US3919783A - Method for hot gas heat transfer, particularly for paper drying - Google Patents

Method for hot gas heat transfer, particularly for paper drying Download PDF

Info

Publication number
US3919783A
US3919783A US358498A US35849873A US3919783A US 3919783 A US3919783 A US 3919783A US 358498 A US358498 A US 358498A US 35849873 A US35849873 A US 35849873A US 3919783 A US3919783 A US 3919783A
Authority
US
United States
Prior art keywords
gases
heat transfer
gas
hot
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US358498A
Inventor
Anthony J Cirrito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US358498A priority Critical patent/US3919783A/en
Application granted granted Critical
Publication of US3919783A publication Critical patent/US3919783A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B23/00Heating arrangements
    • F26B23/02Heating arrangements using combustion heating

Definitions

  • ABSTRACT Regenerative compression-combustion-expansion cycle engines are utilized to generate hot, high pressure gases for heat transfer use.
  • the gas generation equipment includes temperature modulation by water injection, recycle of spent gas, and injection of turbine-expanded gas into the main hot gas stream. Separate combustion chambers are also utilized for exploiting low-cost fuel and increasing gas temperature.
  • Special heat transfer equipment including helical nozzle arrays are provided for paper drying, the nozzle arrays being arranged to indirectly heat materials, such as paper, being dried, to radiantly heat such material, and to directly heat such material by impinging hot gas directly thereon.
  • I-Iot high pressure gases are also employed for water removal from paper and similar materials by being forced through wet paper carried between two felts, and equipment leading the gas to and away from such a felt-papersandwich is provided.
  • One embodiment of such equipment includes an impervious gas conducting belt.
  • the invention is concerned with the provision of methods and equipment for generating hot gases in a form which is particularly suited for effective heat transfer use.
  • Another aspect of the invention involves methods and equipment for making the most effective use of such hot gases.
  • a number of the features of the present invention are of special advantage in the paper drying field.
  • it is necessary to have means for delivering large quantities of heat to the paper.
  • the rate at which heat is transferred is dependent upon several factors, among them the coefficient of heat transfer, the temperature gradient, and the length of time during which the paper is exposed to the drying action of the hot gases.
  • steps are taken to maximize the heat transfer coefficient by generating the hot gases at high pressures, by utilizing the pressure of the hot gases to generate rapid turbulent flow of the gases past the heat transfer surface, and by utilizing especially constructed means for bringing the hot gases into turbulent contact with the heat transfer surface.
  • the net effect of these steps is to reduce the film thickness in the gases at the heat transfer surface, which film is the primary resistor of heat flow across the surface.
  • the invention contemplates the provision of a heat engine especially configured to generate hot gases at high pressure.
  • the high pressure gases are expanded to convert a portion of the energy stored in them to kinetic energy of flowadjacent the heat transfer surfaces.
  • the energy stored in the gas by reason of its pressurization is also used to transfer gas from the heat engine to and beyond the heat exchange surface.
  • the heat engines are so arranged internally, and in their cooperation with the remainder of the heat transfer system, that substantially no shaft work is performed-by the heat engine on the surroundings. Internally, however, a portion of the energy of combustion resulting from the burning of fuel in the engine is utilized to operate gas compressor means. The gas no compressed is raised in temperature by being mixed with fuel, and the resulting mixture is 2 combusted in a combustion chamber to provide the high pressure heat transfer gases.
  • the heat engine is of the regenerative compression-combustion-expansion cycle type as typified by gas turbines and free piston engines.
  • high temeprature gas eductors or ejectors are advantageously utilized as components of the heat engine. They are especially useful in connec tion with certain features of the invention to be dis cussed more fully below, namely, the provision of recycle of a portion of the heat transfer gases and the provision of modulating material in the heat transfer gases.
  • Various combinations of compressor means, compressor drive means, combustion chamber means and ejector means can be provided to form the heat engine generators of hot high pressure heat transfer gases in accordance with the invention.
  • Another object of the invention is the provision of generating means and methods for creating hot high pressure gases through a compression-combustionexpansion-type cycle, in a manner to recover substantially all the energy put into such means, through the fuel, for heat transfer purposes.
  • Another object of the invention is to provide heat transfer equipment, especially drying equipment, adapted to fully exploit heat transfer properties of hot high pressure gases.
