US3927236A - Resin compositions, methods of applying the same to porous materials, and the resulting products - Google Patents

Resin compositions, methods of applying the same to porous materials, and the resulting products Download PDF

Info

Publication number
US3927236A
US3927236A US360717A US36071773A US3927236A US 3927236 A US3927236 A US 3927236A US 360717 A US360717 A US 360717A US 36071773 A US36071773 A US 36071773A US 3927236 A US3927236 A US 3927236A
Authority
US
United States
Prior art keywords
synthetic resin
acrylate
weight
porous materials
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US360717A
Inventor
Jay S Shultz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Johnson and Johnson
Original Assignee
Johnson and Johnson
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Johnson and Johnson filed Critical Johnson and Johnson
Priority to US360717A priority Critical patent/US3927236A/en
Application granted granted Critical
Publication of US3927236A publication Critical patent/US3927236A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/46Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with organic materials
    • C04B41/48Macromolecular compounds
    • C04B41/4857Other macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • C08J9/40Impregnation
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/58Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives
    • D04H1/587Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives characterised by the bonding agents used
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/58Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives
    • D04H1/64Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives the bonding agent being applied in wet state, e.g. chemical agents in dispersions or solutions
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/227Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of hydrocarbons, or reaction products thereof, e.g. afterhalogenated or sulfochlorinated
    • D06M15/233Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of hydrocarbons, or reaction products thereof, e.g. afterhalogenated or sulfochlorinated aromatic, e.g. styrene
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/263Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof
    • D06M15/267Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof of unsaturated carboxylic esters having amino or quaternary ammonium groups
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2352Coating or impregnation functions to soften the feel of or improve the "hand" of the fabric
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2738Coating or impregnation intended to function as an adhesive to solid surfaces subsequently associated therewith

