Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS4701669 A
Publication typeGrant
Application numberUS 06/702,179
Publication date20 Oct 1987
Filing date15 Feb 1985
Priority date14 May 1984
Fee statusPaid
Also published asCA1253198A1
Publication number06702179, 702179, US 4701669 A, US 4701669A, US-A-4701669, US4701669 A, US4701669A
InventorsW. John Head, Francis M. Watson
Original AssigneeHoneywell Inc.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Compensated light sensor system
US 4701669 A
Abstract
A light sensing compensation system is provided for controlling the level of light at a workplane so that the ratio of the light at the ceiling where the sensor means is located to the level of controlled light at the workplane is maintained substantially constant as daylight entering the room varies.
Images(2)
Previous page
Next page
Claims(6)
The embodiments of the invention in which an exclusive property or right is claimed are defined as follows:
1. A system for controlling the level of light at a workplane within a building, said level of light being supplied from sources of light including sunlight and at least one artificial light source, said system compensating for variations in sunlight within the building to produce a substantially constant light level at said workplane, said system comprising:
first light sensor means for sensing light at a workplane area within the building;
second light sensor means for sensing only light from said artificial light source;
controller means connected to said first and second light sensor means and having an output such that the ratio of the light sensed by said first and second sensor means to the light at said workplane remains substantially constant as light from said sources varies; and,
means responsive to the output of said controller for controlling the level of said artificial light for maintaining a substantially constant level of light at said workplane.
2. The system of claim 1 wherein said first light sensor means is directionally adjustable so that it can view deeper sunlight penetrations within said building.
3. A system for controlling the level of light at a workplane within a building, said level of light being supplied from sources of light including sunlight and at least one artificial light source, said system compensating for variations in sunlight within the building to produce a substantially constant light level at said workplane, said system comprising:
first light sensor means for sensing light at a workplane area within the building;
second light sensor means for sensing only light from said artificial light source;
controller means connected to said first and second light sensor means and having an output for controlling the artificial light source such that said light at said workplane remains substantially constant; and,
means responsive to the output of said controller for controlling the level of said artificial light for maintaining a substantially constant level of light at said workplane.
4. The system of claim 3 wherein said first light sensor means is directionally adjustable so that it can view deeper sunlight penetrations within said building.
5. A system for controlling the level of light at a workplane within a building, said level of light being supplied from sources of light including sunlight and at least one artificial light source, said system compensating for variations in sunlight within the building to produce a substantially constant light level at said workplane, said system comprising:
light sensor means for sensing light within said building;
controller means connected to said light sensor means and having an output such that the ratio of the light sensed by said light sensor means to the light at said workplane remains substantially constant as light from said sources varies; and,
means responsive to the output of said controller for controlling the level of said artificial light for maintaining a substantially constant level of light at said workplane.
6. The system of claim 5 wherein said light sensor means is directionally adjustable so that it can view deeper sunlight penetrations within said building.
Description
BACKGROUND OF THE INVENTION

The present invention relates to a lighting control system for controlling the amount of light at a workplane within a room of a building and, more particularly, to such a system which has a compensation apparatus therein for maintaining the light at the workplane constant even though the amount of sunlight entering the building varies.

The ability to control the level of light within a room of a building by use of wall mounted dimmer switch has given rise to the opportunity of automatically controlling the level of light within the room. Such systems attempt to control the output of the artificial lighting sources within the room as the light within the room changes. The amount of light within the room will change as the sunlight entering the room changes.

Known automatic lighting control systems include a sensor for sensing the amount of light within the room and a controller responsive to the light sensor for regulating the power supplied to the artificial lighting sources in an attempt to adjust the light supplied by the artificial light sources as the sunlight entering the room varies.

Unfortunately, the light distribution pattern of the artificial light sources is different from the light distribution pattern with regard to sunlight. Because these patterns are different, the impact that the artificial light source has on the sensor is not the same as the impact that sunlight has on the sensor. Accordingly, the impact which sunlight has on the sensor will cause the sensor to provide a first output characteristic in response to variations in sunlight but the different impact which the artificial light source has on the sensor will cause the sensor to provide a second output characteristic in response to the artificial light source. Consequently, the artificial light source will not be correspondingly adjusted for variations in sunlight so that the amount of light received at a workplane located within the controlled room will not be maintained constant but will rather vary as the amount of sunlight entering the building varies.