  • Still another object of the invention is the provision of improved plenum and nozzle systems for use in heat transfer, especially for paper drying.
  • Another object of the invention is the provision of hot high pressure gas heat transfer devices arranged to utilize a gas in a series of stages.
  • a further object of the invention is the provision of improved filter mechanisms for cleaning hot high pressure gases in connection with their use as heat transfer materials.
  • An additional object of the invention is the provision of methods and equipment for utilizing hot high pressure gases to effect heat and mass transfer to dry paper by passing such gases through a web of wet paper.
  • FIG. 1 is a diagrammatic illustration of regenerative compression-combustion-expansion cycle equipment for generating hot high pressure heat transfer gases
  • FIGS. 2 through 11 are diagrammatic illustrations of other embodiments of the invention utilizing heat engines for generation of hot high pressure heat transfer gases
  • FIG. 12 is a somewhat simplified sectional elevational view of a paper drying drum constructed in accordance with the invention.
  • FIG. 13 is a cross sectional end view of the paper drum of the FIG. 12, the section being taken approximately along line 13-13 of FIG. 12;
  • FIG. 14 is a cross sectional view, on an enlarged scale, of nozzles employed in the unit of FIGS. 12 and 13;
  • FIG. 15 is a perspective diagram illustrating certain gas flow characteristics of gases being utilized in the unit of FIGS. 12 and 13;
  • FIG. 16 is a somewhat diagrammatic perspective view of a gas filter unit construced in accordance with the invention with some parts being broken away;
  • FIG. 17 is a graph of typical drying characteristics for paper
  • FIG. 18 is a perspective view, somewhat simplified, with parts broken away, of another embodiment of heat transfer equipment for utilizing hot high preasure gases;
  • FIG. 19 is a cross sectional elevational view of a jet doctor blade utilized in the unit of FIG. 18;
  • FIG. 20 is a cross sectional elevational view of apparatus constructed in accordance with the invention for directing hot high pressure gas through paper to effect water removal therefrom;
  • FIG. 21 is a cross sectional end elevation of the apparatus of FIG. 20, the section being taken approximately on the line 2121 of FIG. 20;
  • FIG. 22 shows in cross sectional elevational view of an alternate embodiment of equipment suitable for drying paper by forcing hot high pressure gas therethrough;
  • FIG. 23 is an end cross sectional view of a special belt for use in the apparatue of FIG. 22;
  • FIG. 24 is a plan view of the belt of FIG. 23;
  • FIG. 25 is a plan view of the belt of FIG. 23 with one layer thereof removed;
  • FIG. 26 is a cross sectional elevational view of an alternate embodiment of the belt of FIG. 23;
  • FIG. 27 is a fragmentary cross sectional elevational view of the apparatus of FIG. 22, with parts omitted for the sake of simplicity;
  • FIG. 28 is a fragmentary cross sectional elevational view of a special seal utilized in the apparatus of FIG. 27;
  • FIG. 29 is a diagrammatic perspective view, with parts broken away, of another embodiment of equipment designed to utilize such hot high pressure gases by passing such gases through the paper.
  • FIG. 30 is a somewhat diagrammatic perspective view of another embodiment of the invention adapted to remove water from very wet paper.
  • FIG. 1 through 11 illustrate the various arrangements of regenerative compression-combustionexpansion cycle equipment for these purposes.
  • the turbine compressor portion of a gas turbine is indicated by the letter C
  • the driving turbine is indicated by the letter T.
  • FP the number of free piston devices
  • Combustion chambers in which fuel is mixed with compressed air and burned are marked with the letters CC.
  • Directions of flow are indicated by arrows and various legends appear on the figures to aid in clarity of presentation.
  • FIG. 1 there is shown a system employing a gas turbine 50 having a compressor C, and a driving turbine T connected to compressor C by shaft 51.
  • Air is drawn into compressor C through line 52, where it is compressed as the rotor of compressor turns.
  • the compressed air is delivered through line 53 to combustion chamber CC.
  • Fuel is injected into the compressed air through line 54 as it is fed into the combustion chamber.
  • the mixture of fuel and compressed air undergoes combustion in the combustion chamber, producing pressurized, high temperature gases.
  • the main stream of such gases leaves the combustion cham' ber CC through line 55 which delivers it to the blades of turbine T of the gas turbine.
  • the only load on the gas turbine is that of its compressor, and therefore the only depletion of the energy in the high temperature gases, aside from minor friction losses, is that use for compressing or entering the system.
