Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS4722694 A
Publication typeGrant
Application numberUS 06/936,194
Publication date2 Feb 1988
Filing date1 Dec 1986
Priority date1 Dec 1986
Fee statusPaid
Also published asCA1292529C, DE270473T1, DE3781772D1, DE3781772T2, EP0270473A2, EP0270473A3, EP0270473B1
Publication number06936194, 936194, US 4722694 A, US 4722694A, US-A-4722694, US4722694 A, US4722694A
InventorsJohn M. Makal, Randall R. Schoenwetter
Original AssigneeRte Corporation
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
High voltage cable connector
US 4722694 A
Abstract
A connector for electrically connecting a high voltage cable to an electrical apparatus bushing with a threaded opening, the connector comprising a housing having a passage having one end formed to sealingly engage the bushing, and an electrically conductive cable connecting element positioned in the housing and extending partially into the first passage. The cable connecting element is adapted to be electrically connected to the high voltage cable. The connector also includes a bushing connecting member mounted in the passage and adapted to be rotated. The connecting member includes a body portion electrically connected to the cable connecting element, and a threaded portion connected to the body portion and adapted to engage the threaded opening in the bushing. The bushing connecting member also includes a lead portion connected to the threaded portion and having such an axial length and a diameter significant to insure the maximum amount of possible misalignment between the bushing threaded opening and the bushing connecting member is at most about one-half a degree. The threaded portion also has a blunt lead thread and the axial length of the threaded portion is of sufficient length so that the threaded portion engages the bushing opening before the connector housing contacts the bushing.
Images(2)
Previous page
Next page
Claims(14)
We claim:
1. A connector for electrically connecting a high voltage cable to an electrical apparatus bushing with a threaded opening, said connector comprising
a housing having a passage having one end formed to sealingly engage the bushing,
an electrically conductive cable connecting element positioned in said housing and extending partially into said passage, said cable connecting element being adapted to be electrically connected to the high voltage cable,
and a bushing connecting member mounted in said passage and adapted to be rotated and including a body portion electrically connected to said cable connecting element,
a threaded portion connected to said body portion and adapted to engage the threaded opening in the bushing, said threaded portion having a major diameter and a minor diameter, and
a lead portion connected to said threaded portion and having an axial length at least as long as said threaded portion, and a diameter slightly less than said minor diameter of said threaded portion so that there is a small tolerance slip fit between said lead portion and the threaded opening in the bushing.
2. A connector in accordance with claim 1 wherein said difference between said lead portion diameter and said threaded portion minor diameter is between 0.001 inch and 0.015 inch.
3. A connector in accordance with claim 1 wherein the axial length of said threaded portion is of sufficient length so that said threaded portion engages said threaded opening of the bushing before said housing contacts the bushing.
4. A connector in accordance with claim 1 wherein said lead portion is non-threaded.
5. A connector in accordance with claim 1 wherein said threaded portion has a blunt lead thread.
6. A connector in accordance with claim 5 wherein the axial length of said threaded portion is between 7/8 and 13/8 inches and wherein the axial length of said threaded portion and said lead portion is between 23/8 and 31/4 inches.
7. A connector for electrically connecting a high voltage cable to an electrical apparatus bushing with a threaded opening, said connector comprising
a housing formed from an insulating material and having a first passage having one end formed to sealingly engage the bushing and a second passage intersecting said first passage,
an electrically conductive cable connecting element positioned in said second passage and extending partially into said first passage, said cable connecting element being adapted to be electrically connected to the high voltage cable and having an opening axially aligned with said first passage,
and a bushing connecting member located in said first passage and adapted to be rotated and including a body portion positioned in and in electrical communication with said cable connecting element opening,
a threaded portion connected to said body portion and adapted to engage the threaded opening in the bushing, said threaded portion having a major diameter and a minor diameter, and
a non-threaded lead portion connected to said threaded portion and having an axial length at least as long as said threaded portion and a diameter slightly less than said minor diameter of said threaded portion so that there is a small tolerance slip fit between said lead portion and the threaded opening in the bushing.
8. A connector in accordance with claim 7 wherein said difference between said lead portion diameter and said threaded portion minor diameter is between 0.001 inch and 0.015 inch.
9. A connector in accordance with claim 7 wherein the axial length of said threaded portion is of sufficient length that said threaded portion engages said threaded opening of the bushing before said housing contacts the bushing.
10. A connector in accordance with claim 7 wherein said threaded portion has a blunt lead thread.
11. A connector in accordance with claim 10 wherein the axial length of said threaded portion is between 7/8 and 13/8 inches and wherein the axial length of said threaded portion and said non-threaded lead portion is between 23/8 and 31/4 inches.
12. A connector, for electrically connecting a high voltage cable to an electrical apparatus bushing with a threaded opening, said connector comprising
a housing having a passage having one end formed to sealingly engage the bushing,
an electrically conductive cable connecting element positioned in said housing and extending partially into said passage, said cable connecting element being adapted to be electrically connected to the high voltage cable,
and a bushing connecting member mounted in said passage and adapted to be rotated and including a body portion electrically connected to said cable connecting element,
a threaded portion connected to said body portion and adapted to engage the threaded opening in the bushing, and
a lead portion connected to said threaded portion and having an axial length and a diameter sufficient to insure the maximum amount of possible misalignment between the threaded opening in the bushing and said bushing connecting member is at most about one-half a degree.
13. A connector in accordance with claim 12 wherein said threaded portion has a major diameter and a minor diameter, and said lead portion has an axial length at least as long as said threaded portion, and a diameter slightly less than said minor diameter of said threaded portion so that there is a small tolerance slip fit between said lead portion and the threaded opening in the bushing
14. A connector in accordance with claim 12 wherein said threaded portion has a blunt lead.
Description
BACKGROUND OF THE INVENTION

