US4508833A - Separation of interleukin-2 from phytohemagglutinin by dye matrix chromatography - Google Patents

Separation of interleukin-2 from phytohemagglutinin by dye matrix chromatography Download PDF

Info

Publication number
US4508833A
US4508833A US06/449,708 US44970882A US4508833A US 4508833 A US4508833 A US 4508833A US 44970882 A US44970882 A US 44970882A US 4508833 A US4508833 A US 4508833A
Authority
US
United States
Prior art keywords
interleukin
ligand
approximately
blue
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US06/449,708
Inventor
Hans H. Sonneborn
Udo Schwulera
Hans Schleussner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Biotest AG
Original Assignee
Biotest Serum Institut GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Biotest Serum Institut GmbH filed Critical Biotest Serum Institut GmbH
Assigned to BIOTEST-SERUM-INSTITUT GMBH, A WEST GERMAN CORP reassignment BIOTEST-SERUM-INSTITUT GMBH, A WEST GERMAN CORP ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: SCHLEUSSNER, HANS, SCHWULERA, UDO, SONNEBORN, HANS H.
Application granted granted Critical
Publication of US4508833A publication Critical patent/US4508833A/en
Assigned to BIOTEST A.G. reassignment BIOTEST A.G. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: BIOTEST SERUM-INSTITUT G.M.B.H., A LIMITED LIABILITY COMPANY OF GERMANY
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6863Cytokines, i.e. immune system proteins modifying a biological response such as cell growth proliferation or differentiation, e.g. TNF, CNF, GM-CSF, lymphotoxin, MIF or their receptors
    • G01N33/6869Interleukin
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • C07K14/54Interleukins [IL]
    • C07K14/55IL-2
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S436/00Chemistry: analytical and immunological testing
    • Y10S436/807Apparatus included in process claim, e.g. physical support structures

