US4595263A - Projection lens system - Google Patents

Projection lens system Download PDF

Info

Publication number
US4595263A
US4595263A US06/628,375 US62837584A US4595263A US 4595263 A US4595263 A US 4595263A US 62837584 A US62837584 A US 62837584A US 4595263 A US4595263 A US 4595263A
Authority
US
United States
Prior art keywords
sup
sub
lens
power
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US06/628,375
Inventor
John A. Clarke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Philips Corp
Original Assignee
US Philips Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by US Philips Corp filed Critical US Philips Corp
Assigned to U.S. PHILIPS CORPORATION, A CORP OF DE reassignment U.S. PHILIPS CORPORATION, A CORP OF DE ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: CLARKE, JOHN A.
Application granted granted Critical
Publication of US4595263A publication Critical patent/US4595263A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/10Projectors with built-in or built-on screen
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/16Optical objectives specially designed for the purposes specified below for use in conjunction with image converters or intensifiers, or for use with projectors, e.g. objectives for projection TV
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Definitions

  • This invention relates to projection lenses and, more particularly, relates to lenses designed to project an enlargement of an image on a cathode ray tube (CRT) such as a phosphor screen of a television set.
  • CRT cathode ray tube
  • projection CRT's are usually run at high screen loadings in order to roduce an adequately bright picture for viewing.
  • the phosphor can be raised in temperature and thermal quenching of the phosphor can occur, reducing picture brightness with increasing temperature.
  • the field flattener is in optical contact with the CRT face plate, the effective thickness of the face plate varies considerably across the picture, being especially thick at the picture edges. Face plate cooling is then not constant over the picture and, hence, phosphor temperature is not constant over the picture, producing brightness variations via thermal quenching.
  • the field flattener may, therefore, be separated from the face plate and a coolant circulated between them, incurring additional complexity.
  • the optical problem of the field flattener is largely solved by using a cathode ray tube having a face plate which is concave towards the projection lens.
  • the face plate glass may be strengthened, for example by surface ion exchange, so that it can withstand atmospheric pressure on the concave surface.
  • a single element lens having both surfaces aspherized is used together with a solid prism beam combiner for projecting the images from all three of the CRT's.
  • the prism has convex surfaces fitting the concave CRT face plates, rendering cooling difficult.
  • the invention provides a lens system for projecting an image of a concave object surface onto a planar display screen, characterized in that the projection lens comprises first and third elements, each of positive power and each having one aspheric surface, and a second element between the first and third elements, said second element having one aspheric surface, the powers of the elements being chosen so that
  • K 1 is the power of the first element remote from the object surface
  • K 2 is the power of the second element
  • K 3 is the power of the third element adjacent to the object surface
  • K is the total power of the projection lens
  • each aspheric surface being defined by the following relationship: ##EQU1##
  • Z is a deviation, in the axial direction, of the surface from a plane normal to the optical axis and tangent to the surface at its pole for a zone of the surface which is at a distance s from the axis
  • C is a curvature of the surface on the axis
  • is a conic constant
  • a 4 , a 6 , a 8 and a 10 are constants for the surface.
  • Lenses in accordance with the invention can be designed to realize either the high definition required in 1249 line television with an acceptably short throw distance or the definition required in 525 or 625 line television with a particularly large projection angle and, hence, short throw distance which is desirable if the TV cabinet is to be particularly compact.
  • the image may be projected onto a translucent screen from the back, the CRT and lens being behind the screen and within a free standing cabinet, the front of which comprises the screen. It is desirable to reduce the depth of the cabinet as much as possible and at least below a value such that the T.V. set can easily pass through ordinary living room doors. Folding mirrors are usually used within the cabinet to reduce the depth. Using a lens in accordance with the invention, the number of folding mirrors can be reduced because the projection distance, or throw, from the lens to the screen is reduced and because a wide projection angle is provided so that the projected picture size is maintained.
  • a projection television system including a cathode ray tube having a face plate concave towards the lens system.
  • a color television projection system comprising first, second and third cathode ray tubes having red, blue and green phosphors respectively provided on concave face plates, a lens system associated with each cathode ray tube, each lens system being arranged to project an image of the concave face plate onto a common display screen.
  • FIG. 1 shows a typical layout of a projection television system to which a lens system in accordance with the invention may be applied
  • FIG. 2 shows a lens system designed for production with the three lens elements made entirely of a plastics material and suitable for high definition television at a projection angle of ⁇ 26°,
  • FIG. 3 shows a high definition lens system with glass elements
  • FIG. 4 shows a medium definition lens system with glass elements having a projection angle of ⁇ 37°
  • FIGS. 5, 6 and 7 show the modulation transfer functions and defocus functions of the lens systems of FIGS. 2, 3 and 4, respectively.
  • a free standing cabinet 1 contains a back projection television display system comprising a cathode ray tube (CRT) 2 having a face plate concave towards a projection lens 3, front metallized folding mirrors 5 and 6 and a translucent projection screen 7.
  • the screen may be a Fresnel screen and may also have a light scattering power which is less in the vertical plane than in the horizontal plane to avoid wasting projected light.
  • CRTs and three lenses are used in line normal to the plane of the drawing.
  • Mirrors 5, 6 are then extended in the direction normal to the drawing to accept light from all three CRTs.
  • the outermost CRTs and lenses are inclined inwards so that the projected red, blue and green rasters are brought into coincidence on the screen 7.
  • the projection lens 3 for such a television display system can be realized by using only three lens elements eac having one aspheric surface.
  • Such a lens 3 has adequate quality for high definition 1249 line television or for 525 line or 625 line television with an exceptionally large projection angle.
  • the Petzval curvature of the lens 3 fits the concave CRT face plate closely, removing the need for a field flattener.
  • FIGS. 2, 3 and 4 show three different examples of the lens system having different projection angles and designed for different purposes.
  • FIG. 2 is an all-plastics design, FIGS. 3 and 4 being designs with glass elements.
  • the lens elements are designated by L followed by a numeral indicating the sequential position of the element from the image or projection screen end to the CRT face plate FP.
  • the surfaces of the elements are designated by S followed by a numeral in the same sequence as the elements. Positive surfaces are convex towards the projection screen and negative surfaces are concave towards the projection screen.
  • the powers of the three elements are within the ranges given by:
  • K is the power of the whole lens equal to the reciprocal of its focal length and K 1 , K 2 and K 3 are the powers of the three elements equal to the reciprocal of their respective focal lengths, elements K 1 and K 3 always being of positive power.
  • L 1 is generally convex towards the projection screen and L 3 is generally a biconvex element. All three elements have one aspheric surface for detailed aberration correction. Surfaces S2, S4 and S5 are aspherized in the three design example given below.
  • the aspheric surfaces are defined by the expression ##EQU2## where Z is a deviation, in the axial direction, of the surface from a plane normal to the optical axis and tangent to the surface at its pole for a zone of the surface which is at a distance s from the axis, C is a curvature of the surface at the pole, ⁇ is a conic constant and a 4 , a 6 , a 8 and a 10 are constants for the surface.
  • the first term of Z defines the basic shape of the whole surface. If ⁇ has the valve 1, the basic shape is a sphere. For parabolic, ellipsodal or hyperbolic basic shapes, ⁇ has the values 0, between 0 and 1 or less than 0, respectively.
  • FIGS. 5 and 6 show the performance of the lenses of FIGS. 2 and 3, respectively.
  • the column of five graphs on the right shows the modulation transfer functions (MTF) plotted vertically at various distance H off axis at the CRT face plate as a function of spatial frequency for the tangential (Tan) and sagittal (Sag) directions.
  • MTF modulation transfer functions
  • H the value of the effective lens aperture area P is give relative to the value on axis.
  • the MTFs are plotted out to 7.5 cycles per mm on the CRT face plate rather than on the image as projected. This is because the lens design procedure traces rays from points on the projection screen onto the CRT face plate.
  • the column of five graphs on the left shows the variation of the MTF as a function of defocus distance at the CRT face plate.
  • the base value of the MTF is 5.0 cycles per mm. It will be seen that there is a substantial margin of about ⁇ 0.15 mm for defocus error and for face plate manufacturing tolerance. Over a diameter of 120 mm, this gives ⁇ 1 mm tolerance on face plate radius.
  • FIG. 7 shows the performance of the extra wide angle, all glass design of FIG. 4.
  • the base value of the MTF on the defocus curves is 2.5 cycles per mm, this lens being designed for lower definition 525/625 line T.V. If an average is taken of the tangential and sagittal MTFs, it will be seen that an MTF of 0.5 is achieved approximately at the picture edges.
  • the thow distance of 0.75 m is particularly short and, combined with a projection angle of ⁇ 37.2°, permits a very compact T.V. cabinet design.
  • the aspheric surface can be on either side of each element.
  • the CRT face plate can have concentric surfaces or each surface can have the same radius or slightly different radii consistent with the face plate thickness remaining substantially constant or chosen so that the face plate has weak positive or negative power.
  • Either face plate surface may be aspherized to further improve resolution.