This invention relates to a connector for electrically connecting a high voltage cable to an electrical apparatus bushing with a threaded opening.

In high voltage electric utility circuits, especially in underground systems, it is necessary to make connections between the high voltage cables and various electrical apparatus, such as padmounted switchgear and padmounted transformers. Typically, the connection is made through the use of a connector on the end of the cable and a bushing on the electrical apparatus. A secure connection between the connector and the bushing is necessary.

Because it is hard to maneuver the stiff high voltage cable while attempting to connect the cable connector to the bushing, it is difficult to accomplish the connection.

Many different methods have been used for securing the connector to the bushing. This invention relates to such connections which utilize a threaded connecting member housed in the connector, which connecting member is threaded into a threaded opening in the bushing by rotating the threaded member. Examples of connectors including such threaded connecting members include U.S. Borgstrom Pat. No. 4,202,591 and U.S. Sankey et al Pat. No. 3,883,208; which is hereinafter incorporated herein by reference.

A problem encountered with these connector designs has been in getting the threaded connecting member secured in the threaded bushing opening without stripping the threads on the connecting member. Although some connector designs have used a connecting member including a threaded portion having a major diameter and a minor diameter and a non-threaded lead portion, the length of the lead portion was shorter than the length of the threaded portion, and the diameter of the lead portion was substantially less than the minor diameter of the threaded portion. As a result, there was a loose fit between the lead portion and the bushing threaded opening. Further, the threaded portion did not have a blunt lead. These factors generally contributed to the thread stripping problem.

SUMMARY OF THE INVENTION

One of the principal features of this invention is in the provision of a connector including a connecting member which eliminates the likelihood of this stripping problem.

Another of the principal features of the invention is the provision of such a connector which increases the ease by which a single individual can connect and disconnect a cable connector and a bushing.

This invention provides a connector for electrically connecting a high voltage cable to an electrical apparatus bushing with a threaded opening, the connector comprising a housing having a passage having one end formed to sealingly engage the bushing, and an electrically conductive cable connecting element positioned in the housing and extending partially into the first passage. The cable connecting element is adapted to be electrically connected to the high voltage cable. The connector also includes a bushing connecting member mounted in the passage and adapted to be rotated. The connecting member includes a body portion electrically connected to the cable connecting element, and a threaded portion connected to the body portion and adapted to engage the threaded opening in the bushing. The bushing connecting member also includes a lead portion connected to the threaded portion and having an axial length and a diameter sufficient to insure the maximum amount of possible misalignment between the threaded opening in the bushing and the bushing connecting member is at most about one-half a degree.