Definitions

  • ABSTRACT Stable, aqueous, synthetic resin compositions comprising: (1) a synthetic resin; and (2) a high molecular weight, water-soluble, acid salt of a cationic polyelectrolyte polymer having (a) a backbone consisting essentially of carbon atoms and (b) side chains containing cationic amine groups; methods of applying such synthetic resincompositions to porous materials on which and intowhich their migration is controlled; and the porous materials so treated with such synthetic resin compositions.
  • the present invention relates to: improved stable. 5 aqueous, synthetic resin compositions; methods of utilizing the same; and the resulting products.
  • the present invention relates to stable, aqueous, synthetic resin compositions which are intended to be applied to porous or absorbent materials such as textile materials, paper, paper products, wood, leather, polyurethane and other foams, wall board, concrete, cinder block, etc.; to methods of applying such synthetic resin compositions to such porous or absorbent materials on which or into which the extent of the migration, difi'usion, penetration, or spreading of such synthetic resin compositions is controlled; and to the porous materials so treated with these synthetic resin compositions.
  • porous or absorbent materials such as textile materials, paper, paper products, wood, leather, polyurethane and other foams, wall board, concrete, cinder block, etc.
  • Such resins have found use in the coating industries for the coating of woven, knitted, nonwoven and other textile fabrics, paper, paper products, and other related materials.
  • the resins are also used as adhesives for laminating materials or for bonding fibrous webs.
  • These resins have also found wide use as additives in the manufacture of paper, the printing industry, the decorative printing of textiles, and in other industries.
  • a stable, aqueous synthetic resin composition comprising from about 0.1% to about 60% by weight, and preferably from about 5% to about 50% by weight, on a solids basis of a synthetic resin and from about ().()l% by weight to about 8% by weight. and preferably from about 0.25% to about 2% by weight. based on the weight of the synthetic resin. (solids/solids basis), of a high molecular weight. water-soluble. cationic polyelectrolyte polymer having (a) a backbone consisting essentially of carbon atoms and (b) side chains containing cationic amine groups.
  • the present invention will be described in greater particularity herein purely for illustrative but not limitative purposes insofar as it realtes to porous, absorbent fibrous sheet materials and to their methods of manufacture. More particularly, however, the present invention is concerned with the so-called bonded, nonwoven textile fabrics. i.e., fabrics produced from textile fibers without the use of conventional spinning, weaving, knitting or felting operations.
  • the invention is of primary importance in connection with nonwoven fabrics derived from oriented or carded fibrous webs composed of textile-length fibers, the major proportion of which are oriented predominantly in one direction.
  • Another aspect of the present invention is its application to nonwoven fabrics wherein the textile-length fibers were originally predominantly oriented in one direction but have been reorganized and rearranged in predetermined designs and patterns of fabric openings and fiber bundles.
  • Still another aspect of the present invention is its application to nonwoven fabrics wherein the textilelength fibers are disposed at random by air-laying techniques and are not predominantly oriented in any one direction.
  • Typical nonwoven fabrics made by such procedures are termed isotropic nonwoven fabrics.
  • Still another aspect of the present invention is its application to nonwoven fabrics which comprise wood pulp fibers and/or textile-length fibers and which are made basically by conventional or modified aqueous paper making techniques. Such fabrics are also basically isotropic and generally have like properties in all directions.
  • the conventional base starting material for the majority of these nonwoven fabrics is usually a fibrous web comprising any of the common textile-length fibers, or mixtures thereof, the fibers varying in average length from approximately /2 inch to about 2V2 inches.
  • Exemplary of such fibers are the natural fibers such as cotton and wool and the synthetic or man-made cellulosic fibers. notably rayon or regenerated cellulose.
  • textile length fibers of a synthetic or man-made origin may be used in various proportions to replace either partially or perhaps even entirely the previouslynamed fibers.
  • Such other fibers include: polyamide fibers such as nylon 6, nylon 66, nylon 610. etc.; polyester fibers such as Dacron", Fortrel' and “Kodel”; acrylic fibers such as Acrilan, Orlon” and Creslan; modacrylic fibers such as Verel and Dynef; polyolefinic fibers derived from polyethylene and polypropylene; cellulose ester fibers such as Arnel' and Acele"; polyvinyl alcohol fibers; etc.
  • These textile length fibers may be replaced either partially or entirely by fibers having an average length of less than about V2 inch and down to about A inch.
  • These fibers. or mixtures thereof are customarily processed through any suitable textile machinery (e.g.. a conventional cotton card. a "Rando-Webber. a paper making machine, or other fibrous web producing apparatus) to form a web or sheet of loosely associated fibers, weighing from about grains to about 2000 grains per square yard or even higher.
  • shorter fibers such as wood pulp fibers or cotton linters. may be used in varying proportions, even up to 100%, where such shorter length 3 fibers can be handled and processed by available apparatus. Such shorter fibers have lengths less than A inch.
  • the resulting fibrous web or sheet regardless of its method of production, is then subjected to at least one of several types of bonding operations to anchor the individual fibers together to form a self-sustaining web.
  • One method is to impregnate the fibrous web over its entire surface area with various well-known bonding agents, such as natural or synthetic resins.
  • Such over-all impregnation produces a nonwoven fabric of good longitudinal and cross strength, acceptable durability and washability, and satisfactory abrasion resistance.
  • the nonwoven fabric tends to be somewhat stiff and boardlike, possessing more of the properties and characteristics of paper or board than those of woven or knitted textile fabric. Consequently, although such over-all impregnated nonwoven fabrics are satisfactory for many uses, they are still basically unsatisfactory as general purpose textile fabrics.
  • Another well-known bonding method is to print the fibrous webs with intermittent or continuous straight or wavy lines, or areas of binder extending generally transversely or diagonally across the web and additionally, if desired, along the fibrous web.
  • the resulting nonwoven fabric is far more satisfactory as a textile fabric than over-all impregnated webs in that the softness, drape and hand of the resulting nonwoven fabric more nearly approach those of a woven or knitted textile fabric.
  • the printing of the resin binder on these nonwoven webs is usually in the form of relatively narrow lines, or elongated rectangular, triangular or square areas, or annular, circular, or elliptical binder areas which are spaced apart a predetermined distance which, at its maximum, is preferably slightly less than the average fiber length of the fibers constituting the web. This is based on the theory that the individual fibers of the fibrous web should be bound together in as few places as possible.
  • resin colloidal dispersions may be anionic, non-ionic or even polyionic, and stable dispersions are available commercially at pI-Is of from about 2% to about 10, and preferably from about 3 /2 to about 7, and these are the pH ranges of the application of the present inventive concept.
  • the amount of resin which is applied to the porous or absorbent material varies within relatively wide limits, depending upon the resin itself, the nature and character of the porous or absorbent materials to which the resins are being applied, its intended use, etc.
  • a range of from about 10% to about 30% by weight, based on the weight of the porous or absorbent materials is preferred.
  • the nominal surface coverage can be designed so that it falls within the range of from about 10% to about 50% of the total surface of the final product. Within the more commercial aspects of the present invention, however, nominal surface coverages of from about 12% to about 40% are preferable.
  • the relatively narrow binder lines and relatively small binder areas of the applicator which are laid down on the fibrous web possess specified physical dimensions and I inter-spatial relationships as they are initially laid down.
  • the binder concentration in the binder area is lowered and rendered less uniform by the migration of the binder into adjacent fibrous areas.
  • One of the results of such migration is to make the surface coverage of the binder areas increase whereby the effect of the intermittent bonding approaches the effect of the over all bonding. As a result, some of the desired softness, drape and hand are lost and some of the undesired properties of harshness, stifiness and boardiness are increased.
  • the resin composition which is applied to the porous or absorbent materials comprises: (1) a synthetic resin and (2) a high molecular weight, water-soluble, cationic polyelectrolyte polymer as a migration control agent.
  • the synthetic resins may be selected from a relatively large group of synthetic resins well known in industry for bonding, coating, impregnating or related uses, and may be of a self cross-linking type, externally crosslinking type, or not cross-linked.
  • Such synthetic resins include: polymers and copolymers of vinyl ethers; vinyl halides such as plasticized and unplasticized polyvinyl chloride, polyvinyl chloridepolyvinyl acetate, ethylene-vinyl chloride, etc.; polymers and copolymers of vinyl esters such as plasticized and unplasticized polyvinyl acetate, ethylene-vinyl acetate, acrylic-vinyl acetate, etc.; polymers and copolymers of the polyacrylic resins such'as ethyl acrylate, methyl acrylate, butyl acrylate, ethylbutyl acrylate,
  • polymers and copolymers of the polymethacrylic resins such as methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, butyl methacrylate, etc.; polymers and copolymers of acrylonitrile, methacrylonitrile, acrylamide, N-isopropyl acrylamide, N-methylol acrylamide, methacrylamide, etc.; vinylidene polymers and copolymers, such as polyvinylidene chloride, polyvinylidene chloride-vinyl chloride, polyvinylidene chloride ethyl acrylate, polyvinylidene chloride-vinyl chloride-acrylonitrile, etc.; polymers and copolymers of polyolefinic resins including polyethylene, polypropylene, ethylene 'vin
  • resins may be used either 'as homopolymers comprising a single repeating monomer unit, orthey may be used as copolymers comprising two, three, or more different monomer units which are arranged in random fashion, or in a definite order alternating fashion, within the polymer chain.
  • block polymers comprising relatively long blocks of different monomer units in a polymer chain and graft polymers comprising chains of one monomer attached to the backbone of another polymer chain.
  • R and R are hydrogen, methyl, or ethyl
  • R and R and R, and R are hydrogen or alkyl from 1 to 4 carbon atoms;
  • m is a small number from /3 to 2;
  • n is a small whole number from 2 to 4.
  • x isnitrate, chloride, bromide, iodide, phosphate, formate, propionate, citrate, butyrate, sulfate, acetate, or an acidic anionic group derived from an organic or inorganic acid;
  • the molecular weight of the water-soluble, cationic polyelectrolyte polymer will vary over a relatively wide range and may be as low as about 20,000 or may be as high as 1 million
  • Salt formation ispreferable, as indicated, and treatment with the. desired organic or inorganic acid will yield the desired salt.
  • the desired salts include nitrate, chloride, bromide, iodide, phosphate, formate, propionate, citrate, butyrate, sulfate, acetate, or other salts.
  • the water-soluble cationic polyelectroltye polymer is prepared by methods known in the art and reference is incorporated herein to US. Pat. No. 3,372,149 which discloses preferred methods of preparing some of the polymers of the present invention. It is to be appreciated that, although this patent prefers the use of primary or secondary alkylene-imines and particularly ethyleneimine, propyleneimine, butyleneimine, etc., or N-methyl ethyleneimine, N-ethyl ethyleneimine, N- hydroxyethyl ethyleneimine, etc., in the aminoalkylation reaction, the use of polyfunctional aminoalcohols is also possible.