The present invention provides a compensation mechanism so that the impact that the artificial lighting source and the sunlight have on the light sensing apparatus will remain substantially constant as sunlight varies and as the artificial light source is adjusted in response to variations in sunlight.

SUMMARY OF THE INVENTION

The present invention controls the level of light at a workplane within a building, the level of light being supplied from sources of light including sunlight and at least one artificial light source, by compensating for variations in sunlight within the building to produce a substantially constant light level at the workplane. This system includes a light sensor apparatus for sensing the light within the building, a controller connected to the light sensor apparatus and having an output in response to the light sensed by the light sensor apparatus such that the ratio of the light sensed by the light sensor apparatus to the light at the workplane remains substantially constant as light from the sources varies.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other features and advantages will become more apparent from a detailed consideration of the invention when taken in conjunction with the drawings in which:

FIG. 1 shows a lighting control system having a single light snesor mounted at the workplane;

FIG. 2 shows the system of FIG. 1 but wherein the light sensor is mounted at the ceiling;

FIG. 3 shows the way in which the light sensor responds to light from the artificial light sources;

FIG. 4 shows how daylight impinges upon the light sensor;

FIG. 5 shows an arrangement in which a first light sensor views the workplane area and a second compensation light sensor responds only to artificial light;

FIG. 6 shows the various components of sunlight;

FIG. 7 shows how the light sensor which views the working area can be made directional to reduce or eliminate daylight distribution pattern errors; and,

FIG. 8 shows the details of the controller.

DETAILED DESCRIPTION

FIG. 1 shows room 11 located within a building in which the lighting control system is situated. Within room 11 is located workplane 12 which may be a desk or a table at which light is needed so that the occupant of room 11 can comfortably conduct his work, business or enjoyment.

Light is supplied to workplane 12 from both artificial light sources 13 and 14 and through window 15 from the sun. Light sources 13 and 14 are supplied with electrical energy over lines 16 from power source 17 as controlled by power regulator 18. Power regulator 18 is under control of controller 19. Controller 19 receives a setpoint input 20 and a sensor input 21 from light sensor 22.

As shown in FIG. 1, light sensor 22 is located on the workplane 12. It is quite apparent that to locate the light sensor 22 as shown in FIG. 1 is not practical since the control system would be subjected to continual interferences due to the normal activity about the workplane. To overcome this problem, light sensor 22 shown in FIG. 1 is replaced by light sensor 22' which is located at the ceiling as shown in FIG. 2. In this manner, the activities of the user of this system or the papers or work or other materials which the user is using at the workplane area will not interfere with the light sensor.

The type of control system shown in FIGS. 1 and 2, however, are subject to two error related conditions --sensor response errors resulting because sunlight and the light from the artificial light sources cause different sensor responses and daylight distribution pattern errors resulting from differing sunlight distribution within a room or building due to the changing position of the sun in the sky.

Sensor response errors result from the differing impacts that artificial light and sunlight have on the light sensor. In interior control zones, there is only the one available light source, i.e. artificial lighting. In such zones, the workplane light level may be maintained at desirable levels by indirect control. In such a control arrangement and with the sensor located on the ceiling to remove it from interfering activities at the workplane level, the light at the ceiling is controlled at a set level because that is where the sensor is located and, thus, the workplane light is indirectly controlled at a relatively constant level.

Thus, in such as system as shown in FIG. 3, the sensor will respond only to reflected light because, in interior rooms of a building, there is no available sunlight. As shown in FIG. 3, the workplane receives light directly from the artificial light sources while the ceiling receives a lesser amount of light due to reflection of light from the walls, floors, workplane area etc. The foot candle ratio of light available at the ceiling to light available at the workplane may be given, as an example, by the expression

SENSOR FC/WORKPLANE FC =1/5                                (1)

Since only artificial lighting is used in the arrangement shown in FIG. 3, the sensor FC to workplane FC ratio remains constant through the full range of control setpoints of available light. In the example wherein it is assumed that the ratio given by equation (1) is 1 to 5, it may be desired to indirectly control the workplane at 100 FC. To achieve 100 FC at the workplane level in this example, 20 FC of light must be available at the ceiling located sensors so that controller 19 can control the light at workplane 12 at 100 FC. This indirect control technique can be used successfully for interior zone control.