In one embodiment, the threaded portion has a major diameter and a minor diameter, and the lead portion has an axial length at least as long as the threaded portion, and a diameter slightly less than the minor diameter of the threaded portion so that there is a small tolerance slip fit between the lead portion and the threaded opening in the bushing.

In one embodiment, the threaded portion has a blunt lead thread and the axial length of the threaded portion is of sufficient length so that the threaded portion engages the bushing opening before the connector housing contacts the bushing.

Various other features and benefits of the invention are more particularly set forth in the attached drawings, the description and the appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a perspective view, partially broken away, of a high voltage cable connector before connection of the connector to an electrical apparatus bushing;

FIG. 2 is a cross sectional view of the high voltage cable connector connected to the electrical apparatus bushing;

FIG. 3 is an enlarged view of the bushing connecting portion of the high voltage connector;

FIG. 4 is an enlarged view of a portion of the connecting member;

FIG. 5 is a cross sectional view of the connecting member taking along the line 5--5 in FIG. 4; and

FIG. 6 is another view of the connecting portion shown in FIG. 1 and illustrates the possible misalignment between the bushing connecting member and the bushing opening.

DESCRIPTION OF THE PREFERRED EMBODIMENT

Illustrated in the drawings is a connector 10 for electrically connecting a high voltage cable 14 to an electrical apparatus bushing 18. More particularly, as illustrated in FIG. 1, the connector 10 is a visible break deadfront type T-connector much like that described in U.S. Sankey et al Pat. No. 3,883,208 which issued May 13, 1975 and which is incorporated herein by reference.

The electrical apparatus bushing 18 includes an insulating body or housing 22 having a tapered conical outer surface 26. Centrally located within the bushing housing 22 is an electrical conductor 30 with a blind threaded central opening 34 in one end. Although other constructions can be used in other embodiments, the bushing central opening 34 includes a threaded portion 38 near the one end and a non-threaded portion 42 away from the one end. The other end 46 of the electrical conductor 30 is threaded and adapted to be connected to the wiring inside the electrical apparatus (not shown).

As more particularly illustrated in FIG. 2, the connector 10 comprises a housing 50, an electrically conductive cable connecting element 54, a bushing connecting member 58 connected to the cable connecting member 54, and a contact assembly 62. The housing 50 is generally T-shaped, formed from a resilient insulating material such as rubber, and includes a first passage 66 open at both ends and having a tapered section 78 at one end which is adapted to sealingly engage the outer tapered surface 26 of the bushing 18, and a tubular section 82 at the other end. The open ended tubular section 82 provides tool access to rotate the bushing connecting member 58 into the bushing threaded opening 34. The tubular section 82 also houses the contact assembly 62, as explained below. A second cable passage 86 is also provided in the housing 50 and intersects the first passage 66. An electrically conductive elastomeric lining 90 is provided on the surface of the second passage 86 to equalize the voltage gradiant around the electrical connection between the cable connecting element 54 and the bushing connecting member 58.

The high voltage cable 14 is connected to the cable connecting element 54. The connecting element 54 includes a cylindrical portion 94 having a blind bore 98, and an extension or flange 102. The exposed end of the cable 14 is inserted into the blind bore 98 in the cable connecting element 54 and is secured therein by crimping the connecting element 54 to the exposed end of the cable 14.

The connecting element 54 is positioned in the second passage 86 and the connecting element flange 102 extends partially into the first passage 66. The flange 102 also has an opening 106 aligned with the first passage 66.

Received within the flange opening 106 is the bushing connecting member 58. Although other constructions can be used in other embodiments, the bushing connecting member 58 is partially held in place by the contact assembly 62. As illustrated in FIGS. 2 and 3, the contact assembly 62 includes a conductive sleeve 110 having a threaded section 114 at its inner end, and a threaded section 118 at its outer end. A tubular nut 122 having a first outer threaded section 126 and a second outer threaded section 130 is received in the inner end threaded section 114 of the conductive sleeve 110. A flange 134 is provided at the end of the first outer threaded section 126. A hexagonal opening 138 is provided in the nut 122 and an inner threaded section 142 is provided in the center of the nut 122.