Abstract

A lens system is provided which is suitable for back-projecting an enlarged image of a TV cathode ray tube (CRT). The lens system includes a concave CRT face plate FP and three lens elements L1, L2, L3. L1 and L3 are each of positive power and each have one aspheric surface. L2 is between L1 and L3 and also has one aspheric surface. The powers of the elements are chosen so that
0.50K<K.sub.1 <0.90K
-0.35K<K.sub.2 <0.20K,
and
0.70K<K.sub.3 <1.0K
where K1 is the power of the first element remote from the object surface, K2 is the power of the second low power element, K3 is the power of the third element adjacent to the object surface and K is the total power of the projection lens.

Description

BACKGROUND OF THE INVENTION
This invention relates to projection lenses and, more particularly, relates to lenses designed to project an enlargement of an image on a cathode ray tube (CRT) such as a phosphor screen of a television set.
In three tube color projection television systems, it is often not necessary to correct the chromatic aberration of each projection lens due to the limited spectral bandwidth of each CRT, thus simplifying lens design to some extent. If a CRT with a flat face plate is used, then a steeply curved field flattener is often necessary adjacent to the face plate to correct Petzval curvature. Such designs are disclosed in U.S. Pat. No. 4,348,081 in which some of the lens elements have aspheric surfaces. In such designs, the field flattener has two disadvantages. Firstly, the steep curve of the field flattener at the edges of the picture means that high angles of incidence occur, rendering aberration correction difficult and producing brightness reduction due to light lost by reflection at the steeply curving surface. Secondly, projection CRT's are usually run at high screen loadings in order to roduce an adequately bright picture for viewing. In consequence, the phosphor can be raised in temperature and thermal quenching of the phosphor can occur, reducing picture brightness with increasing temperature. If the field flattener is in optical contact with the CRT face plate, the effective thickness of the face plate varies considerably across the picture, being especially thick at the picture edges. Face plate cooling is then not constant over the picture and, hence, phosphor temperature is not constant over the picture, producing brightness variations via thermal quenching. The field flattener may, therefore, be separated from the face plate and a coolant circulated between them, incurring additional complexity.
In British Patent Application No. 2,091,898A, the optical problem of the field flattener is largely solved by using a cathode ray tube having a face plate which is concave towards the projection lens. The face plate glass may be strengthened, for example by surface ion exchange, so that it can withstand atmospheric pressure on the concave surface. A single element lens having both surfaces aspherized is used together with a solid prism beam combiner for projecting the images from all three of the CRT's. However, the prism has convex surfaces fitting the concave CRT face plates, rendering cooling difficult.
SUMMARY OF THE INVENTION
It is an object of the invention to simplify beam combining, provide cooling access to face plates of substantially constant thickness and to provide high quality imaging out to the picture edges with a wide aperture lens having a short projection throw.
The invention provides a lens system for projecting an image of a concave object surface onto a planar display screen, characterized in that the projection lens comprises first and third elements, each of positive power and each having one aspheric surface, and a second element between the first and third elements, said second element having one aspheric surface, the powers of the elements being chosen so that
0.50K<K.sub.1 <0.90K
-0.35K<K.sub.2 <0.20K,
and
0.70K<K.sub.3 <1.0K
where K1 is the power of the first element remote from the object surface, K2 is the power of the second element, K3 is the power of the third element adjacent to the object surface and K is the total power of the projection lens, each aspheric surface being defined by the following relationship: ##EQU1## where Z is a deviation, in the axial direction, of the surface from a plane normal to the optical axis and tangent to the surface at its pole for a zone of the surface which is at a distance s from the axis, C is a curvature of the surface on the axis, ε is a conic constant, and a4, a6, a8 and a10 are constants for the surface.
Lenses in accordance with the invention can be designed to realize either the high definition required in 1249 line television with an acceptably short throw distance or the definition required in 525 or 625 line television with a particularly large projection angle and, hence, short throw distance which is desirable if the TV cabinet is to be particularly compact.
In projection television sets, the image may be projected onto a translucent screen from the back, the CRT and lens being behind the screen and within a free standing cabinet, the front of which comprises the screen. It is desirable to reduce the depth of the cabinet as much as possible and at least below a value such that the T.V. set can easily pass through ordinary living room doors. Folding mirrors are usually used within the cabinet to reduce the depth. Using a lens in accordance with the invention, the number of folding mirrors can be reduced because the projection distance, or throw, from the lens to the screen is reduced and because a wide projection angle is provided so that the projected picture size is maintained. Using a lens system in accordance with the invention, there is provided a projection television system including a cathode ray tube having a face plate concave towards the lens system. Also, using a lens system in accordance with the invention, there is provided a color television projection system comprising first, second and third cathode ray tubes having red, blue and green phosphors respectively provided on concave face plates, a lens system associated with each cathode ray tube, each lens system being arranged to project an image of the concave face plate onto a common display screen.
BRIEF DESCRIPTION OF THE DRAWING
Embodiments of the invention will now be described, by way of example, with reference to the accompanying drawings, in which:
FIG. 1 shows a typical layout of a projection television system to which a lens system in accordance with the invention may be applied,
FIG. 2 shows a lens system designed for production with the three lens elements made entirely of a plastics material and suitable for high definition television at a projection angle of ±26°,
FIG. 3 shows a high definition lens system with glass elements,
FIG. 4 shows a medium definition lens system with glass elements having a projection angle of ±37°, and
FIGS. 5, 6 and 7 show the modulation transfer functions and defocus functions of the lens systems of FIGS. 2, 3 and 4, respectively.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
Referring to FIG. 1, a free standing cabinet 1 contains a back projection television display system comprising a cathode ray tube (CRT) 2 having a face plate concave towards a projection lens 3, front metallized folding mirrors 5 and 6 and a translucent projection screen 7. The screen may be a Fresnel screen and may also have a light scattering power which is less in the vertical plane than in the horizontal plane to avoid wasting projected light. For color television, three CRTs and three lenses are used in line normal to the plane of the drawing. Mirrors 5, 6 are then extended in the direction normal to the drawing to accept light from all three CRTs. The outermost CRTs and lenses are inclined inwards so that the projected red, blue and green rasters are brought into coincidence on the screen 7.
The projection lens 3 for such a television display system can be realized by using only three lens elements eac having one aspheric surface. Such a lens 3 has adequate quality for high definition 1249 line television or for 525 line or 625 line television with an exceptionally large projection angle. The Petzval curvature of the lens 3 fits the concave CRT face plate closely, removing the need for a field flattener. FIGS. 2, 3 and 4 show three different examples of the lens system having different projection angles and designed for different purposes. FIG. 2 is an all-plastics design, FIGS. 3 and 4 being designs with glass elements. In these figures, the lens elements are designated by L followed by a numeral indicating the sequential position of the element from the image or projection screen end to the CRT face plate FP. The surfaces of the elements are designated by S followed by a numeral in the same sequence as the elements. Positive surfaces are convex towards the projection screen and negative surfaces are concave towards the projection screen.