  • the monomeric unit on the left hand side of the structural formula may be derived by reacting acrylic acid, methacrylic acid, or other ethylenically unsaturated carboxylic acid including itaconic acid, ethacrylic acid, maleic acid, etc., with suitable polyfunctional amino alcohols such as: 2-amino-ethanol l-amino-ethanol 2( 2-amino ethylamino )-ethanol 2-butylamino-ethanol Z-diethylamino-ethanol Z-dimethylamind-ethanol Z-ethyIamino-ethahol 2-isobutylamino-ethanol 2-isopropylamino-ethanol Z-methylamino-ethanol 2-aminol-propanol 3-aminol-propanol l-amino-2-propanol l-amino- 3( diethylamino )-2-propanol Z-amino- Z-methyll propanol 1,3-diamin
  • ethyl vinyl ether lower alkyl esters of acrylic and methacrylic acids, hydroxyethyl acrylate, hydroxyethyl methacrylate, hydroxypropyl acrylate, vinyl acetate, vinyl chloride, ethylene and other ethylenically unsaturated monomers mentioned herein capable of co-polymerizing with the aminoalkylated monomers on the left hand side of the structural formula to form copolymers therewith.
  • the monomeric unit on the right hand sideof'the structural formula may be also derived in other ways such as, for example, by reacting acrylic acid or methacrylic acid or other ethylenically unsaturated carboxylic acid as described previously with (1) a polyfunctional compound such as the amino alcohols listed previously, or with (2) an epoxy compound.
  • suitable epoxy compounds are: l epoxyethane (ethylene oxide) 1,2-epoxy propane (propylene oxide) 1,3-epoxy propane 1,2-epoxy butane butylene 2,3-epoxy butane 1,3-epoxy butane 2,3-epoxy-propanol (glycidol)
  • the invention will be further illustrated in greater oxide) detail by the following specific examples. It should be understood, however, that although these examples may describe in particular detail some of the more specific features of the invention, they are given primarily for purposes of illustration and the invention in its broader aspects is not to be construed as limited thereto.
  • a wet formed nonwoven fibrous structure is prepared from a pulp slurry comprising 40 parts by weight of hardwood sulfite wood pulp fibers, 32 parts by weight of rayon fibers 1.5 denier and A1 inch in length), and 8 parts by weight of polyamide nylon 6/6 fibers (6 denier and A inch in length).
  • the fibrous structure is bonded with a double diagonal diamond intermittent print pattern (see FIG. 3 of U.S. Pat. No. 2,705,498) wherein there are five lines per inch in each direction with each line measuring 0.020 inch in width, as measured on the binder applying engraved roll.
  • the resin binder formulation has a solids content of 39.5%, a pH of 5.1, a viscosity of 130 cps, and comprises;
  • the final weight of the dried nonwoven fabric is 385 grains per square yard and its final composition is 80v parts by weight of fibers and 20 parts by weight of binder.
  • the product is quite limp and soft and demon strates good hand and drape. Migration of the binder on or into the nonwoven fabric is determined to be 8 minimal. Migration control over the binder is excellent. It is well suited for commercial use where its properties and its excellent absorbency are desired as in covers or facing materials of absorbent sanitary, surgical, and medical. uses.
  • Example II The procedures of Example I are followed substantially. as set forth therein with the exception that the percentages of the fiber mix are changed to 32.2 parts by Weight of hardwood sulfite wood pulp fibers, 25.8 parts by weight of rayon fibers 1.5 denier and inch in length), and 6.4 parts by weight of polyamide nylon 6/6fibers (6 denier and 4 inch in length) and the print pattern binder add-on is changed to 16.1 parts by weight.
  • the product is quite limp and soft and demonstrates good hand and drape. Migration of the binder on or into the nonwoven fabric is determined to be minimal. Migrationcontrol over the intermittently spaced binder is considered excellent.
  • the bonded nonwoven fabric is then over-saturated in a 19.2% solids aqueous saturation bath with 19.5 parts by weight of flame retardant salts, an anti-foam agent, and glycerine.
  • the final weight of the product is 483 grains per square yard and it successfully passes the 45 Flame Retardancy edge ignition test. It is well suited for commercial use as a pillowcase.
  • Example III The procedures of Example I are followed substantially as set forth therein with the exception that the 2-aminoethyl acrylate-Z-hydroxypropyl acrylate copolymer is replaced by Lufax, a phosphate salt of a complex, high molecular weight cationic polyelectrolyte polyamine having a molecular weight in excess of 20,000 and (a) a backbone consisting essentially of carbon atoms and (b) side chains with cationic amine groups.
  • Lufax a phosphate salt of a complex, high molecular weight cationic polyelectrolyte polyamine having a molecular weight in excess of 20,000 and (a) a backbone consisting essentially of carbon atoms and (b) side chains with cationic amine groups.
  • Example II The results are generally comparable to those obtained in Example I.
  • the final product is quite limp and soft and demonstrates good hand and drape. Migration of the binder on or into the product is minimal. Migration control is considered excellent.
  • Example IV The procedures of Example III are followed substantially as set forth therein with the exception that the Lufax has a molecular weight in excess of 1 million.
  • Example II The results are generally comparable to those obtained in Example I.
  • the final product is quite limp and soft and demonstrates good hand and drape. Migration of the binder on or into the product is minimal. Migration control is considered excellent.
  • Example IV The procedures of Example III are followed substantially as set forth therein with the exception that Rohm and Haas S-243, a cationic water-soluble, polymeric quaternary chloride, is used. The results are comparable.
  • Example V The procedures of Example I are followed substantially as set forth therein with the exception that the Z-aminoethyl acrylate-2-hydroxypropyl acrylate copolymer is replaced by a copolymer of N-diethyl-Z- aminoethyl acrylate and 2-hydroxypropyl acrylate.
  • Example 9 The results are generally comparable to those obtained in Example I.
  • the final product is quite limp and soft and demonstrates good hand and drape. Migration of the binder on or into the product is minimal. Migration control is considered excellent.
  • Example VI The procedures of Example I are followed substantially as set forth therein with the exception that the 2-aminoethyl acrylate-Z-hydroxypropyl acrylate copolymer is replaced by a copolymer of N-dimethyl2- aminoethyl acrylate and 2-hydroxypropyl acrylate.
  • Example II The results are generally comparable to those obtained in Example I.
  • the final product is quite limp and soft and demonstrates good hand and drape. Migration of the binder on or into the product is minimal. Migration control is considered excellent.
  • Example VII The procedures of Example I are followed substantially as set forth therein with the exception that the Z-aminoethyl 'acrylate-2-hydroxypropyl acrylate copolymer is replaced' by N ethyl-2-aminoethyl acrylate.
  • Example II The results are generally comparable to those obtained in Example I.
  • the final product is quite limp and soft and demonstrates good hand and drape. Migration of the binder on or into the product is minimal. Migration control is considered excellent.
  • a fibrous card web weighing about 570 grains per square yard and comprising 100% rayon fibers l /z denier and 1 /2 inches in length is intermittently print pattern bonded by the rotogravure process using a binder applying roll engraved with six horizontal Wavy lines per inch, each line being 0.024 inch.
  • the binder composition comprises a self cross-linking polyethylacrylate and a copolymer of 2-aminoethyl acrylate and Z-hydroxypropyl acrylate.
  • the total finished weight of the bonded nonwoven fabric 690 grains per square yard which represents a binder add-on of 120 grains per squareyard or 17.4% by weight;
  • the bonded nonwoven fabric has excellent softness, drape and hand. Migration of the binder on or into the fabric is determined to be minimal.
  • Example IX The procedure of Example I are followed substantially as set forth therein with the exception that the self crosslinking polyethyl acrylate copolymer is replaced by a copolymer of ethylene and vinyl acetate.
  • Example II The results are generally comparable to those obtained in Example I.
  • the final product is quite limp and soft and demonstrates good hand'and drape. Migration of the binder on or into the product is minimal. Migration control is considered excellent.
  • Example X The procedure of Example I are followed substantially as set forth therein with the exception that the self crosslinking polyethyl acrylate copolymer is replaced by a copolymer of ethylene and vinyl chloride.
  • Example II The results are generally comparable to those obtained in Example I.
  • the final product is quite limp and soft and demonstrates good hand and drape. Migration of the binder on or into the product is minimal. Migration control is considered very good.
  • Example XI The procedure of Example I are followed substantially asset forth therein with the exception that the self crosslinking polyethyl acrylate copolymer is replaced by polyvinyl chloride.
  • Example II The results are generally comparable to those obtained in Example I.
  • the final product is quite limp and soft and demonstrates good hand and drape. Migration of the binder on or into the product is low. Migration control is considered good.
  • Example II The results are generally comparable to those obtained in Example I.
  • the final product is quite limp and soft and demonstrates good hand and drape. Migration of the binder on or into the product is low. Migration control is considered good.
  • Example x111 The procedure of Example I are followed substantially as set forth therein with the exception that the self crosslinking polyethyl acrylate copolymer is replaced by a copolymer of butadiene andstyrene.
  • Example II The results are generally comparable to those obtained in Example I.
  • the final product is quite limp and soft and demonstrates good hand and drape. Migration of the binder on or into the product is minimal. Migration control is considered very good.
  • Example XIV The procedure of Example I are followed substantially as set forth therein with the exception that the self crosslinking polyethyl acrylate copolymer is replaced by a copolymer of butadiene, styrene and a low per-- centage of an a,B-unsaturated lower alkyl aliphatic acid.
  • Example II The results are generally comparable to those obtained in Example I.
  • the final product is quite limp and soft and demonstrates good hand and drape. Migration of the binder on or into the product is minimal. Migration control is considered very good.
  • EXAMPLE XV The following chart shows the results of additional tests run on the migration control exercised over various polymers at various concentrations of Z-aminoethyl acrylate-Z-hydroxypropyl acrylate copolymer (nitrate salt):
  • a method of applying a stable, colloidal, aqueous resin composition to porous materials and controlling its migration thereon or penetration thereinto which comprises: mixing the following ingredients in the sequence set forth to form an aqueous synthetic resin composition having a pH value between 2.5 and I: l 0.1% to 60% by weight of a synthetic resin; and (2) 12 adding to said synthetic resin 0.0l% to 8% by weight. based on the weight of the synthetic resin of a watersoluble, cationic polyelectrolyte polymer having a molecular weight of at least 20,000 and having the following structural formula:
  • R and R are hydrogen, methyl, or ethyl
  • R and R and R, and R are hydrogen or alkyl from I to 4 carbon atoms;
  • m is a number from A; to 2;
  • n is a number from 2 to 4;
  • x is nitrate, chloride, bromide, iodide, phosphate, formate, propionate, citrate, butyrate, sulfate, acetate, or an acidic anionic group derived from an organic or inorganic acid;
  • water-soluble, cationic polyelectrolyte polymer is a salt of the copolymer of 2-aminoethyl acrylate and 2-hydroxypropyl acrylate.
  • the high molecular weight, water-soluble, cationic polyelectrolyte polymer is a salt of the copolymer of N-diethyl-2- aminoethyl acrylate and Z-hydroxy acrylate.
  • Porous materials bonded by the method of claim 1. Porous materials as defined in claim 5 wherein the porous materials are nonwoven textile fabrics.