As illustrated in FIG. 3, an electrically conductive receptacle 146 having a threaded section 150 at the inner end is mounted on the second outer threaded section 130 of the nut 122. As illustrated in FIG. 2, an arc extinguishing sleeve 154 having an inner bore 158 and an outer threaded section 162 is threadingly received in the conductive sleeve outer end threaded section 118. The open end of the contact assembly 62 can be covered by the means of a cap (not shown) when tool access to the bushing connecting member 58 is not desired.

The bushing connecting member 58 is formed from a solid cylindrical conductive material such as a chromium copper alloy having a fairly high tensile strength. Although other constructions can be used in other embodiments, the connecting member 58 includes, as viewed from left to right in FIG. 3, a first threaded portion 166, a tapered portion 170, a central or body portion 174, a flange 178, a seconded threaded portion 182, and a lead portion 186. Hexagonal openings 190 and 192 of the same size are provided at each end of the bushing connecting member 58.

The body portion 174 is located within the cable connecting element opening 106 and the diameter of the connecting member body portion 174 is slightly smaller than the diameter of the opening 106 in the cable connecting element flange 102. Electrical communication is provided between the member 58 and the cable connecting element 54 by means of a conductive ring 194 provided in a groove 198 in the cable connecting element 54. The conductive ring 194 has an inner diameter slightly smaller than the outer diameter of the body portion 174 of the connecting member 58.

The first threaded section 166 of the connecting member 58 is adapted to be received within the inner threaded section 142 of the nut 122. Also, the hexagonal opening 138 in the nut 122 is larger than the hexagonal opening 190 in the connecting member 58. The nut 122 also includes a tapered section 202 provided at the end of the nut first threaded section 166 which corresponds with the tapered portion 170 of the connecting member 58.

The bushing connecting member 58 is assembled to the cable connecting element 54 by mounting the nut 122 on the connecting member 58. The connecting member flange 178 and the nut 122 are slightly spaced from the cable connecting element flange 102 to provide a fixed space slightly larger than the width of the flange 178 to allow the connecting member 58 to rotate freely in the cable connecting element opening 106.

The second threaded portion 182 connected to the body portion 174 is adapted to engage the threaded opening 34 in the bushing 18. This second threaded portion 182 has a major diameter (d2) corresponding to the outer, dimension of the crest of the threads and a minor diameter (d1) corresponding to the inner dimension of the valleys between the threads.

As illustrated in FIG. 6, the non-threaded lead portion 186 is connected to the second threaded portion 182 and has an axial length and a diameter sufficient to insure the maximum amount of possible misalignment between the longitudinal axis of the bushing opening 34 and the longitudinal axis of bushing connecting member 58 is at most about one-half a degree. A longer lead portion 186 can be used when a greater clearance is present between the lead portion 186 and the bushing opening 34, and a shorter lead portion 186 can be used when less clearance is present between the lead portion 186 and the bushing opening 34. In this particular embodiment, the lead portion 186 has an axial length at least as long as the second threaded portion 182. The non-threaded lead portion 186 also has a diameter (d3) slightly less than the minor diameter (d2) of the second threaded portion 182 so that there is a small tolerance slip fit (between 0.001 inch and 0.015 inch) between the lead portion 186 and the threaded opening 34 in the bushing 18.

Further, as illustrated in FIGS. 4 and 5, the second threaded portion 182 has a blunt lead thread 206. The lead thread 206 has been cut at about the top of the crest so that the crest of the thread 206 engages immediately with the mating threads in the bushing opening 34. The typical fine lead thread which extends gradually down between the crest of the thread and the outer surface of the lead portion 186 has thus been eliminated. The elimination of this gradually reducing lead thread greatly reduces the likelihood of stripping the lead thread. As illustrated in FIG. 5, the leading edge of the lead thread 206 is generally tangential to the outer surface of the lead portion 186.

As illustrated in FIG. 1, an optimum axial length (a) of the second threaded portion 182 has been found to be between 7/8 and 13/8 inches and an optimum axial length (b) of the second threaded portion 182 and the non-threaded lead portion 186 has been found to be between 23/8 and 31/4 inches. The second threaded portion length used by the applicants is 1 inch and a 2.8 inch length is used for the combined second threaded portion 182 and lead portion 186.

