-06 Avery Dennison Corporation Multilayer PSA construction exhibiting reduced tackifier migration
US6511743B1 (en) * 1998-09-23 2003-01-28 Avery Dennison Corporation Wrinkle-resistant adhesive construction
US6423392B1 (en) 1998-12-15 2002-07-23 Avery Dennison Corporation Label adhesives and constructions exhibiting low adhesive residue in printers
US6547887B1 (en) 1998-12-15 2003-04-15 Avery Dennison Corporation Multilayer pressure-sensitive adhesive label constructions
EP1026215A1 (en) * 1999-02-02 2000-08-09 Avery Dennison Corporation Dry peel label laminates and processes of making same
WO2000046316A1 (en) * 1999-02-02 2000-08-10 Avery Dennison Corporation Label laminate
US6740399B1 (en) 1999-03-31 2004-05-25 3M Innovative Properties Company Multi-layered sealant
US6316099B1 (en) 1999-03-31 2001-11-13 3M Innovative Properties Company Multi-layered sealant
US6503620B1 (en) 1999-10-29 2003-01-07 Avery Dennison Corporation Multilayer composite PSA constructions
US6630239B2 (en) 2000-02-08 2003-10-07 3M Innovative Properties Company Compatibilized pressure-sensitive adhesives
US6379791B1 (en) 2000-02-08 2002-04-30 3M Innovative Properties Company Compatibilized pressure-sensitive adhesives
US20040210006A1 (en) * 2000-02-28 2004-10-21 Nitto Denko Corporation Ultraviolet crosslinking pressure-sensitive adhesive composition, process for producing same, pressure-sensitive adhesive sheet and process for producing same
US20050049366A9 (en) * 2000-02-28 2005-03-03 Nitto Denko Corporation Ultraviolet crosslinking pressure-sensitive adhesive composition, process for producing same, pressure-sensitive adhesive sheet and process for producing same
EP1127934A1 (en) * 2000-02-28 2001-08-29 Nitto Denko Corporation Ultraviolet crosslinking pressure-sensitive adhesive composition, process for producing same, pressure-sensitive adhesive sheet and process for producing same
US20040058171A1 (en) * 2000-06-12 2004-03-25 Avery Dennison Corporation Adhesive compositions and constructions with outstanding cutting performance
US6579941B1 (en) 2000-06-12 2003-06-17 Avery Dennison Corporatoin Adhesive compositions and constructions with outstanding cutting performance
US6841257B2 (en) 2000-06-12 2005-01-11 Avery Dennison Corporation Adhesive compositions and constructions with outstanding cutting performance
US6699326B2 (en) 2000-09-22 2004-03-02 Regents Of The University Of Minnesota Applicator
US6756095B2 (en) * 2001-01-10 2004-06-29 Avery Dennison Corporation Heat-sealable laminate
US7078582B2 (en) 2001-01-17 2006-07-18 3M Innovative Properties Company Stretch removable adhesive articles and methods
US20040137222A1 (en) * 2001-03-30 2004-07-15 Welke Siegfried K. Transparent pressure-sensitive adhesive layer
WO2002079336A1 (en) * 2001-03-30 2002-10-10 3M Innovative Properties Company Transparent pressure-sensitive adhesive layer
US6894204B2 (en) 2001-05-02 2005-05-17 3M Innovative Properties Company Tapered stretch removable adhesive articles and methods
US6842288B1 (en) 2003-10-30 2005-01-11 3M Innovative Properties Company Multilayer optical adhesives and articles
US20050252600A1 (en) * 2004-05-13 2005-11-17 Van Driesten Sjoerd J Method of making a container
US7632370B2 (en) 2004-05-13 2009-12-15 Avery Dennison Corporation Method of making a container
US7709098B2 (en) 2004-06-14 2010-05-04 3M Innovative Properties Company Multi-layered thermally conductive sheet
US20070231552A1 (en) * 2004-06-14 2007-10-04 Masaki Yoda Multi-Layered Thermally Conductive Sheet
EP1655079A2 (en) * 2004-11-04 2006-05-10 Tesa AG Process for coating of strip substrates with at least two adhesives, resulting adhesive tape and its use
EP1655079A3 (en) * 2004-11-04 2006-08-02 Tesa AG Process for coating of strip substrates with at least two adhesives, resulting adhesive tape and its use
US20060099411A1 (en) * 2004-11-10 2006-05-11 Jianhui Xia Multi-layer pressure sensitive adhesive for optical assembly
CN101321840B (en) * 2005-12-05 2014-12-31 共同技研化学株式会社 Adhesive film
US20090286073A1 (en) * 2005-12-05 2009-11-19 Kyodo Giken Chemical Co., Ltd Adhesive Film
CN101321840A (en) * 2005-12-05 2008-12-10 共同技研化学株式会社 Adhesive film
US9765242B2 (en) * 2005-12-05 2017-09-19 Kyodo Giken Chemical Co., Ltd Adhesive film
US10457455B2 (en) * 2006-09-26 2019-10-29 Intertape Polymer Corp. Member for use in undersea applications
US11401445B2 (en) 2006-09-26 2022-08-02 Intertape Polymer Corp. Filament reinforced tapes useful as underwater pipe wrap