Abstract

Stable, aqueous, synthetic resin compositions comprising: (1) a synthetic resin; and (2) a high molecular weight, water-soluble, acid salt of a cationic polyelectrolyte polymer having (a) a backbone consisting essentially of carbon atoms and (b) side chains containing cationic amine groups; methods of applying such synthetic resin compositions to porous materials on which and into which their migration is controlled; and the porous materials so treated with such synthetic resin compositions.

Description

United States Patent [1 1 Shultz RESIN COMPOSITIONS, METHODS OF APPLYING THE SAME TO POROUS MATERIALS, AND THE RESULTING PRODUCTS [75] Inventor: Jay S. Shultz, Little Rock, Ark.
[73] Assignee: Johnson & Johnson, New
Brunswick, NJ.
[22] Filed: May 16, 1973 [21] Appl. No.: 360,717
[52] US. Cl. 428/304; 428/411; 428/537 [51] Int. Cl. D06M 15/12 [58] Field of Search..... 117/161 UN, 161 C, 140 A, 117/140 R, 44; 260/296 RW; 428/304, 411,
[56] References Cited UNITED STATES PATENTS 2,169,366 8/1939 Meigs 117/161 X Dec. 16, 1975 Primary ExaminerCameron K. Weiffenbach Assistant ExaminerRa1ph E. Varndell [57] ABSTRACT Stable, aqueous, synthetic resin compositions comprising: (1) a synthetic resin; and (2) a high molecular weight, water-soluble, acid salt of a cationic polyelectrolyte polymer having (a) a backbone consisting essentially of carbon atoms and (b) side chains containing cationic amine groups; methods of applying such synthetic resincompositions to porous materials on which and intowhich their migration is controlled; and the porous materials so treated with such synthetic resin compositions.
, 6 Claims, No Drawings RESIN COMPOSITIONS, METHODS OF APPLYING THE SAME TO POROUS MATERIALS, AND THE RESULTING PRODUCTS The present invention relates to: improved stable. 5 aqueous, synthetic resin compositions; methods of utilizing the same; and the resulting products. More specifically, the present invention relates to stable, aqueous, synthetic resin compositions which are intended to be applied to porous or absorbent materials such as textile materials, paper, paper products, wood, leather, polyurethane and other foams, wall board, concrete, cinder block, etc.; to methods of applying such synthetic resin compositions to such porous or absorbent materials on which or into which the extent of the migration, difi'usion, penetration, or spreading of such synthetic resin compositions is controlled; and to the porous materials so treated with these synthetic resin compositions.
GENERAL BACKGROUND In many industries such as the textile, paper, paper products, wood, leather, polyurethane foam, printing arts, decorative arts, building materials and like industries, there is often a need to apply a stable, aqueous resin composition to porous or absorbent materials and to maintain such resin composition in the same shape, size and configuration, as well as in the same location, on the porous or absorbent materials where it was originally applied without undesirably migrating, penetrating, or spreading materially therefrom in any direction to any substantial extent on or into the-porous or absorbent materials.
Such resins have found use in the coating industries for the coating of woven, knitted, nonwoven and other textile fabrics, paper, paper products, and other related materials. The resins are also used as adhesives for laminating materials or for bonding fibrous webs. These resins have also found wide use as additives in the manufacture of paper, the printing industry, the decorative printing of textiles, and in other industries.
PURPOSES AND OBJECTS It is therefore a principal purpose and object of the present invention to provide improved, stable, aqueous resin compositions which can be applied to porous or absorbent materials in such fashion as to control the extent of the migration, diffusion, penetration or spreading of the resin composition on or into the porous or absorbent materials.
STATEMENT OF THE INVENTION It has been found that such purpose and object, as well as other purposes and other objects which will become clear from a further reading hereof, may be achieved by applying to the porous or absorbent materials a stable, aqueous synthetic resin composition comprising from about 0.1% to about 60% by weight, and preferably from about 5% to about 50% by weight, on a solids basis of a synthetic resin and from about ().()l% by weight to about 8% by weight. and preferably from about 0.25% to about 2% by weight. based on the weight of the synthetic resin. (solids/solids basis), of a high molecular weight. water-soluble. cationic polyelectrolyte polymer having (a) a backbone consisting essentially of carbon atoms and (b) side chains containing cationic amine groups.
PREFERRED lLLUSTRATlVE EMBODIMENT The present invention will be described in greater particularity herein purely for illustrative but not limitative purposes insofar as it realtes to porous, absorbent fibrous sheet materials and to their methods of manufacture. More particularly, however, the present invention is concerned with the so-called bonded, nonwoven textile fabrics. i.e., fabrics produced from textile fibers without the use of conventional spinning, weaving, knitting or felting operations.
Although not limited thereto, the invention is of primary importance in connection with nonwoven fabrics derived from oriented or carded fibrous webs composed of textile-length fibers, the major proportion of which are oriented predominantly in one direction.
Another aspect of the present invention is its application to nonwoven fabrics wherein the textile-length fibers were originally predominantly oriented in one direction but have been reorganized and rearranged in predetermined designs and patterns of fabric openings and fiber bundles.
Still another aspect of the present invention is its application to nonwoven fabrics wherein the textilelength fibers are disposed at random by air-laying techniques and are not predominantly oriented in any one direction. Typical nonwoven fabrics made by such procedures are termed isotropic nonwoven fabrics.
And still another aspect of the present invention is its application to nonwoven fabrics which comprise wood pulp fibers and/or textile-length fibers and which are made basically by conventional or modified aqueous paper making techniques. Such fabrics are also basically isotropic and generally have like properties in all directions.
The conventional base starting material for the majority of these nonwoven fabrics is usually a fibrous web comprising any of the common textile-length fibers, or mixtures thereof, the fibers varying in average length from approximately /2 inch to about 2V2 inches. Exemplary of such fibers are the natural fibers such as cotton and wool and the synthetic or man-made cellulosic fibers. notably rayon or regenerated cellulose.
Other textile length fibers of a synthetic or man-made origin may be used in various proportions to replace either partially or perhaps even entirely the previouslynamed fibers. Such other fibers include: polyamide fibers such as nylon 6, nylon 66, nylon 610. etc.; polyester fibers such as Dacron", Fortrel' and "Kodel"; acrylic fibers such as Acrilan, Orlon" and Creslan; modacrylic fibers such as Verel and Dynef; polyolefinic fibers derived from polyethylene and polypropylene; cellulose ester fibers such as Arnel' and Acele"; polyvinyl alcohol fibers; etc.
These textile length fibers may be replaced either partially or entirely by fibers having an average length of less than about V2 inch and down to about A inch. These fibers. or mixtures thereof, are customarily processed through any suitable textile machinery (e.g.. a conventional cotton card. a "Rando-Webber. a paper making machine, or other fibrous web producing apparatus) to form a web or sheet of loosely associated fibers, weighing from about grains to about 2000 grains per square yard or even higher.
If desired, even shorter fibers. such as wood pulp fibers or cotton linters. may be used in varying proportions, even up to 100%, where such shorter length 3 fibers can be handled and processed by available apparatus. Such shorter fibers have lengths less than A inch.