Definitions

  • the invention is a method of purifying human interleukin-2 and/or separating phytohemagglutinin from it.
  • Interleukin-2 abbreviated IL-2 and previously called T-cell growth factor, abbreviated TCGF
  • IL-2 Interleukin-2
  • TCGF T-cell growth factor
  • FIG. 1 shows a model of T-cell activation in accordance with which interleukin-2 (TCGF) is formed from TGCF producers (a T-cell sub-population). The factor then affects what are called TCGF responders that have formed TCGF receptors subsequent to antigen or lectin stimulation. These cytotoxic helper or suppressor T cells can now multiply freely only in the presence of TCGF.
  • TCGF interleukin-2
  • Interleukin-2 that is practically free of phytohemagglutin (PHA) is a necessary component of any in-vitro multiplication (cloning) or in-vivo, animal-experimental or clinical, study or cultivation of these cytotoxic helper or suppressor T cells.
  • PHA phytohemagglutin
  • interleukin-2 formation decreases sharply with age.
  • Foreign interleukin-2 could thus be employed to cure or ameliorate diseases caused by disruptions in its production in the body.
  • tumor cells have surface antigens that can provoke immunostimulation of in-vitro T cells. It might be possible to utilize interleukin-2 to produce quantities of cytotoxic T cells. Mixing malignent cells with antologenous normal lymphocytes will lead to activation of the normal T cells. This in turn can be increased in culture with interleukin-2, and some of these T cells might be cytotoxic and could be used to kill tumor cells in vivo. Interleukin-2 is therefore also a potential anticancer agent.
  • the crude product contains several substances that either inhibit or stimulate cell growth. Examples are phytohemagglutin (PHA), other mitogenic factors, interferon, and other factors that have not yet been more precisely characterized.
  • PHA phytohemagglutin
  • PHA mitogenic action of PHA, for example, disrupts many biological test systems because the effect of interleukin-2 being studied interferes with it, so that the cause of an effect can not be identified.
  • Separating the PHA is a difficult biochemical problem because its molecule is not uniform but consists of 5 different molecules with molecular weights of from 33,000-128,000 amu (cf. Monsigny M, Roche AC, & Kieda C, Lectins as tools to study cell surface membranes, Pharmindustrie [L'Industrie Bitechnik Francaise], 1978).
  • Such human interleukin-2 can not be isolated by single-stage purification. Several more or less effective stages, which often partially denature the protein, are necessary. This is at present connected with the properties of interleukin 2.
  • the molecule of (human) interleukin-2 is small, with a molecular weight of 17,000 amu, and is negatively charged. It is readily hydrophobic and seems to adhere to the wall of a plastic-glass dialysis tube or to aggregate to itself. Losses are high in filtration sterilization, and even dialysis is possible only under certain conditions. Protein concentration is very low, it behaves like a hormone, and is highly active even at nanogram levels in the test system. The purer the product, the more unstable, so that the molecule must be stabilized at every stage of purification.
  • the first two are protein-preserving under certain conditions. Still, even when streamed together, they do not lead to a pure product.
  • the invention is intended as a method of purifying human interleukin-2 that preserves the protein and yields a very pure, active, and stable product.
  • This objective is attained by subjecting crude interleukin-2 extract to group-selective dye-ligand absorption chromatography of one or more stages of purification with a matrix-gel medium consisting of a Blue A ligand or variant thereof or of a Green A ligand in a concentration of approximately 1.5 to 3.0 mg/ml of expanded matrix at a pH of approximately 6.8 to 8.5, a temperature of approximately 4° to 40° C., and a flowthrough rate of approximately 10 to 100 ml/h, employing an eluent.
  • the method in accordance with the invention yields an interleukin-2 product that is free of PHA and/or a very pure interleukin-2 product that can be used to make a diagnostic-test set, through monoclonal antibodies on a base of RIA or EIA, for example.
  • the advantage of the invention is the extremely low protein loss at each stage, resulting in an extremely high yield.
  • Other methods like DEAE chromatography or isoelectric focussing, are on the other hand very ineffective methods of purifying interleukin-2.
  • Dye-ligand chromatography can also be employed as a first or second purification stage without the necessity of stabilizing the interleukin-2 because the human albumin that binds to the column will stabilize the factor simultaneously. If the column is utilized as a third purification stage, of course, stabilizing conditions will have to be applied.
  • the method in accordance with the invention can be carried as one stage at any point in a series of interleukin-2 purifications, following initial ammonium-sulfate precipitation and subsequent gel filtration for example. It can however also be employed as a sole or supplementary purification stage to separate the PHA. As mentioned in the foregoing, PHA is extremely difficult to separate. All the methods previously described separate only some. The method in accordance with the invention, however, removes 98 to 100% of the PHA, which is so disruptive to many immunological tests, in one sole stage.
  • ammonium-sulfate precipitation for example can be employed as a further stage.
  • interleukin-2 which becomes very labile during purification, for human albumin to bind to the dye-ligand column simultaneously, as mentioned in the foregoing, which leads to stabilization during binding to the matrix and during elution.
  • This is of decisive significance in the manufacture of an interleukin-2 preparation that is free of PHA.
  • Agarose preferably cross-linked, and sepharose, for example, are appropriate matrix gels.
  • the concentration of dye ligand ranges approximately from 1.5 to 3.0 and preferably 1.58 mg/ml of expanded matrix.
  • the strength with which the interleukin-2 binds to the ligand can be increased or decreased by varying the parameters
  • the pH can range from 6.8 to 8.5 (with the interleukin-2 forming a stronger bond with the matrix in a slightly acid environment).
  • any appropriate salt can be employed as an eluent.
  • Some examples are sodium chloride, potassium chloride, and other salts.
  • Ionic strength ranges from 0.01 to 2M.
  • Operating temperature ranges approximately from 4° to 40° C.
  • Sample volume can range approximately from 0.1 ml to several liters, depending on the dimensions of the column and on the amount of crude product available. The method can also be carried out in batches.
  • the column can range in size from 1 ml (0.5 ⁇ 2 cm) to 500 ml or more at a flowthrough rate of 10 to 100 ml/h.
  • a DyematrexTM and Blue A® column, manufactured by the Amicon Corp. concentration of 1.58 ml of Blue A dye ligand/ml of expanded agarose
  • concentration of 1.58 ml of Blue A dye ligand/ml of expanded agarose was regenerated with 5 times the column volume of 8M of urea in 0.5M of NaCl. It was then equilibrated with 10 times the volume of 20 mM of tris HCl at a pH of 7.5 and by subsequent washing with 10 times the volume of RPMI-1640 (a synthetic culturing medium with salts, buffers, amino acids, vitamins, and growth substances+L-glutamine, manufactured by Gibco).
  • a 2-ml probe of interleukin-2 obtained by the method in Example 1 was processed at approximately 10 ml/h.
  • the resulting product contained a high percentage of interleukin-2+albumin+ ⁇ -interferon, and no PHA could be detected in the eluate.
  • FIG. 2 illustrates the course of the chromatography described in the foregoing. Following chromatography the column was stored at 4° C. in the presence of 0.2% NaN 3 .
  • Interleukon-2 was concentrated through the Blue A segment and was somewhat impure, stabilized by simultaneously binding human albumin. PHA activity had been completely eliminated.
  • the first stage was conducted as in Example 3 although without filtration dialysis.
  • FIG. 3 shows the elution curve.
  • Proteins with the same molecular weight as interleukin-2 but that do not bind to a Blue A column were separated during this stage.