Unfortunately, indirect control of the workplane by controlling the ceiling light level at a constant value as described above for interior zones is not satifactory in perimeter zones which have windows through which sunlight can pass. In such perimeter or exterior zones or rooms, during periods when daylight is present, sensor response errors will result in an extreme lowering of the light level on the workplane. This result is due to the introduction of an uncontrolled second light source, i.e. daylight, which has a different pattern in the way its light is distributed within the zone.

As shown in FIG. 3, the light from the artificial light sources is reflected back to the sensor. However, as shown in FIG. 4, sunlight entering the room through the window arrives at the sensor both directly and by reflection. Thus, sunlight falls on the ceiling and the workplane in a vastly different relationship than the ratio present with artificial lighting. The ratio due to sunlight may be for example

SENSOR FC/WORKPLANE FC =3/5                                (2)

Sensor response errors occur because of these different ratios for the two light sources.

This sensor response error can be demonstrated by the above examples where the artificial light source ratio is assumed to be 1/5, the sunlight ratio is assumed to be 3/5, and the desired workplane light level is assumed to be 100 FC. With no daylight present, the 1/5 ratio applicable to artificial lighting will control the ceiling light level at 20 FC. That is, the system is arranged so that the sensor must see 20 FC of light in order to control the workplane area at 100 FC. Assuming that 15 FC of sunlight becomes available in the room, the sensor will now see 35 FC of light, the 20 from the artificial light source and the 15 from sunlight. Because the assumption that sunlight results in a ratio of 3 to 5 between the sunlight which is received by the sensor and the sunlight which is received at the workplane area, the amount of sunlight which is received at the workplane area will be increased by 25 FC to produce a total of 125 FC.

In the control system, however, the sensor will then modulate the artificial light source in order to reduce the amount of light at the ceiling to 20 FC. However, because the system has been established so that the light sensor will operate according to the artificial light source ratio instead of the sunlight source ratio, the light sensor will respond in the 1 to 5 ratio. That is, the control system will be required to reduce the workplane light level 5 FC for a reduction of each 1 FC of light level at the sensor. Thus, the control system must reduce the workplane light level by 75 FC in order to reduce the sensor light level by 15 FC to achieve the desired sensor light level of 20 FC. Because of this change in sunlight, the control system is now controlling the workplane light level at 50 FC instead of the desired 100 FC.

FIG. 5 shows a system which is used to compensate for changes in sunlight in order to maintain the light level at the workplane substantially constant. In FIG. 5, light sensor 22' is again arranged for viewing the workplane area. This light sensor is connected to controller 19' by line 21. Second light sensor 24 is added to the system and arranged for sensing only light from the artificial light source. In this case, light sensor 24 is arranged for sensing the light from artificial light source 13. Light sensor 24 is connected to controller 19' by line 25.

Controller 19' responds to the signals from light sensors 22' and 24 for controlling the artificial light in order to maintain the light at workplane 12 substantially constant.

Controller 19' combines the output signals from sensors 22' and 24 so that the combined signal acts as the sensor input signal to controller 19'. By adjusting the signal strength from compensation light sensor 24, it is possible to tune the total sensor signal so that the sensor FC to workplace FC ratio is the same for both the controlled light source (the artificial lighting) and the uncontrolled light source (sunlight).