US11401444B2 (en) 2006-09-26 2022-08-02 Intertape Polymer Corp. Filament reinforced tapes useful as underwater pipe wrap
US20100330372A1 (en) * 2007-05-17 2010-12-30 Johnsondiversey, Inc. Surface coating system and method
EP2207675A1 (en) * 2007-10-29 2010-07-21 3M Innovative Properties Company Pressure sensitive adhesive article
US9174237B2 (en) 2007-10-29 2015-11-03 3M Innovative Properties, Co. Pressure sensitive adhesive article
EP2207675A4 (en) * 2007-10-29 2014-02-12 3M Innovative Properties Co Pressure sensitive adhesive article
US20120058329A1 (en) * 2008-11-28 2012-03-08 Sakurai Aizoh pressure sensitive adhesive composition and a pressure sensitive adhesive tape
US8557378B2 (en) 2008-12-31 2013-10-15 3M Innovative Properties Company Stretch releasable adhesive tape
US20120064336A1 (en) * 2009-05-22 2012-03-15 Akiko Tanaka Ultraviolet-curable adhesive agent composite, adhesive agent layer, adhesive sheet, and manufacturing method therefor
US20120100378A1 (en) * 2009-06-26 2012-04-26 Basf Se Paint coating system and method of producing multilayered paint coating
CN102597147A (en) * 2009-10-27 2012-07-18 日东电工株式会社 Process for production of pressure-sensitive adhesive sheets
JP2011093959A (en) * 2009-10-27 2011-05-12 Nitto Denko Corp Method for producing pressure-sensitive adhesive sheet
WO2011052490A1 (en) * 2009-10-27 2011-05-05 日東電工株式会社 Process for production of pressure-sensitive adhesive sheets
US20110159225A1 (en) * 2009-12-31 2011-06-30 Bostik, Inc. High Performance Foam Adhesive Tape
EP2353736A1 (en) 2010-01-29 2011-08-10 3M Innovative Properties Company Continuous process for forming a multilayer film and multilayer film prepared by such method
WO2011094385A1 (en) 2010-01-29 2011-08-04 3M Innovative Properties Company Continuous process for forming a multilayer film and multilayer film prepared by such method
US20110287253A1 (en) * 2010-05-19 2011-11-24 Nitto Denko Corporation Pressure-sensitive adhesive tape
US9868862B2 (en) 2011-05-25 2018-01-16 Diversey, Inc. Surface coating system and method of using surface coating system
WO2013019495A1 (en) 2011-07-29 2013-02-07 3M Innovative Properties Company Multilayer film having at least one thin layer and continuous process for forming such a film
US9914854B2 (en) 2011-07-29 2018-03-13 3M Innovative Properties Company Multilayer film having at least one thin layer and continuous process for forming such a film
EP2551024A1 (en) 2011-07-29 2013-01-30 3M Innovative Properties Co. Multilayer film having at least one thin layer and continuous process for forming such a film
US9260632B2 (en) 2011-10-14 2016-02-16 3M Innovative Properties Company Primerless multilayer adhesive film for bonding glass substrates
US10479058B2 (en) 2014-08-08 2019-11-19 Nitto Denko Corporation Pressure-sensitive adhesive sheet
US10870750B2 (en) 2014-12-08 2020-12-22 3M Innovative Properties Company Acrylic polyvinyl acetal films and composition
US10619019B2 (en) 2014-12-08 2020-04-14 3M Innovative Properties Company Acrylic polyvinyl acetal films, composition, and heat bondable articles
US10167386B2 (en) 2014-12-08 2019-01-01 3M Innovative Properties Company Acrylic polyvinyl acetal films and composition
US11629250B2 (en) 2014-12-08 2023-04-18 3M Innovative Properties Company Acrylic polyvinyl acetal films and composition
US10344188B2 (en) 2015-12-22 2019-07-09 3M Innovative Properties Company Acrylic polyvinyl acetal films comprising an adhesive layer
US10493738B2 (en) 2015-12-22 2019-12-03 3M Innovative Properties Company Acrylic polyvinyl acetal graphic films
US11034830B2 (en) 2015-12-22 2021-06-15 3M Innovative Properties Company Acrylic polyvinyl acetal films comprising a second layer
US11167523B2 (en) 2015-12-22 2021-11-09 3M Innovative Properties Company Acrylic films comprising a structured layer
WO2017167903A1 (en) 2016-03-31 2017-10-05 Olympic Holding B.V. Cantilever expansion shaft
EP3225577A1 (en) 2016-03-31 2017-10-04 Olympic Holding B.V. Cantilever expansion shaft
US11397286B2 (en) 2016-06-07 2022-07-26 3M Innovative Properties Company Acrylic polyvinyl acetal film for a light directing article
US11186751B2 (en) * 2017-04-28 2021-11-30 3M Innovative Properties Company Multilayer PSA foam particles
US11752731B2 (en) 2017-06-30 2023-09-12 3M Innovative Properties Company Articles having adhesive layers including urethane acrylate polymer or acrylate copolymer