Abstract

Crude interleukin-2 extract is subjected to group-selective dye-ligand absorption chromatography in one or more stages of purification with a matrix-gel medium consisting of a Blue A ligand or variant thereof or of a Green A ligand in a concentration of approximately 1.5 to 3.0 mg/ml of expanded matrix at a pH of approximately 6.8 to 8.5, a temperature of approximately 4° to 40° C., and a flowthrough rate of approximately 10 to 100 ml/h, employing an eluent. Either PHA-free or extremely pure interleukin-2 is obtained, depending on the overall number of purification stages.

Description

The invention is a method of purifying human interleukin-2 and/or separating phytohemagglutinin from it.
Interleukin-2, abbreviated IL-2 and previously called T-cell growth factor, abbreviated TCGF, is a lymphokine protein molecule synthesized by lymphocytes stimulated with antigen or mitogen. It occupies a position of central importance in cellular immunodefense. To it is attributed the clonal multiplication of lymphocytes previously activated by antigen or mitogen.
FIG. 1 shows a model of T-cell activation in accordance with which interleukin-2 (TCGF) is formed from TGCF producers (a T-cell sub-population). The factor then affects what are called TCGF responders that have formed TCGF receptors subsequent to antigen or lectin stimulation. These cytotoxic helper or suppressor T cells can now multiply freely only in the presence of TCGF.
Interleukin-2 that is practically free of phytohemagglutin (PHA) is a necessary component of any in-vitro multiplication (cloning) or in-vivo, animal-experimental or clinical, study or cultivation of these cytotoxic helper or suppressor T cells.
It is suspected that a large number of disruption in immune defense (immunological diseases) can be ascribed to the lack of interleukin-2 producers, to excessively low IL-2 production, or to the absence or insufficient formation of IL-2 receptors and can therefore be ameliorated by the administration of interleukin-2.
In diagnosing such conditions it is necessary to manufacture monoclonal antibodies to interleukin-2 to establish a diagnosis kit on a radioimmunoassay or enzyme-linked immunosorbent assay basis.
More recent research has also demonstrated that interleukin-2 formation decreases sharply with age. Foreign interleukin-2 could thus be employed to cure or ameliorate diseases caused by disruptions in its production in the body.
It has also been demonstrated that some tumor cells have surface antigens that can provoke immunostimulation of in-vitro T cells. It might be possible to utilize interleukin-2 to produce quantities of cytotoxic T cells. Mixing malignent cells with antologenous normal lymphocytes will lead to activation of the normal T cells. This in turn can be increased in culture with interleukin-2, and some of these T cells might be cytotoxic and could be used to kill tumor cells in vivo. Interleukin-2 is therefore also a potential anticancer agent.
Extremely pure interleukin-2, free not only of PHA but of other impurities as well, is, however, a prerequisite for all these purposes.
Methods of obtaining crude human interleukin-2 are described in
1. Ruscetti FW & Gallo RC, Regulation of the production and release of human T-cell growth factor, J. Supramol. Biol. 13 (1980),
2. Bonnard GD, Yakasa K, & Maca RD, Continued growth of functional human T lymphocytes: production of human T-cell growth factor, Cell Immunol. 51: 390-410 (1980),
3. Alvarex JM, Silva A, & de Landazuri MO, Human T-cell growth factor. I. Optimal conditions for its production, J. Immunol. 123: 977-83 (1979),
4. Ruscetti FW & Gallo RC, Human T lymphocyte growth factor: regulation of growth and function of T lymphocytes, Blood 57: 379 (1981), and
5. Lindsay P, Schwulera U, & Sonneborn HH, The species specificity of interleukin 2, 3rd International Lymphokine Congress, Dallas, Tex., Oct. 14-17, 1981.
The crude product, however, contains several substances that either inhibit or stimulate cell growth. Examples are phytohemagglutin (PHA), other mitogenic factors, interferon, and other factors that have not yet been more precisely characterized.
The mitogenic action of PHA, for example, disrupts many biological test systems because the effect of interleukin-2 being studied interferes with it, so that the cause of an effect can not be identified. Separating the PHA is a difficult biochemical problem because its molecule is not uniform but consists of 5 different molecules with molecular weights of from 33,000-128,000 amu (cf. Monsigny M, Roche AC, & Kieda C, Lectins as tools to study cell surface membranes, Pharmindustrie [L'Industrie Biologique Francaise], 1978).
The previous literature describes numerous purification processes, mainly however for the interleukin-2 obtained from various species of animals. Examples include
amonium-sulfate precipitation,
gel filtration,
DEAE-anion exchanger chromatography
CM- or SP-cation exchanger chromatography,
hydrophobic chromatography,
preparative polyacrylamide-gel electrophoresis, and
preparative isoelectric focussing
(cf.
6. Mier JW & Gallo RC, Purification and some characteristics of human T-cell growth factor from phytohemagglutinin-stimulated lymphocyte-conditioned media, Proc. Natl. Acad. Sci. 77: 6134 (1980)
and 4., above).
Such human interleukin-2 can not be isolated by single-stage purification. Several more or less effective stages, which often partially denature the protein, are necessary. This is at present connected with the properties of interleukin 2. The molecule of (human) interleukin-2 is small, with a molecular weight of 17,000 amu, and is negatively charged. It is readily hydrophobic and seems to adhere to the wall of a plastic-glass dialysis tube or to aggregate to itself. Losses are high in filtration sterilization, and even dialysis is possible only under certain conditions. Protein concentration is very low, it behaves like a hormone, and is highly active even at nanogram levels in the test system. The purer the product, the more unstable, so that the molecule must be stabilized at every stage of purification.
Of the methods mentioned in the foregoing, the first two are protein-preserving under certain conditions. Still, even when streamed together, they do not lead to a pure product.
All the other methods mentioned are highly protein-denaturing, with 50 to 95% of enzyme activity often getting lost at one single stage.