  • a minor shaft load may be placed on the turbine, although this will result in some reduction in overall efficiency of the system as a means for heat transfer.
  • the exhaust gases flowing from the turbine through line 56 are still quite hot and are still at high pressure. These are utilized in heat transfer units diagrammatically indicated as a series of blocks 57.
  • the gases are expanded during the course of heat transfer to less than atmospheric pressure; hence, they are restored to atmospheric pressure by fan 58 before being exhausted through line 59.
  • a portion of the hot high pressure gases from the combustion chamber CC can be drawn off through line 60 for direct use as heat transfer fluid without having been passed through turbine T.
  • a portion of the combustion products can be drawn ofi through line 61 for use in an auxilliary steam generator or for other auxilliary purposes.
  • means are provided for overcoming or avoiding both of these limitations, and these means are shown in FIGS. 2 through 11.
  • the first limitation is that the materials of construction of the turbine T can withstand only a certain temperature, the precise value depending on the particular material used to contruct the turbine.
  • the second limitation is that comparatively clean, and hence, comparatively expensive, fuel must be burned to form the gases passing through the turbine. If low cost fuel, such as bunker C, is used, the combustion products tend to be less clean and corrosive to the turbine, thus shortening its life.
  • FIG. 2 illustrates a device similar in most respects to FIG. 1 except for the provision of a second combustion chamber CC-Z having a fuel supply separate from that for the first combustion chamber CC.
  • combustion chamber CC-2 The extremely hot gases from combustion chamber CC-2 are not passed through turbine T, but are fed directly to the heat transfer units. Compressed air is provided by compressor C both for combustion chamber CC which feeds hot gases to turbine T and to combustion chamber CC-2 which feeds very hot high pressure gases to the heat transferring units.
  • a portion of the gases which are passed through the heat transfer units can be recycled and mixed with fresh incoming gas originating in combustion chamber CC-2.
  • an ejector mixer 60 is provided to draw spent gases through recycle line 61 into the feed stream to the heat transfer units.
  • the gases passing through turbine T and issuing from that turbine through line 62 are exhausted. They can, of course, be passed through a series of heat transfer units such as those shown in FIG. 1. However, in accordance with an important feature of this invention, it is preferred to mix the gases issuing from turbine T with the hotter gases issuing from combustion chamber CC-2, and to transfer this mixture to the heat transfer units.
  • This feature is shown in FIG. 3 where it can be seen that gases issuing from turbine T through line 62 are blended with hot gases from combustion chamber CC-2 in ejector 60.
  • recycle line 61 is shown as a dashed line, since it may be omitted.
  • the arrangement of figures is especially advantageous because in addition to fully exploiting the heat content in the gases issuing from turbine T for heat transfer purposes, these gases are also used to modulate, to the extent desired, the temperature of the hot gases issuing from combustion chamber CC-2. Such modulation may be desired to lower the temperature of the gases fed to the heat transfer units to a suitable level.
  • FIG. 3 also illustrates a further feature of the invention.
  • This is the provision of water injection means 63, through which water in fed into ejector 60. Addition of water to the gas stream passing through the ejector 60 permits further modulation of the temperature, if this is desired, without any substantial degradation of the desirable high pressure of the gases. Water injection also increases the mass fiow of the gases fed to the heat transfer unit. The water added at ejector 60 is, of course, converted into superheated steam and the heat consumed in this conversion is not lost, but is available for recovery in the heat transfer units.
  • the units shown in FIGS. 2 and 3 for I generating hot high pressure gases for the heat transfer units make use of a separate combustion chamber for generating gases hotter than can be tolerated by the turbine T, and these gases can be modulated in temperature by recycle, by water injection, and by mixing with the turbine exhaust gases.
  • Quasi clean burning fuel can be used in the second combustion chamber, while a clean burning fuel is used in the first combustion chamber supplying gases to the turbine.
  • the unit shown in FIG. 4 makes use of only a single combustion chamber, and in this respect is like the unit of FIG. 1.
  • the combustion chamber CC of FIG. 4 is designed to produce gases hotter than can be tolerated by turbine T.
  • the bulk of these gases are fed through ejector 60 where they are mixed with recycle gas from line 61 if desired, and are fed to the heat transfer units.
  • a portion of the very hot high pressure gases 6 from combustion chamber CC are fed to turbine T, but are modulated in temperature by the injection of water through line 64.