The length of the second threaded portion 182 has been determined to be one which, as illustrated in FIG. 2, permits engagement of the second threaded portion with the bushing threaded opening 34 without initiating contact between the bushing housing 22 and the connector housing 50. This permits initial engagement of the connecting member 58 in the bushing threaded opening 34 without the person rotating the bushing connecting member 58 having to fight against a resilient contact between the connector housing and the bushing housing 22.

The long lead portion 186 being sized for a slip fit into the bushing opening 34 provides a positive means of aligning the threads of the connecting member 58 and the bushing 18. The increased length of the connector threads allows for thread engagement before the interference of the interfaces between the bushing housing 22 and the connector housing 50. The blunt lead thread 206 of the connecting member threads makes the threads easier to engage and makes cross-threading highly unlikely. The blunt start also eliminates the thin thread form typical of most thread starts. A thin thread form can be easily bent or rolled over.

The improved connector 10 including the above described bushing connecting member 58 permits connection of the connector 10 to the bushing 18 to be more easily achieved by a single person while two persons were typically required to connect bushings and connector in earlier designs.

Various other features of the invention are set forth in the following claims.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3670287 *17 Aug 197013 Jun 1972Westinghouse Electric CorpElectrical connector assembly
US3713077 *22 Dec 197023 Jan 1973Westinghouse Electric CorpQuick make and break plug-in connector for a high voltage and high current circuit
US3883208 *25 Oct 197313 May 1975Rte CorpVisible break tee-connector
US3917374 *19 Aug 19754 Nov 1975Kearney National IncElectric connector apparatus
US4116515 *22 Nov 197626 Sep 1978Rte CorporationSpring actuated contact for high voltage bushing
US4202591 *10 Oct 197813 May 1980Amerace CorporationApparatus for the remote grounding, connection and disconnection of high voltage electrical circuits
US4222625 *28 Dec 197816 Sep 1980Amerace CorporationHigh voltage electrical connector shield construction
US4289199 *28 Sep 197915 Sep 1981Combustion Engineering, Inc.Wellhead sidewall electrical penetrator
US4353611 *6 Mar 198012 Oct 1982Amerace CorporationBushing well stud construction
US4354721 *31 Dec 198019 Oct 1982Amerace CorporationAttachment arrangement for high voltage electrical connector
US4629277 *20 Sep 198416 Dec 1986Raychem CorporationElectrical apparatus
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4857021 *17 Oct 198815 Aug 1989Cooper Power Systems, Inc.Electrical connector assembly and method for connecting the same
US5114357 *29 Apr 199119 May 1992Amerace CorporationHigh voltage elbow
US5957712 *30 Jul 199728 Sep 1999Thomas & Betts International, Inc.Loadbreak connector assembly which prevents switching flashover
US61684477 Apr 19992 Jan 2001Thomas & Betts International, Inc.Loadbreak connector assembly which prevents switching flashover
US650410320 Mar 19977 Jan 2003Cooper Industries, Inc.Visual latching indicator arrangement for an electrical bushing and terminator
US65207952 Aug 200118 Feb 2003Hubbell IncorporatedLoad reducing electrical device
US658553117 Nov 20001 Jul 2003Thomas & Betts International, Inc.Loadbreak connector assembly which prevents switching flashover
US6843685 *24 Dec 200318 Jan 2005Thomas & Betts International, Inc.Electrical connector with voltage detection point insulation shield
US69391511 Jul 20026 Sep 2005Thomas & Betts International, Inc.Loadbreak connector assembly which prevents switching flashover
US698479114 Apr 200310 Jan 2006Cooper Technologies CompanyVisual latching indicator arrangement for an electrical bushing and terminator
US70447605 Jan 200416 May 2006Thomas & Betts International, Inc.Separable electrical connector assembly