One of the purification methods described in the literature [6, p. 6137] is ##STR1##
A product purified in this way, however, is highly inactivated.
The invention is intended as a method of purifying human interleukin-2 that preserves the protein and yields a very pure, active, and stable product.
This objective is attained by subjecting crude interleukin-2 extract to group-selective dye-ligand absorption chromatography of one or more stages of purification with a matrix-gel medium consisting of a Blue A ligand or variant thereof or of a Green A ligand in a concentration of approximately 1.5 to 3.0 mg/ml of expanded matrix at a pH of approximately 6.8 to 8.5, a temperature of approximately 4° to 40° C., and a flowthrough rate of approximately 10 to 100 ml/h, employing an eluent.
The method in accordance with the invention yields an interleukin-2 product that is free of PHA and/or a very pure interleukin-2 product that can be used to make a diagnostic-test set, through monoclonal antibodies on a base of RIA or EIA, for example.
Of course, dye-ligand chromatography with Blue A and Green A has been utilized in the past to purify a number of enzymes and other proteins. Still, it has taken a lot of research in various potential methods of purification to find one that complies, in contrast to known methods, with the optimum prerequisites for the purification of human interleukin-2.
The advantage of the invention is the extremely low protein loss at each stage, resulting in an extremely high yield. Other methods, like DEAE chromatography or isoelectric focussing, are on the other hand very ineffective methods of purifying interleukin-2. Dye-ligand chromatography can also be employed as a first or second purification stage without the necessity of stabilizing the interleukin-2 because the human albumin that binds to the column will stabilize the factor simultaneously. If the column is utilized as a third purification stage, of course, stabilizing conditions will have to be applied.
The method in accordance with the invention can be carried as one stage at any point in a series of interleukin-2 purifications, following initial ammonium-sulfate precipitation and subsequent gel filtration for example. It can however also be employed as a sole or supplementary purification stage to separate the PHA. As mentioned in the foregoing, PHA is extremely difficult to separate. All the methods previously described separate only some. The method in accordance with the invention, however, removes 98 to 100% of the PHA, which is so disruptive to many immunological tests, in one sole stage.
When the method is employed as a supplementary purification stage, ammonium-sulfate precipitation for example can be employed as a further stage.
It is also of decisive importance for stabilization of the interleukin-2, which becomes very labile during purification, for human albumin to bind to the dye-ligand column simultaneously, as mentioned in the foregoing, which leads to stabilization during binding to the matrix and during elution. This is of decisive significance in the manufacture of an interleukin-2 preparation that is free of PHA.
Blue A has the formula ##STR2##
It gets bound with an ether bond to the triazine ring of a matrix gel as follows: ##STR3##
A thorough description of the Blue A ligand, its variations, the Green A ligand, and the matrix gels will be found in
7. Dye Ligand Chromatography, Amicon Corp., Publication 512 A (1980).
Agarose, preferably cross-linked, and sepharose, for example, are appropriate matrix gels.
The concentration of dye ligand ranges approximately from 1.5 to 3.0 and preferably 1.58 mg/ml of expanded matrix.
The strength with which the interleukin-2 binds to the ligand can be increased or decreased by varying the parameters
pH,
ionic strength,
temperature,
sample volume,
column dimensions, and
flowthrough rate
within the ranges being claimed or considered practical.
The pH can range from 6.8 to 8.5 (with the interleukin-2 forming a stronger bond with the matrix in a slightly acid environment).
Practically any appropriate salt can be employed as an eluent. Some examples are sodium chloride, potassium chloride, and other salts.
Ionic strength ranges from 0.01 to 2M.
Operating temperature ranges approximately from 4° to 40° C.
Sample volume can range approximately from 0.1 ml to several liters, depending on the dimensions of the column and on the amount of crude product available. The method can also be carried out in batches.
The column can range in size from 1 ml (0.5×2 cm) to 500 ml or more at a flowthrough rate of 10 to 100 ml/h.
The invention will now be specified with reference to the following examples.
EXAMPLE 1 Obtaining crude human interleukin-2
Whole human blood was sedimented for 1 hour at 1×g and 37° C. in the presence of oxypolygelatin citrate. Plasma and buffy coat were collected and centrifuged. The sediment was resuspended, layered on Ficoll-Hypane, and centrifuged 20 minutes at 1500×g 20 min. The mononuclear cells in the intermediate layer were washed twice in the medium by centrifuging at 250×g. Cells pooled from 3 donors received allogeneic and mitogenic (1% PHA-M) stimulations at a cell concentration of 106 /ml and were cultivated for 48 hours in RPMI-1640 to which had been added 25 mmoles of Hepes buffer, L-Gutamin, and antibiotics and 1% inactivated pooled human serum. The remainder, which contained the interleukin-2, was harvested by centrifuging, filtration sterilized, and stored at -20° C.
EXAMPLE 2 Single-stage purification
A Dyematrex™ and Blue A® column, manufactured by the Amicon Corp. (concentration of 1.58 ml of Blue A dye ligand/ml of expanded agarose) with a volume of 2 ml was regenerated with 5 times the column volume of 8M of urea in 0.5M of NaCl. It was then equilibrated with 10 times the volume of 20 mM of tris HCl at a pH of 7.5 and by subsequent washing with 10 times the volume of RPMI-1640 (a synthetic culturing medium with salts, buffers, amino acids, vitamins, and growth substances+L-glutamine, manufactured by Gibco). A 2-ml probe of interleukin-2 obtained by the method in Example 1 was processed at approximately 10 ml/h. 30 minutes after the sample had penetrated the column was washed with 5 times the column volume of 20 mM of tris HCl at a pH of 7.5. This was followed by elution with 10 ml of 1.5-M NaCl. All stages were conducted at 4° C.