The resulting fibrous web or sheet, regardless of its method of production, is then subjected to at least one of several types of bonding operations to anchor the individual fibers together to form a self-sustaining web. One method is to impregnate the fibrous web over its entire surface area with various well-known bonding agents, such as natural or synthetic resins. Such over-all impregnation produces a nonwoven fabric of good longitudinal and cross strength, acceptable durability and washability, and satisfactory abrasion resistance. However, the nonwoven fabric tends to be somewhat stiff and boardlike, possessing more of the properties and characteristics of paper or board than those of woven or knitted textile fabric. Consequently, although such over-all impregnated nonwoven fabrics are satisfactory for many uses, they are still basically unsatisfactory as general purpose textile fabrics.
Another well-known bonding method is to print the fibrous webs with intermittent or continuous straight or wavy lines, or areas of binder extending generally transversely or diagonally across the web and additionally, if desired, along the fibrous web. The resulting nonwoven fabric is far more satisfactory as a textile fabric than over-all impregnated webs in that the softness, drape and hand of the resulting nonwoven fabric more nearly approach those of a woven or knitted textile fabric.
The printing of the resin binder on these nonwoven webs is usually in the form of relatively narrow lines, or elongated rectangular, triangular or square areas, or annular, circular, or elliptical binder areas which are spaced apart a predetermined distance which, at its maximum, is preferably slightly less than the average fiber length of the fibers constituting the web. This is based on the theory that the individual fibers of the fibrous web should be bound together in as few places as possible.
These resin colloidal dispersions, or resin emulsions, or latexes, may be anionic, non-ionic or even polyionic, and stable dispersions are available commercially at pI-Is of from about 2% to about 10, and preferably from about 3 /2 to about 7, and these are the pH ranges of the application of the present inventive concept.
Lower pH ranges are preferred commercially and such are more conducive to better efficiency and improved operation. Such lower pH ranges are preferred where their acidic effects can be tolerated by the equipment and apparatus being used. To avoid excess wear and tear on equipment and apparatus, however, pH ranges of about 7 or slightly on the alkaline side are commercially preferred.
The amount of resin which is applied to the porous or absorbent material varies within relatively wide limits, depending upon the resin itself, the nature and character of the porous or absorbent materials to which the resins are being applied, its intended use, etc. A general range of from about 4% by weight up to about 50% by weight, based on the weight of the porous or absorbent material, is satisfactory under substantially all uses. Within the more commercial limits, however, a range of from about 10% to about 30% by weight, based on the weight of the porous or absorbent materials, is preferred.
The nominal surface coverage of such binder lines or areas will vary widely depending upon the precise properties and characteristics of softness, drape, hand and strength which are desired in the final bonded product.
4 In practice, the nominal surface coverage can be designed so that it falls within the range of from about 10% to about 50% of the total surface of the final product. Within the more commercial aspects of the present invention, however, nominal surface coverages of from about 12% to about 40% are preferable.
In certain cases, especially where larger proportions of short fibers are used, surface coverages of up toabout are often encountered and such are preferred in some applications of the present invention.
Such bonding increases the strength of the nonwoven fabric and retains substantially complete freedom of movement for the individual fibers whereby the desirable softness, drape and hand are obtained. This spacing of the binder lines and areas has been accepted by the industry and it has been deemed necessarily so, if the stiff and board-like appearance, drape and hand of the over-all impregnated nonwoven fabrics are to be avoided.
The nonwoven fabrics bonded with such line and area binder patterns have had the desired softness, drape and hand and have not been undesirably stiff or board-like. However, such nonwoven fabrics have also possessed some disadvantages. V
For example, the relatively narrow binder lines and relatively small binder areas of the applicator (usually an engraved print roll) which are laid down on the fibrous web possess specified physical dimensions and I inter-spatial relationships as they are initially laid down. Unfortunately, after the binder is laid down on the wet fibrous web and before it hardens or becomes fixed in position, it tends to spread, diffuse or migrate whereby its physical dimensions are increased and its inter-spatial relationships decreased. And, at the same time, the binder concentration in the binder area is lowered and rendered less uniform by the migration of the binder into adjacent fibrous areas. One of the results of such migration is to make the surface coverage of the binder areas increase whereby the effect of the intermittent bonding approaches the effect of the over all bonding. As a result, some of the desired softness, drape and hand are lost and some of the undesired properties of harshness, stifiness and boardiness are increased.
It is therefore desirable that the narrow binder lines remain narrow and that they do not migrate into wide binder lines. As pointed out previously, such desirable features are provided by the use of the resin compositions of the present invention.
As pointed out previously, the resin composition which is applied to the porous or absorbent materials comprises: (1) a synthetic resin and (2) a high molecular weight, water-soluble, cationic polyelectrolyte polymer as a migration control agent.
THE SYNTHETIC RES [NS The synthetic resins may be selected from a relatively large group of synthetic resins well known in industry for bonding, coating, impregnating or related uses, and may be of a self cross-linking type, externally crosslinking type, or not cross-linked. Specific examples of such synthetic resins include: polymers and copolymers of vinyl ethers; vinyl halides such as plasticized and unplasticized polyvinyl chloride, polyvinyl chloridepolyvinyl acetate, ethylene-vinyl chloride, etc.; polymers and copolymers of vinyl esters such as plasticized and unplasticized polyvinyl acetate, ethylene-vinyl acetate, acrylic-vinyl acetate, etc.; polymers and copolymers of the polyacrylic resins such'as ethyl acrylate, methyl acrylate, butyl acrylate, ethylbutyl acrylate,
ethyl hexyl acrylate, hydroxyethyl acrylate, dimethyl amino ethyl acrylate, etc.; polymers and copolymers of the polymethacrylic resins such as methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, butyl methacrylate, etc.; polymers and copolymers of acrylonitrile, methacrylonitrile, acrylamide, N-isopropyl acrylamide, N-methylol acrylamide, methacrylamide, etc.; vinylidene polymers and copolymers, such as polyvinylidene chloride, polyvinylidene chloride-vinyl chloride, polyvinylidene chloride ethyl acrylate, polyvinylidene chloride-vinyl chloride-acrylonitrile, etc.; polymers and copolymers of polyolefinic resins including polyethylene, polypropylene, ethylene 'vinyl chloride and ethylene-vinyl acetate which have 'been listed previously; the synthetic rubbers such as 1,2-butadiene, l,3-butadiene, 2-ethyl-l,3-butadiene, high, medium and carboxylated butadiene-acrylonitrile, butadienestyrene, chlorinated rubber, etc., natural latex; the polyurethanes; the polyamides; the polyesters; the polymers and copolymers of the styrenes including: styrene, 2-methyl styrene, '3-methyl styrene, 4-methyl styrene, 4-ethyl styrene, 4 butyl styrene; natural latex; phenolic emulsions; etc. 7
These resins may be used either 'as homopolymers comprising a single repeating monomer unit, orthey may be used as copolymers comprising two, three, or more different monomer units which are arranged in random fashion, or in a definite order alternating fashion, within the polymer chain. Also included within the inventive concept are the block polymers comprising relatively long blocks of different monomer units in a polymer chain and graft polymers comprising chains of one monomer attached to the backbone of another polymer chain.
THE MIGRATION CONTROL AGENT R and R are hydrogen, methyl, or ethyl;
R and R and R, and R are hydrogen or alkyl from 1 to 4 carbon atoms;
m is a small number from /3 to 2;
COOR or COO( C,,H-
n is a small whole number from 2 to 4;
x isnitrate, chloride, bromide, iodide, phosphate, formate, propionate, citrate, butyrate, sulfate, acetate, or an acidic anionic group derived from an organic or inorganic acid; p