The powers of the three elements are within the ranges given by:
0.50K<K.sub.1 <0.90K,
-0.35K<K.sub.2 <0.20K
and
0.70K <K.sub.3 <1.0K
where K is the power of the whole lens equal to the reciprocal of its focal length and K1, K2 and K3 are the powers of the three elements equal to the reciprocal of their respective focal lengths, elements K1 and K3 always being of positive power. L1 is generally convex towards the projection screen and L3 is generally a biconvex element. All three elements have one aspheric surface for detailed aberration correction. Surfaces S2, S4 and S5 are aspherized in the three design example given below. The aspheric surfaces are defined by the expression ##EQU2## where Z is a deviation, in the axial direction, of the surface from a plane normal to the optical axis and tangent to the surface at its pole for a zone of the surface which is at a distance s from the axis, C is a curvature of the surface at the pole, ε is a conic constant and a4, a6, a8 and a10 are constants for the surface. The first term of Z defines the basic shape of the whole surface. If ε has the valve 1, the basic shape is a sphere. For parabolic, ellipsodal or hyperbolic basic shapes, ε has the values 0, between 0 and 1 or less than 0, respectively.
The following Tables I, II and III given the detailed design of the embodiments of FIGS. 2, 3 and 4, respectively.
              TABLE I                                                     
______________________________________                                    
Focal length 13.7 cm.                                                     
                  Relative aperture f/1.0                                 
Projection angle ±26°.                                          
                  Throw 1.16 m                                            
Wavelength 525 nm.                                                        
                  Magnification 8.26 X                                    
______________________________________                                    
            Polar    Axial    Axial                                       
            radius,  thickness,                                           
                              separation,                                 
                                      Refractive                          
            cm       cm       cm      index                               
______________________________________                                    
L1  S1      9.589    --       --      --                                  
    S2      239.00   3.300    --      1.490                               
L2  S3      plane    --       3.415   --                                  
    S4      -93.982  0.850    --      1.490                               
L3  S5      20.031   --       4.632   --                                  
    S6      -12.973  2.996    --      1.490                               
FP  S7      -13.333  --       4.775   --                                  
    S8      -13.333  1.500    --      1.520                               
______________________________________                                    
Aspheric surfaces: S2, S4, S5                                             
    S2            S4           S5                                         
______________________________________                                    
C   0.00418  .sup.                                                        
                  -0.0106      0.0499  .sup.                              
ε                                                                 
    1             1            1                                          
a.sub.4                                                                   
    +0.8870 × 10.sup.-4                                             
                  +0.2880 × 10.sup.-3                               
                               -0.8359 × 10.sup.-4                  
a.sub.6                                                                   
    -0.1131 × 10.sup.-5                                             
                  +0.4906 × 10.sup.-5                               
                               +0.1480 ×  10.sup.-5                 
a.sub.8                                                                   
    +0.2566 × 10.sup.-8                                             
                  -0.4938 × 10.sup.-7                               
                               -0.1753 × 10.sup.-7                  
a.sub.10                                                                  
    0             +0.3060 × 10.sup.-8                               
                               0                                          
______________________________________                                    
Element values:                    Relative                               
          Focal length, cm                                                
                        Power, cm.sup.-1                                  
                                   Power                                  
______________________________________                                    
L1 + L2 + L3                                                              
          13.7          0.073      1                                      
L1        20.29         0.049      0.68                                   
L2        191.8         0.005      0.07                                   
L3        16.56         0.060      0.83                                   
______________________________________                                    
              TABLE II                                                    
______________________________________                                    
Focal length 14.2 cm.                                                     
                  Relative aperture f/0.95                                
Projection angle ±22.6°.                                        
                  Throw 1.37 m                                            
Wavelength 525 nm.                                                        
                  Magnification 9.25 X                                    
______________________________________                                    
            Polar    Axial    Axial                                       
            radius,  thickness,                                           
                              separation,                                 
                                      Refractive                          
            cm       cm       cm      index                               
______________________________________                                    
L1  S1      9.833    --       --      --                                  
    S2      115.11   4.280    --      1.5727                              
L2  S3      plane    --       1.723   --                                  
    S4      31.870   0.500    --      1.5727                              
L3  S5      22.369   --       4.316   --                                  
    S6      -13.923  4.012    --      1.5727                              
FP  S7      -15.625  --       6.428   --                                  
    S8      -16.770  1.200    --      1.520                               
______________________________________                                    
Aspheric surfaces: S2, S4, S5                                             
    S2            S4           S5                                         
______________________________________                                    
C   0.00869  .sup.                                                        
                  0.03138  .sup.                                          
                               0.0447  .sup.                              
ε                                                                 
    1             1            1                                          
a.sub.4                                                                   
    -0.3958 × 10.sup.-4                                             
                  +0.4186 × 10.sup.-3                               
                               -0.3470 × 10.sup.-4                  