  • the turbine imposes no substantial temperature limitation on the gases issuing from combustion chamber CC, although these gases must still be relatively clean.
  • FIG. 5 illustrates a unit similar to FIG. 4, which has been modified in several respects. Again it is a single combustion chamber type device using water injection modulation of the gases fed to turbine T through the combustion chamber. In addition, the gases issuing from turbine T are mixed with the very hot high pressure gases from combustion chamber CC in ejector 60. As in FIG. 3, provision is made for injection of water through line 63 to ejector for further temperature modulation and increase of mass flow.
  • FIGS. 6 and 7 show additional single combustion chamber arrangement. Again, in each of these figures the combustion chamber CC is arranged to produce gases hotter than can be tolerated by turbine T.
  • the gases to be fed to turbine T are taken from the dowstream side of ejector 60 and therefore comprise a mixture of gases from combustion chamber CC and recycle gases from line 61. These gases are, of course, modulated in temperature by the recycle gases, and hence may be safely passed through turbine T.
  • water may be injected through line 64 into the gases passing to turbine T to further lower their temperature.
  • the turbine imposes no tmeperature limitation on the temperature produced by the combustion chamber CC but does impose a cleanliness limitation on it.
  • the arrangement of FIG. 7 is much like that of FIG. 6 except that an additional water injection line 63 leads to ejector 60 for temperature modulation purposes to replace or supplement the temperature modulation accomplished by recycle gases in line 61.
  • FIGS. 8 through 11 share a common feature, that of a free piston device.
  • a free piston unit compresses air, mixes furel with it, burns it, and exhaust hot high pressure gases. These gases may be mixed with additional fuel for further combustion. Furthermore, compressed air, as well as high pressure combustion gases may be taken as a product from the free piston unit.
  • a gas turbine having a compressor C and a turbine T.
  • the compressed air produced in compressor C is mixed with fuel and combusted in combustion chamber CC, the hot high pressure gases issuing from compression chamber CC passing through the ejector to the transfer units.
  • Recycle gas passing through line 61 is mixed with the gas from combustion chamber CC.
  • the unit of FIG. 8 operates much like the unit of FIG. 2 and the units of other figures. None of the gas from combustion chamber Cl is used for driving turbine T. Gas for this purpose is produced in the free piston unit FP and a mixture of compressed air and exhaust combustion gases from this unit are fed through line to the turbine.
  • the gases issuing from the turbine through line 62 may be employed directly for heat transfer purposes or may be exhausted.
  • the unit of FIG. 9 is a modification of that shown in FIG. 8 and includes as additional features the mixing of the exhaust gases turbine T passing through line 62 in ejector 60 with the hot high pressure gases from combustion chamber CC.
  • recycle mixing through line 61 is shown in dotted lines as an optional feature, as is water injection through line 63.
  • the objects achieved by this arrangement are the same as discussed above, that is, the hot high pressure gases from combustion chamber CC are modulated to the extent desired by being mixed with turbine exhaust gases and, if desired, recycle gases and water.
  • FIGS. 10 and Ill free piston units are shown which do not operate in conjunction with gas turbine units.
  • compressed air from the free piston unit FP is delivered through line 67 to combustion chamber CC, where it is mixed with fuel and burned to produce hot high temperature gases which are then passed to the heat transfer units by means of ejector 60 which blends recycle gas from line 61 with the combustion gases.
  • the combustion gases from free piston unit FP are delivered through line 68 for separate use. If desired, some of these gases may be delivered through line 69 to combustion chamber CC where they enter the stream of gases passing to the heat transfer units.
  • FIG. 111 shows an installation much like that of FIG. 10 except that water injection means are provided for injecting water through line 63 to ejector 60 for temperature modulation purposes.
  • the gases heat transfer use are generated in regenerative compression-combustion-expansion cycles, and the fuel is commonly introduced into the cycle at the combustion stage after the combustion air has been compressed.
  • the cycles employed, whether they are performed in a gas turbine, 21 free piston device, or in a combination of both kinds of devices result in the production of high pressure hot gases which are expandible, and are, in fact, at least in part expanded, either in a turbine device or in a free piston device, to provide the energy necessary to compress air entering the cycle.
  • the temperature of the compression gases can be modulated for heat transfer use in several ways.