p and r are the percentages of the two reacting monomers, in which p r= and p is at least about 50 mole percent and r is less than about 50 mole percent down to 0 mole percent; and Monomer is acrylamide, diacetone acrylamide, t-butyl acrylamide, methacrylamide, methyl vinyl ether, ethyl vinyl ether, lower alkyl esters of acrylic and methacrylic acids, hydroxyethylf acrylate, hydroxyethyl methacrylate, hydroxypropyl acrylate, hydroxymethyl methacrylate, vinyl acetate, vinyl chloride, ethylene, and other monomers capable of co-polymerizing with the aminoalkylated monomer on the left hand side in the structural formula to form copolymers therewith. The molecular weight of the water-soluble, cationic polyelectrolyte polymer will vary over a relatively wide range and may be as low as about 20,000 or may be as high as 1 million, or even higher, as desired or required.
Salt formation ispreferable, as indicated, and treatment with the. desired organic or inorganic acid will yield the desired salt. As noted above, the desired salts include nitrate, chloride, bromide, iodide, phosphate, formate, propionate, citrate, butyrate, sulfate, acetate, or other salts.
The water-soluble cationic polyelectroltye polymer is prepared by methods known in the art and reference is incorporated herein to US. Pat. No. 3,372,149 which discloses preferred methods of preparing some of the polymers of the present invention. It is to be appreciated that, although this patent prefers the use of primary or secondary alkylene-imines and particularly ethyleneimine, propyleneimine, butyleneimine, etc., or N-methyl ethyleneimine, N-ethyl ethyleneimine, N- hydroxyethyl ethyleneimine, etc., in the aminoalkylation reaction, the use of polyfunctional aminoalcohols is also possible.
For example, the monomeric unit on the left hand side of the structural formula may be derived by reacting acrylic acid, methacrylic acid, or other ethylenically unsaturated carboxylic acid including itaconic acid, ethacrylic acid, maleic acid, etc., with suitable polyfunctional amino alcohols such as: 2-amino-ethanol l-amino-ethanol 2( 2-amino ethylamino )-ethanol 2-butylamino-ethanol Z-diethylamino-ethanol Z-dimethylamind-ethanol Z-ethyIamino-ethahol 2-isobutylamino-ethanol 2-isopropylamino-ethanol Z-methylamino-ethanol 2-aminol-propanol 3-aminol-propanol l-amino-2-propanol l-amino- 3( diethylamino )-2-propanol Z-amino- Z-methyll propanol 1,3-diamino-2-propanol l diethyl amino )-2-propanol Z-aminol-butanol 3-aminol-butanol 4-aminol-butanol 3-amino-2-butanol l-amino- 2-methyl-2-pe ntanol The monomeric unit on the right hand side of the structural formula is the monomeric unit derived from acrylamide, diacetone acrylamide, t-butyl acrylamide, methacrylamide, methyl vinyl ether. ethyl vinyl ether. lower alkyl esters of acrylic and methacrylic acids, hydroxyethyl acrylate, hydroxyethyl methacrylate, hydroxypropyl acrylate, vinyl acetate, vinyl chloride, ethylene and other ethylenically unsaturated monomers mentioned herein capable of co-polymerizing with the aminoalkylated monomers on the left hand side of the structural formula to form copolymers therewith.
The monomeric unit on the right hand sideof'the structural formula may be also derived in other ways such as, for example, by reacting acrylic acid or methacrylic acid or other ethylenically unsaturated carboxylic acid as described previously with (1) a polyfunctional compound such as the amino alcohols listed previously, or with (2) an epoxy compound. Examples of suitable epoxy compounds are: l epoxyethane (ethylene oxide) 1,2-epoxy propane (propylene oxide) 1,3-epoxy propane 1,2-epoxy butane butylene 2,3-epoxy butane 1,3-epoxy butane 2,3-epoxy-propanol (glycidol) The invention will be further illustrated in greater oxide) detail by the following specific examples. It should be understood, however, that although these examples may describe in particular detail some of the more specific features of the invention, they are given primarily for purposes of illustration and the invention in its broader aspects is not to be construed as limited thereto.
EXAMPLE I A wet formed nonwoven fibrous structure is prepared from a pulp slurry comprising 40 parts by weight of hardwood sulfite wood pulp fibers, 32 parts by weight of rayon fibers 1.5 denier and A1 inch in length), and 8 parts by weight of polyamide nylon 6/6 fibers (6 denier and A inch in length). r
The fibrous structure is bonded with a double diagonal diamond intermittent print pattern (see FIG. 3 of U.S. Pat. No. 2,705,498) wherein there are five lines per inch in each direction with each line measuring 0.020 inch in width, as measured on the binder applying engraved roll.
The resin binder formulation has a solids content of 39.5%, a pH of 5.1, a viscosity of 130 cps, and comprises;
The final weight of the dried nonwoven fabric is 385 grains per square yard and its final composition is 80v parts by weight of fibers and 20 parts by weight of binder. The product is quite limp and soft and demon strates good hand and drape. Migration of the binder on or into the nonwoven fabric is determined to be 8 minimal. Migration control over the binder is excellent. It is well suited for commercial use where its properties and its excellent absorbency are desired as in covers or facing materials of absorbent sanitary, surgical, and medical. uses.
EXAMPLE II The procedures of Example I are followed substantially. as set forth therein with the exception that the percentages of the fiber mix are changed to 32.2 parts by Weight of hardwood sulfite wood pulp fibers, 25.8 parts by weight of rayon fibers 1.5 denier and inch in length), and 6.4 parts by weight of polyamide nylon 6/6fibers (6 denier and 4 inch in length) and the print pattern binder add-on is changed to 16.1 parts by weight.
The product is quite limp and soft and demonstrates good hand and drape. Migration of the binder on or into the nonwoven fabric is determined to be minimal. Migrationcontrol over the intermittently spaced binder is considered excellent.
The bonded nonwoven fabric is then over-saturated in a 19.2% solids aqueous saturation bath with 19.5 parts by weight of flame retardant salts, an anti-foam agent, and glycerine. The final weight of the product is 483 grains per square yard and it successfully passes the 45 Flame Retardancy edge ignition test. It is well suited for commercial use as a pillowcase.
EXAMPLE III The procedures of Example I are followed substantially as set forth therein with the exception that the 2-aminoethyl acrylate-Z-hydroxypropyl acrylate copolymer is replaced by Lufax, a phosphate salt of a complex, high molecular weight cationic polyelectrolyte polyamine having a molecular weight in excess of 20,000 and (a) a backbone consisting essentially of carbon atoms and (b) side chains with cationic amine groups.
The results are generally comparable to those obtained in Example I. The final product is quite limp and soft and demonstrates good hand and drape. Migration of the binder on or into the product is minimal. Migration control is considered excellent.
EXAMPLE IV The procedures of Example III are followed substantially as set forth therein with the exception that the Lufax has a molecular weight in excess of 1 million.
The results are generally comparable to those obtained in Example I. The final product is quite limp and soft and demonstrates good hand and drape. Migration of the binder on or into the product is minimal. Migration control is considered excellent.
EXAMPLE IV(a) The procedures of Example III are followed substantially as set forth therein with the exception that Rohm and Haas S-243, a cationic water-soluble, polymeric quaternary chloride, is used. The results are comparable.
EXAMPLE V The procedures of Example I are followed substantially as set forth therein with the exception that the Z-aminoethyl acrylate-2-hydroxypropyl acrylate copolymer is replaced by a copolymer of N-diethyl-Z- aminoethyl acrylate and 2-hydroxypropyl acrylate.
9 The results are generally comparable to those obtained in Example I. The final product is quite limp and soft and demonstrates good hand and drape. Migration of the binder on or into the product is minimal. Migration control is considered excellent.
EXAMPLE VI The procedures of Example I are followed substantially as set forth therein with the exception that the 2-aminoethyl acrylate-Z-hydroxypropyl acrylate copolymer is replaced by a copolymer of N-dimethyl2- aminoethyl acrylate and 2-hydroxypropyl acrylate.