Following the above example, sensor 22' can be arranged so that its control impact on the control system is given as

SENSOR 22' FC/WORKPLANE FC=1/5                             (3)

Similarly, sensor 24 can be arranged so that its influence on the control system is given by

SENSOR 24 FC/WORKPLANE FC=2/5                              (4)

Thus, in the case of only artificial lighting, the light sensors and controller 19' will control the artificial lighting according to the ratio

SENSOR 22' FC/WORKPLANE +SENSOR 24 FC/WORKPLANE FC=1/5 +2/5=3/5 (5)

As daylight is added and as discussed in connection with FIG. 2, sensor 22' will respond to the daylight in the ratio of 3 to 5 which is the same ratio that sensors 22' and 24 will respond to in connection with artificial light. Since the ratios are the same, changes in sunlight will result in the same light level at the workplane as in the case where there is no sunlight.

In the example, since it is desired to control the workplane at a light level of 100 FC, the ceiling light level in view of the 3 to 5 ratio now established for sensors 22' and 24, will be controlled at a 60 FC light level. When 15 FC of daylight is added, the 3 to 5 ratio indicates that the workplane will increase by 25 FC to 125 FC. The system will respond to reduce the artificial lighting so that the ceiling is again controlled at 60 FC. However, because the same 3 to 5 ratio applies, the light at the workplane will be reduced 25 FC so that the workplane will be be controlled at the desired 100 FC. Thus, the compensation light sensor 24 has allowed the workplane to be controlled at a substantially constant light level even though the amount of daylight entering room 11 may vary.

The controlled light source, i.e. the artificial lighting, will light the room or zone with a fixed light pattern. The uncontrolled light source, i.e. daylight or sunlight, on the other hand, does not produce a fixed light distribution pattern. The daylight entering into room 11 may vary with the distance of the workplane from the windows, with the time of day, with the season or with the climate.

As shown in FIG. 6, daylight has essentially two components. One component is direct sunlight whereas the other component is reflected light which is sourced from the sun but reflected from the earth, sky and/or clouds. These two components of daylight, as shown in FIG. 6, enter the room differently. Daylight which enters a perimeter window such as window 11 falls off at intensity with distance at right angles to the windows. If direct sunlight is to penetrate very deeply into the room, the sun must be at a low angle in the sky. In the northern hemisphere, the sun is low in the east during the morning, in the west during the evening, and in the south during the high winter months. During the rest of the year, however, workplane B shown in FIG. 6 will receive its daylight illumination only by reflected light. Since reflected light diminishes with distance, the deeper penetration location B will normally receive less daylight than location A.

While an internal zone ceiling mounted light sensor may have a wide viewing angle in order to respond to light in all directions, it may be more desirable in a daylight or perimeter zone, to confine the viewing angle of the light sensor to the deeper penetration areas. FIG. 7 shows that the light sensor A, which corresponds to sensor 22' in FIG. 5, is made directional both horizontally and vertically so that it may be oriented to view only the workplane area with the deepest penetration from the windows, i.e. workplane B. Thus, sensor A will respond to direct sunlight only when the sunlight is at low elevation such that it will penetrate onto workplane B and upward reflected sunlight from outside surfaces, such as from a snow covered field, will be out of the sensor A viewing angle and thus not cause control errors.