The resulting product contained a high percentage of interleukin-2+albumin+γ-interferon, and no PHA could be detected in the eluate.
FIG. 2 illustrates the course of the chromatography described in the foregoing. Following chromatography the column was stored at 4° C. in the presence of 0.2% NaN3.
EXAMPLE 3 Two-stage purification 1. Ammonium-sulfate precipitation
2. Blue A
6 g (55% saturation) of solid (NH4)2 SO4 was added slowly to 100 ml of the crude extract stirred at 4° C. Stirring was continued for 2 hours on a magnetic stirrer. The precipitate was then removed by 20 minutes of centrifuging at 4° C. and 50 000×g and removed. It contained primarily high-molecular proteins and PHA. Solid (NH4)2 SO4 was again added to attain a saturation of 90% and precipitated at 4° C. for 2 hours, the precipitate being centrifuged out for 20 minutes at 50 000×g in 10 ml of buffer composed of
0.01M of Na/K phosphate, pH 7.4 and
0.15M of NaCl.
The high concentration of (NH4)2 SO4 was removed by 2 to 3 hours of filtration dialysis with a PM10 membrane (amicon). Blue A chromatography was then conducted as described in Example 2. The table shows the results.
______________________________________                                    
               mg of     yield of PHA                                     
          ml   protein   IL-2*    activity**                              
______________________________________                                    
Crude extract                                                             
            100    25        100%   100%                                  
(NH.sub.4).sub.2 SO.sub.4                                                 
             10    19        90-95% 30-40%                                
Blue A       3      8         90%    0%                                   
______________________________________                                    
 *The yield of interleukon2 was calculated with an arbitrarily assumed IL2
 unit measured in accordance with a standard and the protein yield and    
 hence a specific unit computed. Human MLC blasts or human PHA blasts were
 utilized as target cells and the .sup.3 H--thymidine incorporation       
 measured after a 6h pulse. The longterm growth of cloned human T cells in
 the presence of IL2 was also followed.                                   
 **PHA activity was determined with ν lymphoctyes as target cells as   
 well as by .sup.3 H--thymidine incorporation.                            
Result
Interleukon-2 was concentrated through the Blue A segment and was somewhat impure, stabilized by simultaneously binding human albumin. PHA activity had been completely eliminated.
Overnight dialysis is just as successful as 2 to 3 hours of filtration dialysis.
EXAMPLE 4 Three-stage purification
1. Ammonium-sulfate precipitation (as in Ex. 3)
2. Gel filtration
3. Blue A (as in Ex. 2)
The first stage was conducted as in Example 3 although without filtration dialysis.
In the second stage, gel filtration, a column (2.5×100 cm) was charged with Sephadex G75 and equilibrated with a buffer consisting of
0.01M of Na/K phosphate, pH 7.4
0.15M of NaCl, and
0.01% of PEG 6000 (as a stablizer).
After calibrating the column with standard proteins, 10 ml of the solution obtained in the first stage were added to the column. Large serum proteins like albumin for example were simultaneously separated. FIG. 3 shows the elution curve.
Flowthrough rate was 25 m/h. Fraction size was 3 ml.
In the third stage, Blue A chromatography, 0.01% of the stabilizer PEG 6000 was, in deviation from Example 3, again added to the buffer.
Proteins with the same molecular weight as interleukin-2 but that do not bind to a Blue A column were separated during this stage.
EXAMPLE 5 Reference example to confirm inactivity
The methods in the table, some from the literature, were conducted with the raw extract to test their comparative applicability to the purification of human interleukin-2.
______________________________________                                    
                          Loss of                                         
Method                    IL-2, %                                         
______________________________________                                    
Blue A                     5-10                                           
(NH.sub.4).sub.2 SO.sub.4  5-10                                           
Gel filtration            10-20                                           
Hydrophobic chromatography                                                
                          40-50                                           
Preparative gel electrophoresis (with and without                         
                          50-60                                           
detergent)                                                                
DEAE-anion exchange chromatography                                        
                          90-95                                           
CM-cation exchange chromatography                                         
                          90-95                                           
Preparative isoelectric focussing                                         
                          90-95                                           
Hydroxylapatite chromatography                                            
                          80-90                                           
______________________________________                                    
Text 6 of the bibliography was reworked with the following results:
______________________________________                                    
              Yield of IL-2, %                                            
______________________________________                                    
Crude extract   100                                                       
(NH.sub.4).sub.2 SO.sub.4                                                 
                90-95                                                     
DEAE            1-5                                                       
Gel filtration  <0.1                                                      
Gel electrophoresis                                                       
                <0.01                                                     
______________________________________                                    