The results are generally comparable to those obtained in Example I. The final product is quite limp and soft and demonstrates good hand and drape. Migration of the binder on or into the product is minimal. Migration control is considered excellent.
EXAMPLE VII The procedures of Example I are followed substantially as set forth therein with the exception that the Z-aminoethyl 'acrylate-2-hydroxypropyl acrylate copolymer is replaced' by N ethyl-2-aminoethyl acrylate.
The results are generally comparable to those obtained in Example I. The final product is quite limp and soft and demonstrates good hand and drape. Migration of the binder on or into the product is minimal. Migration control is considered excellent.
EXAMPLE VIII A fibrous card web weighing about 570 grains per square yard and comprising 100% rayon fibers l /z denier and 1 /2 inches in length is intermittently print pattern bonded by the rotogravure process using a binder applying roll engraved with six horizontal Wavy lines per inch, each line being 0.024 inch. The binder composition comprises a self cross-linking polyethylacrylate and a copolymer of 2-aminoethyl acrylate and Z-hydroxypropyl acrylate. The total finished weight of the bonded nonwoven fabric 690 grains per square yard which represents a binder add-on of 120 grains per squareyard or 17.4% by weight; The bonded nonwoven fabric has excellent softness, drape and hand. Migration of the binder on or into the fabric is determined to be minimal.
EXAMPLE IX The procedure of Example I are followed substantially as set forth therein with the exception that the self crosslinking polyethyl acrylate copolymer is replaced by a copolymer of ethylene and vinyl acetate.
The results are generally comparable to those obtained in Example I. The final product is quite limp and soft and demonstrates good hand'and drape. Migration of the binder on or into the product is minimal. Migration control is considered excellent.
EXAMPLE X The procedure of Example I are followed substantially as set forth therein with the exception that the self crosslinking polyethyl acrylate copolymer is replaced by a copolymer of ethylene and vinyl chloride.
The results are generally comparable to those obtained in Example I. The final product is quite limp and soft and demonstrates good hand and drape. Migration of the binder on or into the product is minimal. Migration control is considered very good.
EXAMPLE XI The procedure of Example I are followed substantially asset forth therein with the exception that the self crosslinking polyethyl acrylate copolymer is replaced by polyvinyl chloride.
The results are generally comparable to those obtained in Example I. The final product is quite limp and soft and demonstrates good hand and drape. Migration of the binder on or into the product is low. Migration control is considered good.
EXAMPLE XII The procedure of Example I are followed substantially as set forth therein with the exception that the self crosslinking polyethyl acrylate copolymer is replaced by polyvinyl acetate.
The results are generally comparable to those obtained in Example I. The final product is quite limp and soft and demonstrates good hand and drape. Migration of the binder on or into the product is low. Migration control is considered good.
EXAMPLE x111 The procedure of Example I are followed substantially as set forth therein with the exception that the self crosslinking polyethyl acrylate copolymer is replaced by a copolymer of butadiene andstyrene.
The results are generally comparable to those obtained in Example I. The final product is quite limp and soft and demonstrates good hand and drape. Migration of the binder on or into the product is minimal. Migration control is considered very good.
EXAMPLE XIV The procedure of Example I are followed substantially as set forth therein with the exception that the self crosslinking polyethyl acrylate copolymer is replaced by a copolymer of butadiene, styrene and a low per-- centage of an a,B-unsaturated lower alkyl aliphatic acid.
The results are generally comparable to those obtained in Example I. The final product is quite limp and soft and demonstrates good hand and drape. Migration of the binder on or into the product is minimal. Migration control is considered very good.
EXAMPLE XV The following chart shows the results of additional tests run on the migration control exercised over various polymers at various concentrations of Z-aminoethyl acrylate-Z-hydroxypropyl acrylate copolymer (nitrate salt):
ethyl acrylate 1 1 EXAMPLE XVI The procedures of Example I are followed substantially as set forth therein with the exception that the nitrate salt is not prepared but is replaced by the following salts:
a. hydrochloride salt;
b. dihydrogen phosphate salt; c. sulfate salt;
d. formate salt; and the e. acetate salt The results are generally comparable to, the results obtained in Example I. Migration control is satisfactory.
EXAMPLE XVII The procedures of Example I are followed substantially as set forth therein with the exception that the nitrate salt of 2-aminoethyl acrylate/2-hydroxypropyl acrylate is replaced by the:
a. hydrochloride salt of poly(aminoethyl acrylateacrylamide);
b. hydrochloride salt of poly(2-aminopropyl acrylate);
c. hydrochloride salt of poly(aminoethyl methacrylate);
d. hydrochloride salt of poly(aminoethyl acrylateethyl acrylate);
e. dihydrogen phosphate salt of poly(aminoethyl acrylate);
f. nitrate salt of poly(aminoethyl acrylate);
g. sulfate salt of poly(aminoethyl acrylate);
h. formate salt of poly(aminoethyl acrylate);
i. acetate salt of poly(aminoethyl acrylate); and
j. hydrochloride salt of poly(di[aminoethyljmaleate-methyl vinyl ether).
The results are generally comparable to the results obtained in Example 1. Migration control is satisfactory.
Although the present invention has been described and illustrated with reference to preferred embodiments thereof, it is to be appreciated that such is merely for the purpose of disclosing the invention and is not to be construed as limitative of the broader aspects of the inventive concept, except as defined by the appended claims.
What is claimed is:
l. A method of applying a stable, colloidal, aqueous resin composition to porous materials and controlling its migration thereon or penetration thereinto which comprises: mixing the following ingredients in the sequence set forth to form an aqueous synthetic resin composition having a pH value between 2.5 and I: l 0.1% to 60% by weight of a synthetic resin; and (2) 12 adding to said synthetic resin 0.0l% to 8% by weight. based on the weight of the synthetic resin of a watersoluble, cationic polyelectrolyte polymer having a molecular weight of at least 20,000 and having the following structural formula:
l 'i C-i (HXlm Monomer i.
wherein:
R and R are hydrogen, methyl, or ethyl;
R and R and R, and R are hydrogen or alkyl from I to 4 carbon atoms;
m is a number from A; to 2;
n is a number from 2 to 4;
x is nitrate, chloride, bromide, iodide, phosphate, formate, propionate, citrate, butyrate, sulfate, acetate, or an acidic anionic group derived from an organic or inorganic acid;
p and r are the percentages of the two reacting monomers, in which p r= and p is at least about 50 mole percent and r is less than about 50 mole percent down to 0 mole percent; and Monomer" is acrylamide, diacetone acrylamide, t-butyl acrylamide, methacrylamide, methyl, vinyl, ether, ethyl vinyl ether, lower alkyl esters of acrylic and methacrylic acids, hydroxyethyl acrylate, hydroxyethyl methacrylate, hydroxypropyl acrylate, hydroxymethyl methacry late, vinyl acetate, vinyl chloride, ethylene, and other ethylenically unsaturated monomers capable of copolymerizing with the aminoalkylated monomer on the left hand side in the structural formula to form copolymers therewith; and applying said aqueous resin composition to porous materials to control migration thereon and penetration thereinto.
2. A methoclas defined in claim 1 wherein the amine groups in the side chains are primarily primary amine groups.
3. A method as defined in claim 1 wherein the high molecular weight. water-soluble, cationic polyelectrolyte polymer is a salt of the copolymer of 2-aminoethyl acrylate and 2-hydroxypropyl acrylate.
4. A method as defined in claim 1 wherein the high molecular weight, water-soluble, cationic polyelectrolyte polymer is a salt of the copolymer of N-diethyl-2- aminoethyl acrylate and Z-hydroxy acrylate.
5. Porous materials bonded by the method of claim 1. 6. Porous materials as defined in claim 5 wherein the porous materials are nonwoven textile fabrics.
COOR or COO( C,,H-