Similar Documents

Publication Publication Date Title
US4894259A (en) Process of making a unified pressure-sensitive adhesive tape
CA1334521C (en) Unified pressure-sensitive adhesive tape
US4818610A (en) Unified pressure-sensitive adhesive tape
EP0305161B1 (en) Unified pressure-sensitive adhesive tape
US4599265A (en) Removable pressure-sensitive adhesive tape
CA1341126C (en) Pressure-sensitive adhesive
JP2740015B2 (en) Pressure sensitive adhesive
DE69722021T2 (en) BONDING ADHESIVES
EP0437068B1 (en) Cellular pressure-sensitive adhesive membrane
AU653561B2 (en) Removable adhesive tape
AU614623B2 (en) Pressure-sensitive adhesive tapes
US5079047A (en) Radiation-curable pressure-sensitive adhesive having improved adhesion to plasticized vinyl substrates
EP0902071B1 (en) Thermosetting pressure-sensitive adhesive and adhesive sheets made by using the same
US4895738A (en) Method of making a unified pressure-sensitive adhesive tape
US20050170164A1 (en) Methods for making glass fiber reinforced materials
EP0109177B1 (en) Removable pressure-sensitive adhesive tape
EP1325095B1 (en) Methods for making glass fiber reinforced materials
JP2022130412A (en) Surface protection films and related methods
JP3444423B2 (en) UV curable acrylic pressure-sensitive adhesive compositions containing carbamate-functional monomers and adhesives prepared therefrom
JPH1017830A (en) Easily strippable, polyvinyl chloride resin, pressure-sensitive adhesive sheet

Legal Events

Date Code Title Description
AS Assignment

Owner name: MINNESOTA MINING AND MANUFACTURING COMPANY, SAINT

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:ZIMMERMAN, PATRICK G.;KULLER, DOUGLAS H.;REEL/FRAME:004925/0298

Effective date: 19880623

Owner name: MINNESOTA MINING AND MANUFACTURING COMPANY, A CORP

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ZIMMERMAN, PATRICK G.;KULLER, DOUGLAS H.;REEL/FRAME:004925/0298

Effective date: 19880623

STCF Information on status: patent grant

Free format text: PATENTED CASE

CC Certificate of correction
FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12