a.sub.6                                                                   
    -0.6202 × 10.sup.-6                                             
                  +0.3424 × 10.sup.-5                               
                               -0.7809 × 10.sup.-6                  
a.sub.8                                                                   
    +0.7273 × 10.sup.-8                                             
                  +0.6976 × 10.sup.-7                               
                               +0.2470 × 10.sup.-7                  
a.sub.10                                                                  
    .sup. +0.8549 × 10.sup.-10                                      
                  +0.2836 × 10.sup.-9                               
                               .sup. -0.3791 × 10.sup.-10           
______________________________________                                    
Element values:                    Relative                               
          Focal length, cm                                                
                        Power, cm.sup.-1                                  
                                   Power                                  
______________________________________                                    
L1 + L2 + L3                                                              
          14.2          0.0703     1                                      
L1        18.500        0.0541     0.77                                   
L2        -55.694       -0.0180    -0.26                                  
L3        15.613        0.0605     0.91                                   
______________________________________                                    
              TABLE III                                                   
______________________________________                                    
Focal length 8.93 cm.                                                     
                  Relative aperture f/1.0                                 
Projection angle ±37.2°.                                        
                  Throw 0.75 m                                            
Wavelength 525 nm.                                                        
                  Magnification 8 X                                       
______________________________________                                    
            Polar    Axial    Axial                                       
            radius,  thickness,                                           
                              separation,                                 
                                      Refractive                          
            cm       cm       cm      index                               
______________________________________                                    
L1  S1      6.308    --       --      --                                  
    S2      23.947   2.273    --      1.5727                              
L2  S3      100.837  --       1.159   --                                  
    S4      54.609   0.507    --      1.5727                              
L3  S5      17.901   --       2.301   --                                  
    S6      -8.569   2.870    --      1.5727                              
FP  S7      -10.452  --       4.174   --                                  
    S8      -10.425  1.200    --      1.520                               
______________________________________                                    
Aspheric surfaces: S2, S4, S5                                             
    S2            S4           S5                                         
______________________________________                                    
C   0.0418  .sup. 0.0183  .sup.                                           
                               0.0559  .sup.                              
ε                                                                 
    1             1            1                                          
a.sub.4                                                                   
    -0.6521 × 10.sup.-4                                             
                  +0.1338 × 10.sup.-2                               
                               -0.2446 × 10.sup.-3                  
a.sub.6                                                                   
    -0.2200 × 10.sup.-4                                             
                  +0.4718 × 10.sup.-4                               
                               +0.9434 × 10.sup.-5                  
a.sub.8                                                                   
    +0.4278 × 10.sup.-6                                             
                  +0.1058 × 10.sup.-5                               
                               -0.1444 × 10.sup.-6                  
a.sub.10                                                                  
    +0.5720 × 10.sup.-8                                             
                  +0.1786 × 10.sup.-8                               
                               -0.4900 × 10.sup.-9                  
______________________________________                                    
Element values:                    Relative                               
          Focal length, cm                                                
                        Power, cm.sup.-1                                  
                                   Power                                  
______________________________________                                    
L1 + L2 + L3                                                              
          8.93          0.112      1                                      
L1        14.285        0.070      0.63                                   
L2        -208.8        -0.0048    -0.04                                  
L3        10.535        0.095      0.85                                   
______________________________________                                    
FIGS. 5 and 6 show the performance of the lenses of FIGS. 2 and 3, respectively. The column of five graphs on the right shows the modulation transfer functions (MTF) plotted vertically at various distance H off axis at the CRT face plate as a function of spatial frequency for the tangential (Tan) and sagittal (Sag) directions. For each value of H, the value of the effective lens aperture area P is give relative to the value on axis. The MTFs are plotted out to 7.5 cycles per mm on the CRT face plate rather than on the image as projected. This is because the lens design procedure traces rays from points on the projection screen onto the CRT face plate. With a face plate diameter of 120 mm, a 1249 line picture can be adequately resolved provided the MTF has a value 0.5 or better out to 5.0 cycles per mm. It will be seen that the FIG. 2 design, the all-plastics lens, achieves this target all over the picture with a substantial margin in most of the picture. The all glass design of FIG. 3, which has 10% greater light collecting power, achieves a similar performance. H=60.0 mm is roughly at the picture corners.
The column of five graphs on the left shows the variation of the MTF as a function of defocus distance at the CRT face plate. The base value of the MTF is 5.0 cycles per mm. It will be seen that there is a substantial margin of about ±0.15 mm for defocus error and for face plate manufacturing tolerance. Over a diameter of 120 mm, this gives ±1 mm tolerance on face plate radius.
FIG. 7 shows the performance of the extra wide angle, all glass design of FIG. 4. The base value of the MTF on the defocus curves is 2.5 cycles per mm, this lens being designed for lower definition 525/625 line T.V. If an average is taken of the tangential and sagittal MTFs, it will be seen that an MTF of 0.5 is achieved approximately at the picture edges. The thow distance of 0.75 m is particularly short and, combined with a projection angle of ±37.2°, permits a very compact T.V. cabinet design.
In the above designs, the aspheric surface can be on either side of each element. The CRT face plate can have concentric surfaces or each surface can have the same radius or slightly different radii consistent with the face plate thickness remaining substantially constant or chosen so that the face plate has weak positive or negative power. Either face plate surface may be aspherized to further improve resolution.
For two element lens designs generally suitable for lower definition applications, reference may be made to copending British Patent Application No. 8,319,938.