US710856811 Aug 200419 Sep 2006Homac Mfg. CompanyLoadbreak electrical connector probe with enhanced threading and related methods
US715009813 Oct 200419 Dec 2006Thomas & Betts International, Inc.Method for forming an electrical connector with voltage detection point insulation shield
US718264724 Nov 200427 Feb 2007Cooper Technologies CompanyVisible break assembly including a window to view a power connection
US721642622 Mar 200615 May 2007Thomas & Betts International, Inc.Method for forming a separable electrical connector
US723498027 Apr 200626 Jun 2007Homac Mfg. CompanyLoadbreaking electrical connector probe with enhanced threading and related methods
US737782521 Sep 200427 May 2008Illinois Tool Works Inc.High-power electrical quick connector
US7381103 *30 Mar 20063 Jun 2008Richards Manufacturing CompanyMultiple bore termination system having an integrally formed component
US7491075 *28 Jul 200517 Feb 2009Cooper Technologies CompanyElectrical connector
US749435520 Feb 200724 Feb 2009Cooper Technologies CompanyThermoplastic interface and shield assembly for separable insulated connector system
US751726027 May 200814 Apr 2009Richards Manufacturing CompanyMultiple bore termination system
US752420210 May 200728 Apr 2009Thomas & Betts International, Inc.Separable electrical connector assembly
US756892723 Apr 20074 Aug 2009Cooper Technologies CompanySeparable insulated connector system
US757213320 Mar 200711 Aug 2009Cooper Technologies CompanySeparable loadbreak connector and system
US757868225 Feb 200825 Aug 2009Cooper Technologies CompanyDual interface separable insulated connector with overmolded faraday cage
US763212010 Mar 200815 Dec 2009Cooper Technologies CompanySeparable loadbreak connector and system with shock absorbent fault closure stop
US763374123 Apr 200715 Dec 2009Cooper Technologies CompanySwitchgear bus support system and method
US764246510 Jan 20065 Jan 2010Cooper Technologies CompanyVisual latching indicator arrangement for an electrical bushing and terminator
US76483766 Apr 200919 Jan 2010Thomas & Betts International, Inc.25kV loadbreak elbow and bushing increased flashover distance
US76619791 Jun 200716 Feb 2010Cooper Technologies CompanyJacket sleeve with grippable tabs for a cable connector
US766601220 Mar 200723 Feb 2010Cooper Technologies CompanySeparable loadbreak connector for making or breaking an energized connection in a power distribution network
US767016225 Feb 20082 Mar 2010Cooper Technologies CompanySeparable connector with interface undercut
US768220812 Feb 200823 Mar 2010Illinois Tool Works Inc.High-power electrical quick connector
US769529131 Oct 200713 Apr 2010Cooper Technologies CompanyFully insulated fuse test and ground device
US770857625 Aug 20084 May 2010Cooper Industries, Ltd.Electrical connector including a ring and a ground shield
US781111312 Mar 200812 Oct 2010Cooper Technologies CompanyElectrical connector with fault closure lockout
US785462022 Dec 200821 Dec 2010Cooper Technologies CompanyShield housing for a separable connector
US78623542 Oct 20094 Jan 2011Cooper Technologies CompanySeparable loadbreak connector and system for reducing damage due to fault closure
US787066816 Jan 200918 Jan 2011Cooper Technologies CompanyMethod for connecting an electrical connector to a cable connector
US787884911 Apr 20081 Feb 2011Cooper Technologies CompanyExtender for a separable insulated connector
US788335623 Dec 20098 Feb 2011Cooper Technologies CompanyJacket sleeve with grippable tabs for a cable connector
US790122720 Nov 20088 Mar 2011Cooper Technologies CompanySeparable electrical connector with reduced risk of flashover
US790573525 Feb 200815 Mar 2011Cooper Technologies CompanyPush-then-pull operation of a separable connector system
US790963522 Dec 200922 Mar 2011Cooper Technologies CompanyJacket sleeve with grippable tabs for a cable connector
US795093922 Feb 200731 May 2011Cooper Technologies CompanyMedium voltage separable insulated energized break connector