FIG. 8 shows the details of controller 19' shown in FIG. 5. Sensors 22' and 24 are connected to terminals 11 and 12 of control unit 31 which interfaces with power controller 32 for controlling the amount of light produced by fluorescent lamp 13 and 14. Control unit 31 may be a Honeywell R7414 and power control unit 32 may be a Honeywell R7513. Control unit 31 has a setpoint adjust for providing the setpoint function as indicated by input line 20 in FIG. 5. The relative sensor to workplane foot candle ratio is discussed above can be controlled or adjusted by use of a variable aperture or iris 26 associated with sensor 24.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2052146 *24 Oct 193125 Aug 1936Gen Railway Signal CoLight signal
US2882450 *17 Dec 195614 Apr 1959Superior Electric CoAutomatic illuminating control unit
US3449629 *16 May 196810 Jun 1969Westinghouse Electric CorpLight,heat and temperature control systems
US3965388 *13 Dec 197422 Jun 1976Arthur D. Little, Inc.Digital light responsive switching circuit
US4135116 *16 Jan 197816 Jan 1979The United States Of America As Represented By The Secretary Of The NavyConstant illumination control system
US4236101 *18 Aug 197825 Nov 1980Lutron Electronics Co., Inc.Light control system
JPS6366A * Title not available
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4924416 *9 Sep 19888 May 1990Mitsubishi Denki Kabushiki KaishaApparatus for detecting relative crowding in a hall
US5045758 *25 Apr 19903 Sep 1991Hildebrand Cleve RSolid state regulated power supply for luminescent lamp
US5177404 *13 Jun 19915 Jan 1993Wila Leuchten GmbhRemovable power service module for recessed lighting system
US5214271 *5 Nov 199225 May 1993Ncr CorporationMethod of determining detector lifetime using a stepped resistor network
US5250799 *27 Jul 19905 Oct 1993Zumtobel AktiengesellschaftMethod for adapting the light intensity of the summation light to the external light
US5343121 *22 May 199030 Aug 1994Michael TermanNaturalistic illumination system
US5404080 *5 Jul 19944 Apr 1995Etta Industries, Inc.Lamp brightness control circuit with ambient light compensation
US5498931 *3 Oct 199412 Mar 1996Tlg PlcMethod for automatic switching and control of lighting
US5581158 *3 Apr 19953 Dec 1996Etta Industries, Inc.Lighting control system for gas discharge lamps
US5701058 *4 Jan 199623 Dec 1997Honeywell Inc.Method of calibrating a dimmable lighting system
US5721471 *1 Mar 199624 Feb 1998U.S. Philips CorporationLighting system for controlling the color temperature of artificial light under the influence of the daylight level
US5861717 *15 Aug 199719 Jan 1999U.S. Philips CorporationLighting system for controlling the color temperature of artificial light under the influence of the daylight level
US6084231 *22 Dec 19974 Jul 2000Popat; Pradeep P.Closed-loop, daylight-sensing, automatic window-covering system insensitive to radiant spectrum produced by gaseous-discharge lamps
US6094016 *1 Sep 199925 Jul 2000Tridonic Bauelemente GmbhElectronic ballast
US6495973 *17 Jul 200117 Dec 2002Charles W. Allen, Jr.Lighting control system and method
US657708022 Mar 200110 Jun 2003Color Kinetics IncorporatedLighting entertainment system
US658357313 Nov 200124 Jun 2003Rensselaer Polytechnic InstitutePhotosensor and control system for dimming lighting fixtures to reduce power consumption
US660845330 May 200119 Aug 2003Color Kinetics IncorporatedMethods and apparatus for controlling devices in a networked lighting system
US662459731 Aug 200123 Sep 2003Color Kinetics, Inc.Systems and methods for providing illumination in machine vision systems
US671737620 Nov 20016 Apr 2004Color Kinetics, IncorporatedAutomotive information systems
US677458425 Oct 200110 Aug 2004Color Kinetics, IncorporatedMethods and apparatus for sensor responsive illumination of liquids
US677789130 May 200217 Aug 2004Color Kinetics, IncorporatedMethods and apparatus for controlling devices in a networked lighting system