Claims (6)

I claim:
1. A lens system for projecting an image of a concave object surface onto a planar display screen, characterized in that the system lens, comprises first and third elements, each of positive power and each having one aspheric surface, and a second element between first and third elements, said second element having one aspheric surface, the powers of the elements being chosen so that
0.50K<K.sub.1 <0.90K
-0.35K<K.sub.2 <0.20K,
and
0.70K<K.sub.3 <1.0K
where K1 is the power of the first element remote from the object surface, K2 is the power of the second element, K3 is the power of the third element adjacent to the object surface and K is the total power of the projection lens, each aspheric surface being defined by the following relationship: ##EQU3## where Z is a deviation, in the axial direction, of the surface from a plane normal to the optical axis and tangent to the surface at its pole for a zone of the surface which is at a distance s from the axis, C is a curvature of the surface on the axis, ε is a conic constant, and a4, a6, a8 and a10 are constants for the surface.
2. A lens system as claimed in claim 1, having focal length 13.7 cm at a wavelength of 525 nm, relative aperture f/1.0, projection angle ±26°, throw 1.16 m and magnification 8.26X, and being described substantially as follows:
______________________________________                                    
            Polar    Axial    Axial                                       
            radius,  thickness,                                           
                              separation,                                 
                                      Refractive                          
            cm       cm       cm      index                               
______________________________________                                    
L1  S1      9.589    --       --      --                                  
    S2      239.00   3.300    --      1.490                               
L2  S3      plane    --       3.415   --                                  
    S4      -93.982  0.850    --      1.490                               
L3  S5      20.031   --       4.632   --                                  
    S6      -12.973  2.996    --      1.490                               
FP  S7      -13.333  --       4.775   --                                  
    S8      -13.333  1.500    --      1.520                               
______________________________________                                    
Aspheric surfaces: S2, S4, S5                                             
    S2            S4           S5                                         
______________________________________                                    
C   0.00418  .sup.                                                        
                  -0.0106   .sup.                                         
                               0.0499                                     
ε                                                                 
    1             1            l                                          
a.sub.4                                                                   
    +0.8870 × 10.sup.-4                                             
                  +0.2880 × 10.sup.-3                               
                               -0.8359 × 10.sup.-4                  
a.sub.6                                                                   
    -0.1131 × 10.sup.-5                                             
                  +0.4906 × 10.sup.-5                               
                               +0.1480 × 10.sup.-5                  
a.sub.8                                                                   
    +0.2566 × 10.sup.-8                                             
                  -0.4938 × 10.sup.-7                               
                               -0.1753 × 10.sup.-7                  
a.sub.10                                                                  
    0             +0.3060 × 10.sup.-8                               
                               0                                          
______________________________________                                    
Element values:                    Relative                               
          Focal length, cm                                                
                        Power, cm.sup.-1                                  
                                   Power                                  
______________________________________                                    
L1 + L2 + L3                                                              
          13.7          0.073      1                                      
L1        20.29         0.049      0.68                                   
L2        191.8         0.005      0.07                                   
L3        16.56         0.060      0.83                                   
______________________________________                                    
where L1, L2, L3, FP are successive lens elements from the image end and s1-S8 are successive element surfaces, positive surfaces being convex towards the image end and negative surfaces being concave towards the image end.
3. A lens system as claimed in claim 1, having focal length 14.2 cm at a wavelength of 525 nm, relative aperture f/0.95, projection angle ±22.62° throw 1.37 m and magnification 9.25X, and being described substantially as follows:
______________________________________                                    
            Polar    Axial    Axial                                       
            radius,  thickness,                                           
                              separation,                                 
                                      Refractive                          
            cm       cm       cm      index                               
______________________________________                                    
L1  S1      9.833    --       --      --                                  
    S2      115.11   4.280    --      1.5727                              
L2  S3      plane    --       1.723   --                                  
    S4      31.870   0.500    --      1.5727                              
L3  S5      22.369   --       4.316   --                                  
    S6      -13.923  4.012    --      1.5727                              
FP  S7      -15.625  --       6.428   --                                  
    S8      -16.770  1.200    --      1.520                               
______________________________________                                    
Aspheric surfaces: S2, S4, S5                                             
    S2            S4           S5                                         
______________________________________                                    
C   0.00869  .sup.                                                        
                  0.03138  .sup.                                          
                               0.0447                                     
ε                                                                 
    1             1            1                                          
a.sub.4                                                                   
    -0.3958 × 10.sup.-4                                             
                  +0.4186 × 10.sup.-3                               
                               -0.3470 × 10.sup.-4                  
a.sub.6                                                                   
    -0.6202 × 10.sup.-6                                             
                  +0.3424 × 10.sup.-5                               
                               -0.7809 × 10.sup.-6                  
a.sub.8                                                                   
    +0.7273 × 10.sup.-8                                             
                  +0.6976 × 10.sup.-7                               
                               +0.2470 × 10.sup.-7                  
a.sub.10                                                                  