US795094025 Feb 200831 May 2011Cooper Technologies CompanySeparable connector with reduced surface contact
US795863111 Apr 200814 Jun 2011Cooper Technologies CompanyMethod of using an extender for a separable insulated connector
US80384577 Dec 201018 Oct 2011Cooper Technologies CompanySeparable electrical connector with reduced risk of flashover
US805622625 Feb 200815 Nov 2011Cooper Technologies CompanyMethod of manufacturing a dual interface separable insulated connector with overmolded faraday cage
US810977627 Feb 20087 Feb 2012Cooper Technologies CompanyTwo-material separable insulated connector
US81525473 Oct 200810 Apr 2012Cooper Technologies CompanyTwo-material separable insulated connector band
US839977123 Nov 200919 Mar 2013Cooper Technologies CompanyVisual latching indicator arrangement for an electrical bushing and terminator
US85416848 Feb 201324 Sep 2013Cooper Technologies CompanyVisual latching indicator arrangement for an electrical bushing and terminator
US8602800 *7 Apr 201110 Dec 2013Thomas & Betts International, Inc.Electrical connector having alignment mechanism
US911232211 Mar 201318 Aug 2015Thomas & Betts International, LlcElectrical connector with multiple interfaces
US9350123 *25 Jun 201524 May 2016Thomas & Betts International LlcElbow with internal assembly system
US9362663 *7 Apr 20157 Jun 2016S&C Electric CompanyReplaceable bushing for electrical equipment
US9385493 *9 Apr 20155 Jul 2016S&C Electric CompanyAdjustable bus bar for power distribution equipment
US9660402 *21 Jun 201623 May 2017S&C Electric CompanyConductor assembly for power distribution equipment
US20020164896 *1 Jul 20027 Nov 2002Thomas & Betts International, Inc.Loadbreak connector assembly which prevents switching flashover
US20040192093 *5 Jan 200430 Sep 2004Thomas & Betts International, Inc.Separable electrical connector assembly
US20050142941 *13 Oct 200430 Jun 2005Thomas & Betts International, Inc.Electrical connector with voltage detection point insulation shield
US20060035497 *11 Aug 200416 Feb 2006Homac Mfg. CompanyLoadbreak electrical connector probe with enhanced threading and related methods
US20060063396 *21 Sep 200423 Mar 2006Bankstahl Herbert AHigh-Power Electrical Quick Connector
US20060110983 *24 Nov 200425 May 2006Muench Frank JVisible power connection
US20060178026 *22 Mar 200610 Aug 2006Thomas & Betts International, Inc.Separable electrical connector assembly
US20060189221 *27 Apr 200624 Aug 2006Homac Mfg. CompanyLoadbreaking electrical connector probe with enhanced threading and related methods
US20060286837 *30 Mar 200621 Dec 2006Luzzi Glenn JMultiple bore termination system
US20070023201 *10 Jan 20061 Feb 2007Cooper Technologies CompanyVisual Latching Indicator Arrangement for an Electrical Bushing and Terminator
US20070026714 *28 Jul 20051 Feb 2007Cooper Technologies CompanyElectrical connector
US20070293073 *20 Mar 200720 Dec 2007Hughes David CSeparable loadbreak connector and system
US20080146064 *12 Feb 200819 Jun 2008Bankstahl Herbert AHigh-Power Electrical Quick Connector
US20080192409 *13 Feb 200714 Aug 2008Paul Michael RoscizewskiLivebreak fuse removal assembly for deadfront electrical apparatus
US20080200053 *20 Feb 200721 Aug 2008David Charles HughesThermoplastic interface and shield assembly for separable insulated connector system
US20080207022 *22 Feb 200728 Aug 2008David Charles HughesMedium voltage separable insulated energized break connector
US20080220638 *23 May 200811 Sep 2008David Charles HughesApparatus, System and Methods for Deadfront Visible Loadbreak
US20080227342 *27 May 200818 Sep 2008Glenn LuzziMultiple bore termination system
US20080233786 *20 Mar 200725 Sep 2008David Charles HughesSeparable loadbreak connector and system
US20080259532 *23 Apr 200723 Oct 2008Cooper Technologies CompanySwitchgear Bus Support System and Method
US20080261465 *23 Apr 200723 Oct 2008Cooper Technologies CompanySeparable Insulated Connector System
US20090081896 *20 Nov 200826 Mar 2009Cooper Technologies CompanySeparable Electrical Connector with Reduced Risk of Flashover