Claims (6)

I claim:
1. A method of purifying human interleukin- 2 comprising passing crude interleukin-2 extract through a group-selective dye-ligand adsorption chromatographic column containing a matrix-gel medium consisting of a Blue A ligand or variant thereof or of a Green A ligand in a concentration of approximately 1.5 to 3.0 mg/ml of expanded matrix at a pH of approximately 6.8 to 8.5, a temperature of approximately 4° to 40° C., and a flowthrough rate of approximately 10 to 100 ml/h, and eluting purified interleukin-2 from the medium.
2. A method according to claim 1, wherein the ligand is Blue A ligand.
3. A method according to claim 1, wherein the matrix gel medium comprises 5% agarose.
4. A method according to claim 1, wherein elution is effected with NaCl or KCl.
5. A method according to claim 1, wherein prior to passage through the column the crude interleukin-2 is contacted with solutions of different concentrations of ammonium sulfate to effect selective precipitation in stages and the desired fractions are filtered to remove gels.
6. A method according to claim 1, wherein the process is repeated at least once more on the eluted product.
US06/449,708 1981-12-12 1982-12-14 Separation of interleukin-2 from phytohemagglutinin by dye matrix chromatography Expired - Fee Related US4508833A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3149360 1981-12-12
DE19813149360 DE3149360A1 (en) 1981-12-12 1981-12-12 "METHOD FOR PURIFYING AND / OR PHYTOHEMAGGLUTININE SEPARATION FROM HUMAN INTERLEUKIN-2"

Publications (1)

Publication Number Publication Date
US4508833A true US4508833A (en) 1985-04-02

Family

ID=6148614

Family Applications (1)

Application Number Title Priority Date Filing Date
US06/449,708 Expired - Fee Related US4508833A (en) 1981-12-12 1982-12-14 Separation of interleukin-2 from phytohemagglutinin by dye matrix chromatography

Country Status (2)