US678132925 Oct 200124 Aug 2004Color Kinetics IncorporatedMethods and apparatus for illumination of liquids
US680100310 May 20025 Oct 2004Color Kinetics, IncorporatedSystems and methods for synchronizing lighting effects
US686920425 Oct 200122 Mar 2005Color Kinetics IncorporatedLight fixtures for illumination of liquids
US688095728 Mar 200219 Apr 2005Mark Wayne WaltersLighting apparatus with electronic shadow compensation
US688832227 Jul 20013 May 2005Color Kinetics IncorporatedSystems and methods for color changing device and enclosure
US689762420 Nov 200124 May 2005Color Kinetics, IncorporatedPackaged information systems
US693697825 Oct 200130 Aug 2005Color Kinetics IncorporatedMethods and apparatus for remotely controlled illumination of liquids
US696520517 Sep 200215 Nov 2005Color Kinetics IncorporatedLight emitting diode based products
US696744825 Oct 200122 Nov 2005Color Kinetics, IncorporatedMethods and apparatus for controlling illumination
US697507917 Jun 200213 Dec 2005Color Kinetics IncorporatedSystems and methods for controlling illumination sources
US703192026 Jul 200118 Apr 2006Color Kinetics IncorporatedLighting control using speech recognition
US70383999 May 20032 May 2006Color Kinetics IncorporatedMethods and apparatus for providing power to lighting devices
US704217217 Sep 20039 May 2006Color Kinetics IncorporatedSystems and methods for providing illumination in machine vision systems
US70459684 Nov 200416 May 2006Rensselaer Polytechnic InstituteSelf-commissioning daylight switching system
US706449813 Mar 200120 Jun 2006Color Kinetics IncorporatedLight-emitting diode based products
US713582411 Aug 200414 Nov 2006Color Kinetics IncorporatedSystems and methods for controlling illumination sources
US71613114 Nov 20039 Jan 2007Color Kinetics IncorporatedMulticolored LED lighting method and apparatus
US71789415 May 200420 Feb 2007Color Kinetics IncorporatedLighting methods and systems
US718600313 Mar 20016 Mar 2007Color Kinetics IncorporatedLight-emitting diode based products
US718714116 Jul 20046 Mar 2007Color Kinetics IncorporatedMethods and apparatus for illumination of liquids
US72026136 Feb 200310 Apr 2007Color Kinetics IncorporatedControlled lighting methods and apparatus
US722110430 May 200222 May 2007Color Kinetics IncorporatedLinear lighting apparatus and methods
US72310605 Jun 200212 Jun 2007Color Kinetics IncorporatedSystems and methods of generating control signals
US724215213 Jun 200210 Jul 2007Color Kinetics IncorporatedSystems and methods of controlling light systems
US72482396 Aug 200424 Jul 2007Color Kinetics IncorporatedSystems and methods for color changing device and enclosure
US725356610 May 20047 Aug 2007Color Kinetics IncorporatedMethods and apparatus for controlling devices in a networked lighting system
US727416026 Mar 200425 Sep 2007Color Kinetics IncorporatedMulticolored lighting method and apparatus
US73001923 Oct 200327 Nov 2007Color Kinetics IncorporatedMethods and apparatus for illuminating environments
US73033005 Sep 20034 Dec 2007Color Kinetics IncorporatedMethods and systems for illuminating household products
US730996514 Feb 200318 Dec 2007Color Kinetics IncorporatedUniversal lighting network methods and systems
US735213818 Apr 20061 Apr 2008Philips Solid-State Lighting Solutions, Inc.Methods and apparatus for providing power to lighting devices
US735867931 Mar 200515 Apr 2008Philips Solid-State Lighting Solutions, Inc.Dimmable LED-based MR16 lighting apparatus and methods
US738535920 Nov 200110 Jun 2008Philips Solid-State Lighting Solutions, Inc.Information systems
US742784014 May 200423 Sep 2008Philips Solid-State Lighting Solutions, Inc.Methods and apparatus for controlling illumination
US744984711 Aug 200411 Nov 2008Philips Solid-State Lighting Solutions, Inc.Systems and methods for synchronizing lighting effects
US745321716 Nov 200418 Nov 2008Philips Solid-State Lighting Solutions, Inc.Marketplace illumination methods and apparatus
US746299710 Jul 20079 Dec 2008Philips Solid-State Lighting Solutions, Inc.Multicolored LED lighting method and apparatus