Claims (6)

1. A METHOD OF APPLYING A STABLE, COLLOIDAL, AQUEOUS RESIN COMPOSITION TO POROUS MATERIALS AND CONTROLLING ITS MIGRATION THEREON OR PENETRATION THEREINTO WHICH COMPRISES: MIXING THE FOLLOWING INGREDIENTS IN THE SEQUENCE SET FORTH TO FORM AN AQUEOUS SYNTHETIC RESIN COMPOSITION HAVING A PH VALUE BETWEEN 2.3 AND 10: (1) 0.1% TO 60% BY WEIGHT OF A SYNTHETIC RESIN, AND (2) ADDING TO SAID SYNTHETIC RESIN 0.01% TO 8% BY WEIGHT, BASED ON THE WEIGHT OF THE SYNTHETIC RESIN OF A WATERSOLUBLE, CATIONIC POLYELECTROLYTE POLYMER HAVING A MOLECULAR WEIGHT OF AT LEAST 20,000 AND HAVING THE FOLLOWING STRUCTURAL FORMULA:
2. A method as defined in claim 1 wherein the amine groups in the side chains are primarily primary amine groups.
3. A method as defined in claim 1 wherein the high molecular weight, water-soluble, cationic polyelectrolyte polymer is a salt of the copolymer of 2-aminoethyl acrylate and 2-hydroxypropyl acrylate.
4. A method as defined in claim 1 wherein the high molecular weight, water-soluble, cationic polyelectrolyte polymer is a salt of the copolymer of N-diethyl-2-aminoethyl acrylate and 2-hydroxy acrylate.
5. Porous materials bonded by the method of claim 1.
6. Porous materials as defined in claim 5 wherein the porous materials are nonwoven textile fabrics.
US360717A 1973-05-16 1973-05-16 Resin compositions, methods of applying the same to porous materials, and the resulting products Expired - Lifetime US3927236A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US360717A US3927236A (en) 1973-05-16 1973-05-16 Resin compositions, methods of applying the same to porous materials, and the resulting products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US360717A US3927236A (en) 1973-05-16 1973-05-16 Resin compositions, methods of applying the same to porous materials, and the resulting products

Publications (1)

Publication Number Publication Date
US3927236A true US3927236A (en) 1975-12-16

Family

ID=23419144

Family Applications (1)

Application Number Title Priority Date Filing Date
US360717A Expired - Lifetime US3927236A (en) 1973-05-16 1973-05-16 Resin compositions, methods of applying the same to porous materials, and the resulting products

Country Status (1)

Country Link
US (1) US3927236A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5582884A (en) * 1991-10-04 1996-12-10 Alcan International Limited Peelable laminated structures and process for production thereof
US6060410A (en) * 1998-04-22 2000-05-09 Gillberg-Laforce; Gunilla Elsa Coating of a hydrophobic polymer substrate with a nonstoichiometric polyelectrolyte complex
US20090317605A1 (en) * 2008-06-20 2009-12-24 Neil John Rogers Printed foamed film package
US20150232684A1 (en) * 2011-05-04 2015-08-20 Uniseal Solutions Inc. Polymeric Composition for Cement Based Substructures

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2169366A (en) * 1937-05-27 1939-08-15 Du Pont Moistureproof material and method of making the same
US2765228A (en) * 1955-03-03 1956-10-02 Rohm & Haas Cellulosic fibrous products and methods of producing them
US2973285A (en) * 1958-12-31 1961-02-28 Dow Chemical Co Preparation of coated articles using gellable aqueous cationic polymer coating compositions and printing inks
US3122447A (en) * 1962-11-21 1964-02-25 Johnson & Johnson Bonded nonwoven fabrics and methods of making the same
US3205187A (en) * 1960-09-22 1965-09-07 Dow Chemical Co Making cationically stabilized latexes from anionically stabilized latexes
US3372149A (en) * 1964-09-02 1968-03-05 Nat Starch Chem Corp Process for preparing salts of aminoalkyl esters of carboxylic acid polymers
US3480463A (en) * 1964-11-18 1969-11-25 Gulf Oil Corp Self-cross-linking acrylic resin coating process and product

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2169366A (en) * 1937-05-27 1939-08-15 Du Pont Moistureproof material and method of making the same
US2765228A (en) * 1955-03-03 1956-10-02 Rohm & Haas Cellulosic fibrous products and methods of producing them
US2973285A (en) * 1958-12-31 1961-02-28 Dow Chemical Co Preparation of coated articles using gellable aqueous cationic polymer coating compositions and printing inks
US3205187A (en) * 1960-09-22 1965-09-07 Dow Chemical Co Making cationically stabilized latexes from anionically stabilized latexes
US3122447A (en) * 1962-11-21 1964-02-25 Johnson & Johnson Bonded nonwoven fabrics and methods of making the same
US3372149A (en) * 1964-09-02 1968-03-05 Nat Starch Chem Corp Process for preparing salts of aminoalkyl esters of carboxylic acid polymers
US3480463A (en) * 1964-11-18 1969-11-25 Gulf Oil Corp Self-cross-linking acrylic resin coating process and product

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5582884A (en) * 1991-10-04 1996-12-10 Alcan International Limited Peelable laminated structures and process for production thereof
US6060410A (en) * 1998-04-22 2000-05-09 Gillberg-Laforce; Gunilla Elsa Coating of a hydrophobic polymer substrate with a nonstoichiometric polyelectrolyte complex
US20090317605A1 (en) * 2008-06-20 2009-12-24 Neil John Rogers Printed foamed film package
US8173233B2 (en) 2008-06-20 2012-05-08 The Procter & Gamble Company Foamed film package
US20150232684A1 (en) * 2011-05-04 2015-08-20 Uniseal Solutions Inc. Polymeric Composition for Cement Based Substructures
US9574102B2 (en) * 2011-05-04 2017-02-21 Uniseal Solutions Inc. Polymeric composition for cement based substructures

Similar Documents

Publication Publication Date Title
US3936542A (en) Methods of controlling migration of synthetic resins applied to porous materials
USRE28957E (en) Synthetic resin compositions and methods of utilizing the same
US3647507A (en) Resin composition containing a polyacrylic acid-polyacrylamide copolymer and method of using the same to control resin composition
EP0572569B1 (en) Water soluble alcohol based nonwoven binder composition
US4230746A (en) Foaming composition for textile finishing and coatings
US3706595A (en) Method of applying a resin binder to a substrate
US3506479A (en) Resin treated pile floor coverings
US3228790A (en) Nonwoven fabric containing polyolefin fibers bonded together with a mixture of polyolefin and acrylic resins
DE1135413B (en) Process for the production of a fleece from non-feltable, randomly distributed fibers
CA2573582A1 (en) Latex bonded airlaid fabric and its use
US4038233A (en) Aqueous resin composition containing polymers or copolymers of ethylenically unsaturated monomers and a water-soluble cationic polyelectrolyte polymer
US3908058A (en) Spot-bonded nonwoven fabrics and methods of making the same
US4199400A (en) Migration-resistant binder compositions for bonding nonwoven fibers; also methods and articles
JPH0689076B2 (en) Emulsion system of formaldehyde-free crosslinked polymer based on vinyl ester dialkoxyhydroxyethylacrylamide copolymer
US4119600A (en) Migration-resistant binder compositions for bonding nonwoven fibers; also methods and articles
CA1167709A (en) Polyolefin nonwovens with high wet strength retention
GB1500778A (en) Bulky non-woven fabric
US3927236A (en) Resin compositions, methods of applying the same to porous materials, and the resulting products
US3928676A (en) Synthetic resin compositions and methods applying the same to porous materials to control migration thereon
RU1836512C (en) Unwoven canvas and method for its manufacturing
US3930074A (en) Synthetic resin compositions and methods of applying the same to porous materials to control migration thereon
US20080081530A1 (en) Self-crosslinking vinyl acetate-ethylene polymeric binders for nonwoven webs
EP0264869B1 (en) Nonwoven fabric with an acrylate interpolymer binder and a process of making the nonwoven fabric
US3620797A (en) Impregnation of a nonwoven fabric
US3931085A (en) Synthetic resin compositions