Country Link
US (1) US4508833A (en)
DE (1) DE3149360A1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4645830A (en) * 1984-04-09 1987-02-24 Takeda Chemical Industries Stable composition of interleukin-2 and albumin
US4723000A (en) * 1983-07-05 1988-02-02 Biospectrum, Inc. Human interferon gamma and interleukin-2
US4770781A (en) * 1986-03-03 1988-09-13 Merck & Co., Inc. Purification of human interleukin-1 species
US4902783A (en) * 1986-06-18 1990-02-20 The Research Foundation For Microbial Diseases Of Osaka University Method for purifying a gene-expression product produced by recombinant DNA technique
US4904467A (en) * 1986-06-28 1990-02-27 Biotest Pharma Stabilized interleukin-2
US4908433A (en) * 1984-04-25 1990-03-13 Sloan-Kettering Institute For Cancer Research Uses of interleukin-2
US4908434A (en) * 1984-04-25 1990-03-13 Sloan-Kettering Institute For Cancer Research Process for preparing purified interleukin-2
US4925919A (en) * 1984-04-25 1990-05-15 Roland Mertelsmann Purified interleukin 2
US4938956A (en) * 1987-04-01 1990-07-03 International Minerals & Chemical Corp. Synergistic immunostimulating composition and method
US4992271A (en) * 1982-09-23 1991-02-12 Cetus Corporation Formulation for lipophilic IL-2 proteins
US5045190A (en) * 1988-11-08 1991-09-03 Carbonell Ruben G Chromatography apparatus
US5122459A (en) * 1984-12-31 1992-06-16 Immunex Corporation Gene encoding biologically active human interleukin 1
WO1993018835A1 (en) * 1992-03-24 1993-09-30 Smithkline Beecham Corporation Protein purification
US5484887A (en) * 1984-06-19 1996-01-16 Immunex Corporation Homogeneous interleukin 1
US5552325A (en) * 1989-11-08 1996-09-03 Fmc Corporation Method for separation and recovery of biological materials
US5936066A (en) * 1985-04-25 1999-08-10 Hoffman La-Roche, Inc. Recombinant human interleukin-1α
CN1100568C (en) * 1999-04-26 2003-02-05 中国科学院大连化学物理研究所 Process for synthesizing protein immunoadsorbent medium for removing pathogenic antibody and its compounds from plasm

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE37564T1 (en) * 1982-04-20 1988-10-15 Sloan Kettering Inst Cancer PURIFICATION OF INTERLEUKIN-2.
JPS5939832A (en) * 1982-08-28 1984-03-05 Ajinomoto Co Inc Monoclonal antibody and preparation and use thereof
DE3329449A1 (en) * 1983-08-16 1985-03-07 Biotest-Serum-Institut Gmbh, 6000 Frankfurt MONOCLONAL ANTIBODY DETECTING A STRUCTURE COMMON TO HUMAN INTERLEUKIN-2 (TCGF) AND LIGHT CHAIN (LAMBDA) OF HUMAN IMMUNE LOBULIN, AND HYBRIDOMA CELL LINES THAT MAKE THESE MONOCLONAL

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4355017A (en) * 1981-05-14 1982-10-19 Martin Marietta Corporation Aluminum electrolytic cell cathode waste recovery
US4390623A (en) * 1980-10-02 1983-06-28 Hooper Trading Company Serum-free and mitogen-free T-cell growth factor and process for making same
US4404188A (en) * 1981-07-29 1983-09-13 Massachusetts General Hospital Purified Mullerian Inhibiting Substance and method of purification
US4406830A (en) * 1981-04-17 1983-09-27 Shanksville Corporation, N.V. Regulatory glycoprotein for immune response and the use thereof in the production of T-cell growth factor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4390623A (en) * 1980-10-02 1983-06-28 Hooper Trading Company Serum-free and mitogen-free T-cell growth factor and process for making same
US4406830A (en) * 1981-04-17 1983-09-27 Shanksville Corporation, N.V. Regulatory glycoprotein for immune response and the use thereof in the production of T-cell growth factor
US4355017A (en) * 1981-05-14 1982-10-19 Martin Marietta Corporation Aluminum electrolytic cell cathode waste recovery
US4404188A (en) * 1981-07-29 1983-09-13 Massachusetts General Hospital Purified Mullerian Inhibiting Substance and method of purification

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Dye Ligand Chromatography, Amicon Corporation, Publication 512, Lexington, Mass. (1980), pp. C2 C37. *
Dye-Ligand Chromatography, Amicon Corporation, Publication 512, Lexington, Mass. (1980), pp. C2-C37.