US748276425 Oct 200127 Jan 2009Philips Solid-State Lighting Solutions, Inc.Light sources for illumination of liquids
US75252543 Nov 200428 Apr 2009Philips Solid-State Lighting Solutions, Inc.Vehicle lighting methods and apparatus
US755093115 Mar 200723 Jun 2009Philips Solid-State Lighting Solutions, Inc.Controlled lighting methods and apparatus
US757202822 Jan 200711 Aug 2009Philips Solid-State Lighting Solutions, Inc.Methods and apparatus for generating and modulating white light illumination conditions
US759868112 Jun 20076 Oct 2009Philips Solid-State Lighting Solutions, Inc.Methods and apparatus for controlling devices in a networked lighting system
US759868412 Jun 20076 Oct 2009Philips Solid-State Lighting Solutions, Inc.Methods and apparatus for controlling devices in a networked lighting system
US759868626 Apr 20076 Oct 2009Philips Solid-State Lighting Solutions, Inc.Organic light emitting diode methods and apparatus
US764273018 Dec 20075 Jan 2010Philips Solid-State Lighting Solutions, Inc.Methods and apparatus for conveying information via color of light
US76524363 Dec 200726 Jan 2010Philips Solid-State Lighting Solutions, Inc.Methods and systems for illuminating household products
US76596741 May 20079 Feb 2010Philips Solid-State Lighting Solutions, Inc.Wireless lighting control methods and apparatus
US776402623 Oct 200127 Jul 2010Philips Solid-State Lighting Solutions, Inc.Systems and methods for digital entertainment
US780996328 Mar 20075 Oct 2010Dorn William EUser space power controller
US784582330 Sep 20047 Dec 2010Philips Solid-State Lighting Solutions, Inc.Controlled lighting methods and apparatus
US792697516 Mar 201019 Apr 2011Altair Engineering, Inc.Light distribution using a light emitting diode assembly
US793856224 Oct 200810 May 2011Altair Engineering, Inc.Lighting including integral communication apparatus
US794672931 Jul 200824 May 2011Altair Engineering, Inc.Fluorescent tube replacement having longitudinally oriented LEDs
US795932022 Jan 200714 Jun 2011Philips Solid-State Lighting Solutions, Inc.Methods and apparatus for generating and modulating white light illumination conditions
US79761969 Jul 200812 Jul 2011Altair Engineering, Inc.Method of forming LED-based light and resulting LED-based light
US811844720 Dec 200721 Feb 2012Altair Engineering, Inc.LED lighting apparatus with swivel connection
US82078218 Feb 200726 Jun 2012Philips Solid-State Lighting Solutions, Inc.Lighting methods and systems
US82140842 Oct 20093 Jul 2012Ilumisys, Inc.Integration of LED lighting with building controls
US82515445 Jan 201128 Aug 2012Ilumisys, Inc.Lighting including integral communication apparatus
US825692415 Sep 20084 Sep 2012Ilumisys, Inc.LED-based light having rapidly oscillating LEDs
US82996951 Jun 201030 Oct 2012Ilumisys, Inc.Screw-in LED bulb comprising a base having outwardly projecting nodes
US83248172 Oct 20094 Dec 2012Ilumisys, Inc.Light and light sensor
US833038112 May 201011 Dec 2012Ilumisys, Inc.Electronic circuit for DC conversion of fluorescent lighting ballast
US836059923 May 200829 Jan 2013Ilumisys, Inc.Electric shock resistant L.E.D. based light
US836271019 Jan 201029 Jan 2013Ilumisys, Inc.Direct AC-to-DC converter for passive component minimization and universal operation of LED arrays
US841070619 Mar 20102 Apr 2013Lutron Electronics Co., Inc.Method of calibrating a daylight sensor
US8410728 *4 Sep 20092 Apr 2013Lely Patent N.V.Method of and device for controlling shed lighting
US842136623 Jun 201016 Apr 2013Ilumisys, Inc.Illumination device including LEDs and a switching power control system
US84442925 Oct 200921 May 2013Ilumisys, Inc.End cap substitute for LED-based tube replacement light
US845419330 Jun 20114 Jun 2013Ilumisys, Inc.Independent modules for LED fluorescent light tube replacement
US852339428 Oct 20113 Sep 2013Ilumisys, Inc.Mechanisms for reducing risk of shock during installation of light tube
US854040125 Mar 201124 Sep 2013Ilumisys, Inc.LED bulb with internal heat dissipating structures