    .sup. +0.8549 × 10.sup.-10                                      
                  +0.2836 × 10.sup.-9                               
                               .sup. -0.3791 × 10.sup.-10           
______________________________________                                    
Element values:                    Relative                               
          Focal length, cm                                                
                        Power, cm.sup.-1                                  
                                   Power                                  
______________________________________                                    
L1 + L2 + L3                                                              
          14.2          0.0703     1                                      
L1        18.500        0.0541     0.77                                   
L2        -55.694       -0.0180    -0.26                                  
L3        15.613        0.0605     0.91                                   
______________________________________                                    
where L1, L2, L3, EP are successive lens elements from the image end and S1-S8 are successive element surfaces, positive surfaces being convex towards the image end and negative surfaces being concave towards the image end.
4. A lens system as claimed in claim 1 having focal length 8.93 cm at a wavelength of 525 nm, relative aperture f/1.0, projection angle -37.23° throw 0.75 m and magnification 8X, and being described substantially as follows:
______________________________________                                    
            Polar    Axial    Axial                                       
            radius,  thickness,                                           
                              separation,                                 
                                      Refractive                          
            cm       cm       cm      index                               
______________________________________                                    
L1  S1      6.308    --       --      --                                  
    S2      23.947   2.273    --      1.5727                              
L2  S3      100.837  --       1.159   --                                  
    S4      54.609   0.507    --      1.5727                              
L3  S5      17.901   --       2.301   --                                  
    S6      -8.569   2.870    --      1.5727                              
FP  S7      -10.452  --       4.174   --                                  
    S8      -10.425  1.200    --      1.520                               
______________________________________                                    
Aspheric surfaces: S2, S4, S5                                             
    S2            S4           S5                                         
______________________________________                                    
C   0.0418  .sup. 0.0183  .sup.                                           
                               0.0559  .sup.                              
ε                                                                 
    1             1            1                                          
a.sub.4                                                                   
    -0.6521 × 10.sup.-4                                             
                  +0.1338 × 10.sup.-2                               
                               -0.2446 × 10.sup.-3                  
a.sub.6                                                                   
    -0.2200 × 10.sup.-4                                             
                  +0.4718 × 10.sup.-4                               
                               +0.9434 × 10.sup.-5                  
a.sub.8                                                                   
    +0.4278 × 10.sup.-6                                             
                  +0.1058 × 10.sup.-5                               
                               -0.1444 × 10.sup.-6                  
a.sub.10                                                                  
    +0.5720 × 10.sup.-8                                             
                  +0.1786 × 10.sup.-8                               
                               -0.4900 × 10.sup.-9                  
______________________________________                                    
Element values:                    Relative                               
          Focal length, cm                                                
                        Power, cm.sup.-1                                  
                                   Power                                  
______________________________________                                    
L1 + L2 + L3                                                              
          8.93          0.112      1                                      
L1        14.285        0.070      0.63                                   
L2        -208.8        -0.0048    -0.04                                  
L3        10.535        0.095      0.85                                   
______________________________________                                    
where L1, L2, L3, FP are successive lens elements from the image end and S1-S8 are successive element surfaces, positive surfaces being convex towards the image end and negative surfaces being concave towards the image end.
5. A projection television system comprising a cathode ray tube having a face plate concave towards a lens system, characterized in that the lens system includes first and third lens elements, each of positive power and each having one aspheric surface, and a second lens element disposed between the first and third lens elements, said second lens element having one aspheric surface, the powers of the lens elements being chosen so that
0.50K<K.sub.1 <0.90K
-0.35K<K.sub.2 <0.20K,
and
0.70K<K.sub.3 <1.0K
where K1 is the power of the first lens element remote from the object surface, K2 is the power of the second lens element, K3 is the power of the third lens element adjacent to the object surface and K is the total power of the lens system, each aspheric surface being defined by the following relationship: ##EQU4## where Z is a deviation, in the axial direction, of the surface from a plane normal to the optical axis and tangent to the surface at its pole for a zone of the surface which is at a distance s from the axis, C is a curvature of the surface on the axis, ε is a conic constant, and a4, a6, a8 and a10 are constants for the surface.
6. A color television projection system comprising first, second and third cathode ray tubes having red, blue and green phosphors, respectively, provided on concave face plates, a lens system associated with each cathode ray tube, each lens system being arranged to project an image on the associated concave face plate onto a common display screen, characterized in that each lens system includes first and third lens elements, each of positive power and each having one aspheric surface, and a second lens element between the first and third lens elements, said second lens element having one aspheric surface, the powers of the lens elements being chosen so that
0.50K<K.sub.1 <0.90K
-0.35K<K.sub.2 <0.20K,
and
0.70K<K.sub.3 <1.0K
where K1 is the power of the first lens element remote from the object surface, K2 is the power of the second lens element, K3 is the power of the third lens element adjacent to the object surface and K is the total power of the lens system, each aspheric surface being defined by the following relationship: ##EQU5## where Z is a deviation, in the axial direction, of the surface from a plane normal to the optical axis and tangent to the surface at its pole for a zone of the surface which is at a distance s from the axis, C is a curvature of the surface on the axis, ε is a conic constant, and a4, a6, a8 and a10 are constants for the surface.
US06/628,375 1983-07-25 1984-07-05 Projection lens system Expired - Lifetime US4595263A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB08319940A GB2143963A (en) 1983-07-25 1983-07-25 Projection lens system
GB8319940 1983-07-25