  • the preferred way is to mix them with gases which have been used in the expansion portion of the cycle, which maximizes the efficiency of the use of both streams of gases.
  • the gases may be modulated by being mixed with recycle gases or by having water injected into them. The last means also increases the mass flow of gases to the heat transfer units without substantial loss of pressure.
  • the hot high pressure gases generated by the means and in the manner just described differ from more conventional heat transfer fluids, such as steam, or fan driven heated air, in several material respects. They are hot, having a temperature as high as about 900 to l500F., if they come directly from combustion chamher, or 600 to 1200F., if they come from the turbine exhaust. Furthermore, the gases are at high pressure, and the energy represented by their high pressure is potentially available for creating turbulent flow and conversion into heat for heat transfer purposes.
  • the gases unlike steam (which can also be hot and at high pressure) are, in the main, made up of noncondensibles.
  • YANKEE AND MG DRYERS Yankee and MG Dryers are commonly used in the paper industry for forming light weight tissue-type paper.
  • the water is removed from the paper in a single pass around a relatively large diameter drum.
  • Such drying is characterized by high heat flows and relatively high temperature, although care must be taken to avoid excessive temperatures which will degrade the paper.
  • FIGS. 12 and 13 illustrate the application of various features of the present invention to a Yankee-or MG- type dryer.
  • the dryer has a relatively large diameter drum 80., which is rotated counter-clockwise as FIG. 13 is drawn.
  • Wet paper is carried to the dryer on a web or felt 81 and is transferred to drum by means of pressure roll 82.
  • the paper, after drying, is stripped from the drum 80 by doctor blade 83.
  • the strip of paper is designated in FIG. 13 by the letter P.
  • Heat for drying the paper is supplied to the Yankeetype drum by hot high pressure gases generated by the means and methods described above. Heat transfer is effected between these gases and the drum 80 and the paper P in three stages, according to the preferred embodiment.
  • the heat transfer gas may be used serially in the three stages, or, two or more of the stages may be supplied with gas directly from the generating means.
  • the three stages, in their preferred sequence, if the gas is passed through them serially, are first, heating by gas impingement on the internal surface of the Yankee cal surface 84 having two gas-tight end pieces 85 and 86 fitted to it.
  • the end pieces include shaft members 87 and 88 journaled respectively in bearings 89 and'90.
  • the construction just described results in a drum dryer mounted for rotation, which drum dryer is adapted to contain hot heat transfer gases in the interior thereof.
  • shaft member 88 is hollow and is fitted at its outer end with a gas-tight rotary joint 91.
  • a heat transfer gas input line 92 passes through joint 91 and shaft member 88 coaxial therewith, and substantially coaxial with the Yankee drum 80. This line feeds hot heat transfer gases to the interior of plenum 93.
  • Plenum 93 is mounted in the'interior of drum 80, but does not rotate therewith. It is roughly shaped like a segment of a circle, in end view, as shows most clearly in FIG. 13.
  • the curved surface 94 of plenum 93 which is presented to the interior surface of drum 80 is made up of a series of slot-like nozzles 95 arranged in side-byside relationship to one another across the width of drum 80. As can be seen in both FIGS. 12 and 13, the exit ends of nozzles 95 are spaced slightly from the interior surface of drum 80.
  • nozzles 95 are pitched helically with respect to the interior of drum 7 80. This has several advantages. By this means, every increment of width of drum 80 is at some point directly I exposed to hot high pressure gases issuing directly from nozzles 95, even though the nozzles are spaced a finite distance apart.
  • Hot high pressure gas is fed into plenum 93 through input line 92 as indicated by arrow 96. It passes through nozzles 95 and impinges against the interior surface of drum 80. Because of the rotation of drum 80' with respect to nozzles 95, and because of the slot-like configuration of the nozzles, and further because of the high pressure of the gases in the interior of the plenum 93, conditions are created at the interior surface of drum 80 which are extremely favorable for efiicient heat transfer. That is to say, the three features just mentioned tend to result in a very thin gas film on the interior of drum 80, which film offers a relatively low resistance to heat flow.
  • the turbulent condition of gases passing through nozzles 95 and the turbulent condition of the gases on the underside of the nozzles 95 tends to maximize the transport of heat to the interior surface of drum 80, as well as tending to reduce the film thicknessof the film of relatively, quiescent gases at the very surface of drum 80. In this manner, efficiency of heat transfer from the gases to the paper being dried is materially increased.