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4992271A (en) * 1982-09-23 1991-02-12 Cetus Corporation Formulation for lipophilic IL-2 proteins
US4723000A (en) * 1983-07-05 1988-02-02 Biospectrum, Inc. Human interferon gamma and interleukin-2
US4645830A (en) * 1984-04-09 1987-02-24 Takeda Chemical Industries Stable composition of interleukin-2 and albumin
US4812557A (en) * 1984-04-09 1989-03-14 Takeda Chemical Industries Stable composition of interleukin-2 and human serum albumin
US4908434A (en) * 1984-04-25 1990-03-13 Sloan-Kettering Institute For Cancer Research Process for preparing purified interleukin-2
US4925919A (en) * 1984-04-25 1990-05-15 Roland Mertelsmann Purified interleukin 2
US4908433A (en) * 1984-04-25 1990-03-13 Sloan-Kettering Institute For Cancer Research Uses of interleukin-2
US5484887A (en) * 1984-06-19 1996-01-16 Immunex Corporation Homogeneous interleukin 1
US5122459A (en) * 1984-12-31 1992-06-16 Immunex Corporation Gene encoding biologically active human interleukin 1
US5936066A (en) * 1985-04-25 1999-08-10 Hoffman La-Roche, Inc. Recombinant human interleukin-1α
US6268180B1 (en) 1985-04-25 2001-07-31 Hoffmann-La Roche Inc. Recombinant human recombinant human interleukin-1α
US4770781A (en) * 1986-03-03 1988-09-13 Merck & Co., Inc. Purification of human interleukin-1 species
US4902783A (en) * 1986-06-18 1990-02-20 The Research Foundation For Microbial Diseases Of Osaka University Method for purifying a gene-expression product produced by recombinant DNA technique
US4904467A (en) * 1986-06-28 1990-02-27 Biotest Pharma Stabilized interleukin-2
US4938956A (en) * 1987-04-01 1990-07-03 International Minerals & Chemical Corp. Synergistic immunostimulating composition and method
US5045190A (en) * 1988-11-08 1991-09-03 Carbonell Ruben G Chromatography apparatus
US5552325A (en) * 1989-11-08 1996-09-03 Fmc Corporation Method for separation and recovery of biological materials
WO1993018835A1 (en) * 1992-03-24 1993-09-30 Smithkline Beecham Corporation Protein purification
US5252216A (en) * 1992-03-24 1993-10-12 Smithkline Beecham Corporation Protein purification
CN1100568C (en) * 1999-04-26 2003-02-05 中国科学院大连化学物理研究所 Process for synthesizing protein immunoadsorbent medium for removing pathogenic antibody and its compounds from plasm

Also Published As

Publication number Publication date
DE3149360A1 (en) 1983-06-16
DE3149360C2 (en) 1990-01-11

Similar Documents

Publication Publication Date Title
US4508833A (en) Separation of interleukin-2 from phytohemagglutinin by dye matrix chromatography
US4406830A (en) Regulatory glycoprotein for immune response and the use thereof in the production of T-cell growth factor
US4675291A (en) Human cultured cell line
US4359389A (en) Method for the purification of interferon
JPS58131918A (en) Preparation of factor viii coagulative protein and immunoadsorbent
EP0092163A2 (en) Purification of interleukin 2
EP0291728A2 (en) Production of immune interferon and its mRNA
JPS62298536A (en) Method for automatic purification of preformed chemical mediator and automatic purifying device therefor
Harakas Biospecific affinity chromatography
JPS5821691A (en) Purifying method of interferon
JPS63258500A (en) Improved imunoglobulin bonded protein
KR20040071212A (en) Process for the purification and/or isolation of biologically active granulocyte colony stimulating factor
SE406913B (en) PROCEDURE FOR PURIFICATION OR PREPARATION OF AN ENZYME BY CONTACT WITH AFFINITRATOR MATERIALS
JPS6154040B2 (en)
JPS6261040B2 (en)
EP0132359A2 (en) Natural human interleukin-2 and production thereof
Banerjee et al. A convenient procedure for purification of thymidylate synthase from L1210 cells
US4681844A (en) Process for producing an Interleukin-1 preparation
US4661447A (en) Regulatory glycoprotein for immune response and the use there of in the production of T-cell growth factor
KR100531670B1 (en) Processes for preparing interferon alpha
RU2278870C2 (en) Method for preparing, isolating, purifying and stabilizing human recombinant granulocytic colony-stimulating factor useful for medicinal using and immunobiological agent based on thereof
JPS6153300A (en) Immobilized interleukin-2
KR840001516B1 (en) Process for preparing human fibroblast interferon
US4308204A (en) Process for preparing the third component of the complement from human blood plasma
US4808533A (en) Method of preventing T-cell blastogenesis

Legal Events

Date Code Title Description
AS Assignment

Owner name: BIOTEST-SERUM-INSTITUT GMBH FLUGHAFENSTRASSE 4 D-6

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:SONNEBORN, HANS H.;SCHWULERA, UDO;SCHLEUSSNER, HANS;REEL/FRAME:004165/0845

Effective date: 19830818

CC Certificate of correction
FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: BIOTEST A.G., A JOINT STOCK COMPANY OF GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:BIOTEST SERUM-INSTITUT G.M.B.H., A LIMITED LIABILITY COMPANY OF GERMANY;REEL/FRAME:004893/0230

Effective date: 19871120

Owner name: BIOTEST A.G., GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BIOTEST SERUM-INSTITUT G.M.B.H., A LIMITED LIABILITY COMPANY OF GERMANY;REEL/FRAME:004893/0230

Effective date: 19871120

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
FP Lapsed due to failure to pay maintenance fee

Effective date: 19970402

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362