US854195825 Mar 201124 Sep 2013Ilumisys, Inc.LED light with thermoelectric generator
US855645214 Jan 201015 Oct 2013Ilumisys, Inc.LED lens
US859681311 Jul 20113 Dec 2013Ilumisys, Inc.Circuit board mount for LED light tube
US865398424 Oct 200818 Feb 2014Ilumisys, Inc.Integration of LED lighting control with emergency notification systems
US866488019 Jan 20104 Mar 2014Ilumisys, Inc.Ballast/line detection circuit for fluorescent replacement lamps
US86746262 Sep 200818 Mar 2014Ilumisys, Inc.LED lamp failure alerting system
US880778516 Jan 201319 Aug 2014Ilumisys, Inc.Electric shock resistant L.E.D. based light
US20100060174 *4 Sep 200911 Mar 2010Lely Patent N.V.Method of and device for controlling shed lighting
DE3738563A1 *13 Nov 198724 May 1989Frankl & KirchnerWorkplace light fixture
DE4320682C1 *22 Jun 199326 Jan 1995Siemens AgVerfahren und Schaltungsanordnung zur Regelung der Beleuchtung eines Raumes
DE19606674A1 *22 Feb 199628 Aug 1997Siemens AgRoom lighting control method e.g. for buildings
DE19606674B4 *22 Feb 199613 May 2004Siemens AgVerfahren zur Regelung der Beleuchtung eines Raumes
DE19612795A1 *30 Mar 199621 Nov 1996Braun Uwe Peter Dipl Ing FhLight intensity controller
DE19851863B3 *10 Nov 199819 Aug 2004Cgk Computer Gesellschaft Konstanz MbhIllumination intensity regulation device for form illumination device used for automatic scanning and sorting uses measured illumination intensity for controlling power amplifier supplying illumination lamp
DE102005012148A1 *16 Mar 200514 Jun 2006Siemens AgLight intensity measuring system has two sensors for different places with one sending an information signal to the other that has both receiving and calibrating units
EP0410484A1 *27 Jul 199030 Jan 1991Zumtobel AktiengesellschaftProcess for adapting the total light intensity to the outside light intensity
EP0447136A2 *8 Mar 199118 Sep 1991TLG plcA method for automatic switching and control of lighting
EP0902604A2 *3 Sep 199817 Mar 1999Zumtobel Staff GmbHLighting system
EP0987927A2 *3 Sep 199922 Mar 2000Siemens AktiengesellschaftProcess for maintaining the intensity of light constant
EP1821582A115 Feb 200622 Aug 2007Fagerhults Belysning ABSystem and method for controlling an illumination device
EP2469988A2 *27 Dec 201127 Jun 2012Hager Controls SASMeasurement of luminosity on the ceiling.
WO1991002441A1 *27 Jul 199021 Feb 1991Zumtobel AgProcess for adapting the light intensity of summation light to external light
WO1997025836A1 *4 Nov 199617 Jul 1997Honeywell IncMethod of semiautomatic ambient light sensor calibration in an automatic control system
WO2003043385A1 *24 Oct 200222 May 2003Rensselaer Polytech InstPhotosensor and control system for dimming lighting fixtures to reduce power consumption
WO2003083359A2 *27 Mar 20039 Oct 2003Mark Wayne WaltersLighting apparatus with electronic shadow compensation
WO2010111250A1 *23 Mar 201030 Sep 2010Lutron Electronics Co., Inc.Method of calibrating a daylight sensor
WO2012063149A2 *10 Oct 201118 May 2012Koninklijke Philips Electronics N.V.Methods for disaggregated sensing of artificial light and daylight distribution
WO2014045138A2 *28 Aug 201327 Mar 2014Koninklijke Philips N.V.System and method for managing lighting systems
WO2014057368A1 *9 Sep 201317 Apr 2014Koninklijke Philips N.V.Sensing light from different sources
Classifications
U.S. Classification315/155, 250/205, 315/151, 315/156
International ClassificationH05B39/04
Cooperative ClassificationY02B20/14, H05B39/042
European ClassificationH05B39/04B2
Legal Events
DateCodeEventDescription
19 Apr 1999FPAYFee payment
Year of fee payment: 12
17 Mar 1995FPAYFee payment
Year of fee payment: 8
11 Mar 1991FPAYFee payment
Year of fee payment: 4
15 Mar 1988CCCertificate of correction
15 Feb 1985ASAssignment
Owner name: HONEYWELL LIMITED, SCARBOROUGH ONTARIO CANADA A CO
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:HEAD, W. JOHN;WATSON, FRANCIS M.;REEL/FRAME:004373/0416
Effective date: 19850122