Publications (1)

Publication Number Publication Date
US4595263A true US4595263A (en) 1986-06-17

Family

ID=10546227

Family Applications (1)

Application Number Title Priority Date Filing Date
US06/628,375 Expired - Lifetime US4595263A (en) 1983-07-25 1984-07-05 Projection lens system

Country Status (7)

Country Link
US (1) US4595263A (en)
EP (1) EP0135216B1 (en)
JP (1) JPH0646260B2 (en)
AT (1) ATE47234T1 (en)
CA (1) CA1230248A (en)
DE (1) DE3480124D1 (en)
GB (1) GB2143963A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4682862A (en) * 1986-01-17 1987-07-28 U.S. Precision Lens Incorporated Projection lens
US4699477A (en) * 1984-12-14 1987-10-13 U.S. Philips Corporation Projection lens system
US4722593A (en) * 1985-07-29 1988-02-02 Casio Computer Co., Ltd. Liquid-crystal projector with light beam reduction lens array for improved brightness of image outer portions
WO1988003347A1 (en) * 1986-10-27 1988-05-05 Tds Patent Management, Inc. Aplanatic image combiner for use in projection television systems
US4776681A (en) * 1986-01-17 1988-10-11 U.S. Precision Lens, Incorporated Projection lens
US4842394A (en) * 1988-02-18 1989-06-27 Tds Patent Management, Inc. Simplified high speed corrected projection lens system for curved image surfaces
US4875763A (en) * 1985-12-11 1989-10-24 Minolta Camera Kabushiki Kaisha Video projector lens system
US5991088A (en) * 1996-06-04 1999-11-23 Canon Kabushiki Kaisha Illumination system and exposure apparatus
EP0989449A2 (en) * 1994-01-28 2000-03-29 Matsushita Electric Industrial Co., Ltd. Optical system for rear projection picture display apparatus