US20090100675 *22 Dec 200823 Apr 2009Cooper Technologies CompanyMethod for manufacturing a shield housing for a separable connector
US20090108847 *31 Oct 200730 Apr 2009Cooper Technologies CompanyFully Insulated Fuse Test and Ground Device
US20090111324 *22 Dec 200830 Apr 2009Cooper Technologies CompanyShield Housing for a Separable Connector
US20090215299 *27 Feb 200827 Aug 2009Cooper Technologies CompanyTwo-material separable insulated connector
US20090215313 *25 Feb 200827 Aug 2009Cooper Technologies CompanySeparable connector with reduced surface contact
US20090215321 *25 Feb 200827 Aug 2009Cooper Technologies CompanyPush-then-pull operation of a separable connector system
US20090233472 *12 Mar 200817 Sep 2009David Charles HughesElectrical Connector with Fault Closure Lockout
US20090255106 *11 Apr 200815 Oct 2009Cooper Technologies CompanyMethod of using an extender for a separable insulated connector
US20090258547 *11 Apr 200815 Oct 2009Cooper Technologies CompanyExtender for a separable insulated connector
US20100022111 *6 Apr 200928 Jan 2010Thomas & Betts International, Inc.25kv loadbreak elbow and bushing increased flashover distance
US20100048046 *25 Aug 200825 Feb 2010Cooper Industries, Ltd.Electrical connector including a ring and a ground shield
US20100068907 *23 Nov 200918 Mar 2010Cooper Technologies CompanyVisual latching indicator arrangement for an electrical bushing and terminator
US20100240245 *23 Dec 200923 Sep 2010Cooper Technologies CompanyJacket Sleeve with Grippable Tabs for a Cable Connector
US20110081793 *7 Dec 20107 Apr 2011Cooper Technologies CompanySeparable Electrical Connector with Reduced Risk of Flashover
US20110256746 *7 Apr 201120 Oct 2011Thomas & Betts International, Inc.Electrical connector having alignment mechanism
US20150288093 *7 Apr 20158 Oct 2015S&C Electric CompanyReplaceable bushing for electrical equipment
US20150295372 *9 Apr 201515 Oct 2015S&C Electric CompanyAdjustable bus bar for power distribution equipment
US20150380880 *25 Jun 201531 Dec 2015Thomas & Betts International, LlcElbow With Internal Assembly System
USD779431 *2 Jun 201521 Feb 2017Hitachi Metals, Ltd.Connector for power cable
EP0365110A2 *15 Jun 198925 Apr 1990Cooper Power Systems, Inc.Electrical connector assembly and method for connecting the same
EP0365110A3 *15 Jun 198927 Feb 1991Cooper Power Systems, Inc.Electrical connector assembly and method for connecting the same
EP0649189A2 *15 Jun 198919 Apr 1995Cooper Power Systems, Inc.Electrical connector assembly and method for connecting the same
EP0649189A3 *15 Jun 198913 Sep 1995Cooper Power SystElectrical connector assembly and method for connecting the same.
EP1638171A3 *11 Aug 200511 Jul 2007Illinois Tool Works Inc.High-power electrical quick connector
EP2960997A1 *26 Jun 201530 Dec 2015Thomas & Betts International, LLCElbow with internal assembly system
Classifications
U.S. Classification439/181, 439/279, 439/921
International ClassificationH01R13/533, H01R13/53
Cooperative ClassificationY10S439/921, H01R13/53
European ClassificationH01R13/53
Legal Events
DateCodeEventDescription
26 Oct 1987ASAssignment
Owner name: RTE CORPORATION, WAUKESHA, WI, A CORP. OF WI
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:MAKAL, JOHN M.;SCHOENWETTER, RANDALL R.;REEL/FRAME:004779/0873
Effective date: 19861201
Owner name: RTE CORPORATION, A CORP. OF WI,WISCONSIN
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MAKAL, JOHN M.;SCHOENWETTER, RANDALL R.;REEL/FRAME:004779/0873
Effective date: 19861201
18 Nov 1988ASAssignment
Owner name: COOPER POWER ACQUISITION COMPANY, A CORP. OF DE
Free format text: MERGER;ASSIGNOR:RTE CORPORATION;REEL/FRAME:005077/0379
Effective date: 19880725
Owner name: COOPER POWER SYSTEMS, INC.,, STATELESS
Free format text: CHANGE OF NAME;ASSIGNOR:COOPER POWER ACQUISTION COMPANY;REEL/FRAME:005060/0052
Effective date: 19881114
23 Jul 1991FPAYFee payment
Year of fee payment: 4
26 Jul 1995FPAYFee payment
Year of fee payment: 8
29 Jul 1999FPAYFee payment
Year of fee payment: 12