  • FIG. 14 illustrates, in an enlarged cross-sectional view, two of the nozzles 95 constructed in accordance with the invention.
  • the distance (d) between the center lines of adjacent slot-like nozzles is preferably less than the helical pitch of each nozzle from one end to the other. This feature provides complete assurance that every increment of width of drum 80 is exposed di- 10 rectly to hot high pressure gas, as explained above.
  • the highly turbulent flow of the gases after passage through the nozzles is shown by the arrows on FIG. 14.
  • converging nozzles 96 and 97 are provided at each end of the plenum 94 for directing hot gases which have passed through nozzles 95 in paths adjacent the interior surface of drum as the gases flow into the upper portion 98 of the interior of the drum 80. Such nozzles extend the effective exposure time of the hot gases to the interior surface of drum 80.
  • the upper portion 98 may be thought of as a gathering chamber for the partially spent heat transfer gases which have passed through plenum94, nozzles 95, and converging nozzles 96 and 97.
  • the gases pass out of this chamber 98 through hollow shaft 88 and into duct 99.
  • Duct 99 conveys the hot high pressure gases into the next heat transfer stage.
  • This stage consists of a plenum 100 having a concave radiator plate 101 forming one wall thereof.
  • the curved radiator plate 101 is shaped and positioned to fit closely around a portion of the surface drum 80, but does not contact the drum. There is a narrow passage or space between the concave face of radiator plate 101 and the outer surface of drum 80 drum 80 through which the paper (p) being dried passes.
  • Nozzles 102 are much like nozzles in structure and arrangement, inthat they are arranged side by side across the width of second stage plenum 100, and thus extend substantially across the width of the drum 80. In addition, they are helically pitched, and adjacent nozzles are spaced from one another a distance less then the helical pitch.
  • Hot high pressure gases obtained from the first heat transfer stage as just described enter plenum from duct 99. They pass through nozzles 102 and impinge against the inner surface of radiator plate 101. The heat thus transferred to radiator plate 101 is ultimately transferred radiantly to the paper passing by the plate on the surface of drum 80.
  • radiator plate 101 results in the creation of conditions at the interiorsurface of radiator plate 101 which are very favorable for. efficient transfer of heat from the gases to the radiator plate. That is to say, the hot high pressure gases passing through nozzles 102impinge on plate 101 strongly and have high intemalturbulence. Thus, the film of quiescent gases at the surface is very thin and presents a reduced barrier to heat transfer.
  • the partially spent gases which have passed through nozzles 102 and have given up heat to radiator plate 101 are exhausted directly into the third heat transfer stage.
  • the structure of the third stage can be seen in both FIGS. 12 and 13. It includes a third stage plenum 103, which is positioned adjacent the outer surface of drum 80. One side of this plenum is made up of an array of impingement nozzles 104 and are curved to fit closely around part of the surface of drum 80, and to discharge thereon. These nozzles 104 are structurally very similar to the nozzles 102 of the second stage and the nozzles 95 of the first stage.
  • the nozzles 104 are arranged in side by side array across the width of plenum 104, and thus substantially across the width of drum 80, and are helically pitched, in addition to being spaced from one another 1 1 a distance less than the helical pitch.
  • the gases passing from the second stage into plenum 103 of the third stage are metered by an adjustable gate 105.
  • the nozzle array 104 is provided with a series of deflector plates 106 to give downward impetus to the gas.
  • the gases from the second stage pass through gate 105 into plenum 103 and then downwardly through nozzles 104 to impinge directly on the paper on the outside of drum 80.
  • the high velocity impingement of the hot gases provides for good heat transfer from the gases into the paper and for good mass transfer of water out of the paper into the gas.
  • the third stage is provided with an exhaust plenum 107, which is positioned near the surface of drum 80 adjacent the downstream end of nozzle array 104. This plenum is preferably operated at slightly below atmospheric pressure, and the low pressure gases are withdrawn through duct 108 for recycle or auxiliary use or disposal.
  • FIG. illustrates somewhat diagrammatically the mechanism by which this occurs.
  • the paper is indicated by the letter (P) and the helically pitched lines 109 represent the nozzle outlets.
  • the set of vectors designated (A) illustrate the fact that the initial velocity of the gas passing through the nozzles is greater than the velocity of the paper and the gas will therefore tend both to spread into the space between nozzles and to move down the paper.