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6271915A (en) * 1985-09-25 1987-04-02 Hitachi Ltd Optical system for projection type television
US5692820A (en) * 1992-02-20 1997-12-02 Kopin Corporation Projection monitor
US5467154A (en) * 1992-02-20 1995-11-14 Kopin Corporation Projection monitor
USRE38488E1 (en) * 1994-01-28 2004-04-06 Matsushita Electric Industrial Co., Ltd. Optical system including a reflecting polarizer for a rear projection picture display apparatus
BE1009596A6 (en) * 1995-09-12 1997-05-06 Barco Nv Display device and method for displaying an image.
BE1009592A4 (en) * 1995-09-12 1997-05-06 Barco Nv Image display device and method for displaying an image
CN103901712B (en) * 2012-12-28 2016-12-28 台达电子工业股份有限公司 Virtual image display system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4163604A (en) * 1977-12-23 1979-08-07 U.S. Precision Lens, Inc. Projection lens
GB2091898A (en) * 1981-01-23 1982-08-04 Hodges Marvin P Aspheric projection lens system utilizing concave image
US4496223A (en) * 1981-11-04 1985-01-29 Polaroid Corporation Compact afocal attachment for use with photographic objectives

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2430150A (en) * 1942-08-25 1947-11-04 Taylor Taylor & Hobson Ltd Optical objective
US4109995A (en) * 1976-06-03 1978-08-29 Opcon Associates Of Canada, Ltd. Triplet with aspheric surfaces
US4448504A (en) * 1981-11-18 1984-05-15 Industrial Electronic Engineers, Inc. Rear end projection system employing aspherical lenses

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4163604A (en) * 1977-12-23 1979-08-07 U.S. Precision Lens, Inc. Projection lens
GB2091898A (en) * 1981-01-23 1982-08-04 Hodges Marvin P Aspheric projection lens system utilizing concave image
US4496223A (en) * 1981-11-04 1985-01-29 Polaroid Corporation Compact afocal attachment for use with photographic objectives

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4699477A (en) * 1984-12-14 1987-10-13 U.S. Philips Corporation Projection lens system
US4722593A (en) * 1985-07-29 1988-02-02 Casio Computer Co., Ltd. Liquid-crystal projector with light beam reduction lens array for improved brightness of image outer portions
US4875763A (en) * 1985-12-11 1989-10-24 Minolta Camera Kabushiki Kaisha Video projector lens system
US4682862A (en) * 1986-01-17 1987-07-28 U.S. Precision Lens Incorporated Projection lens
US4776681A (en) * 1986-01-17 1988-10-11 U.S. Precision Lens, Incorporated Projection lens
WO1988003347A1 (en) * 1986-10-27 1988-05-05 Tds Patent Management, Inc. Aplanatic image combiner for use in projection television systems
US4764806A (en) * 1986-10-27 1988-08-16 Tds Patent Management, Inc. Aplanatic image combiner for use in projection television systems with reduced spherical and coma aberration
US4842394A (en) * 1988-02-18 1989-06-27 Tds Patent Management, Inc. Simplified high speed corrected projection lens system for curved image surfaces
EP0989449A2 (en) * 1994-01-28 2000-03-29 Matsushita Electric Industrial Co., Ltd. Optical system for rear projection picture display apparatus
EP0989449A3 (en) * 1994-01-28 2000-04-05 Matsushita Electric Industrial Co., Ltd. Optical system for rear projection picture display apparatus
US5991088A (en) * 1996-06-04 1999-11-23 Canon Kabushiki Kaisha Illumination system and exposure apparatus

Also Published As

Publication number Publication date
GB8319940D0 (en) 1983-08-24
CA1230248A (en) 1987-12-15
GB2143963A (en) 1985-02-20
EP0135216A1 (en) 1985-03-27
JPH0646260B2 (en) 1994-06-15
JPS6043627A (en) 1985-03-08
EP0135216B1 (en) 1989-10-11
ATE47234T1 (en) 1989-10-15
DE3480124D1 (en) 1989-11-16

Similar Documents

Publication Publication Date Title
US4595263A (en) Projection lens system
US5760965A (en) Wide-projection angle liquid crystal projection lens system
EP0457404B1 (en) Short focal length color projector employing dichroic mirror block
KR20010021697A (en) High performance projection television lens systems
US4933599A (en) Projection system with a cathode ray tube and a lens
US4699476A (en) Projection lens system
EP0184879B1 (en) Projection lens system
US4573769A (en) Projection lens system
US5016994A (en) Projection-lens system
JPH0151809B2 (en)
US4872748A (en) Projection-lens system
US4884879A (en) Lens system for projection television receivers
US4842394A (en) Simplified high speed corrected projection lens system for curved image surfaces
US4163604A (en) Projection lens
JP3493305B2 (en) Projection lens device
Clarke Current trends in optics for projection TV
KR20060129132A (en) Projection optical system and projection television employing the same
Clarke Wide angle lenses for projection TV

Legal Events

Date Code Title Description
AS Assignment

Owner name: U.S. PHILIPS CORPORATION 100 EAST 42ND STREET NEW

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:CLARKE, JOHN A.;REEL/FRAME:004318/0406

Effective date: 19840920

STCF Information on status: patent grant

Free format text: PATENTED CASE

CC Certificate of correction
FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12