  • the gas loses enough velocity so that it does not tend to move down the paper but rather tends to spread across the paper, this condition being indicated by the bracket (B).
  • the paper will give an impetus to the gas and restore a downstream component to it by means of a drag effect. This condition is illustrated by the bracket (C).
  • a similar mechanism of gas flow occurs adjacent the interior surface of drum 80 when gas passes through nozzles 95.
  • the arrangement of equipment for the Yankee dryer just described makes use of two stages in which the hot high pressure gases are brought into indirect heat transfer relationship with the paper being dried, followed by one stage in which the gases are directly contacted with the paper.
  • This arrangement is of great advantage when the initial temperature of the heat transfer gases is very high.
  • the initial temperature of the heat transfer gases is somewhat lower, it may be desirable to have two stages in which the gases are directly contacted with the paper to be dried.
  • the second stage that is the stage which includes plenum 100, radiator plate 101, and nozzles 102, may be modified to omit radiator plate 101 so that noules 102 discharge directly onto the paper passing around drum 80.
  • the gas after it contacts the paper, passes into plenum 103 of the third stage.
  • the hot gas is brought into direct contact with the paper being dried in at least one stage.
  • the gas When the gas is employed in this manner, it must be relatively clean, that is, free of soot and other particulate matter, because such entrained dirt will tend to be deposited on the paper being dried.
  • the gases Even if all of the stages utilizing the hot gas for heat transfer are like the first stage just described, and involve only indirect contact between the gas the paper, it may be desirable to have the gases in reasonably 12 clean condition so that a deposit of dirt and soot is not accumulated on the heat transfer surface, such as the interior of drum 80. Soot and the like, when formed into a layer, has a relatively low coefficient of heat transfer, and hence, is not a particularly desirable material to have in the path of heat transfer.
  • FIG. 16 This figure illustrates a cylindrical continuously operating and continuously cleaned filter which may be positioned at a point in the gas flow path, for example, within plenum 100.
  • the filter unit consists of a cylindrical tube 111 having a foraminous surface, and a porous filter material 112 lining the interior thereof.
  • the cylinder 11 1 is mounted for rotation in the interior of plenum 113, which may be, as marked above, plenum 100 of FIG. 13, or another plenum in a different arrangement.
  • hot, high pressure, and relatively dirty, gas is fed into the interior of a cylinder 111 as indicated by the arrow 114.
  • the gas passing into the interior of cylinder 111 flows through the walls thereof and outwardly into the interior of plenum 113.
  • the particulate matter in the gas is filtered by filter material 112.
  • plenum 115 Mounted within cylinder 111 is a small plenum 115, and mounted exteriorly of the cylinder 111, immediately opposite plenum 1 15 is still another plenum 116.
  • Plenum l 16 may be termed a purge input plenum
  • plenum 115 may be termed a purge exhaust plenum.
  • Purge fluid such as air
  • the purge fluid passes inwardly through the wall of cylinder 111 into the exhaust plenum 115. In doing so, it dislodges and entrains the soot on the filter material 112 positioned at the moment between plenums 116 and 115.
  • the purge gas picks up the dirt from the filter.
  • the purge gas then passes out through exhaust plenum 113 as indicated by the arrow 118 carrying the dirt with it.
  • One convenient source for the purge fluid is compressed air from the compressor of the hot high pressure gas generating means.
  • cylinder 1 1 1 1 is mounted for rotation, and in operation is turned continuously, and in consequence part of the filter material 112 is constantly being cleaned by the purge means just described, while the remainder of filter material 112 is filtering incoming gas.
  • a filter of the kind shown in FIG. 16 should be positioned to extend substantially across the full width of a plenum of a given stage. In this way large filter areas are obtained, and the natural resistance of the filter tends to equalize the pressure distribution across the plenum, and thus to equalize the distribution across the array of nozzles associated with the plenum.
  • the sealing stripe 119 between the rotary cylindrical tube 111 and the plenum closing the sides of the plenum chamber is also smooth to seal against the inner side plate in similar manner.
  • the belts and side plates thus cooperate to prevent loss of gas laterally from the plenum chamber 153. Gas is fed into the plenum chamber through inlet 158.
  • output plenum 159 Mounted below input plenum 153 is output plenum 159. It is provided with end rolls 1611 and 161 for sealing purposes. Rolls 154, 160, and 155, 161 respectively are opposed to each other, so that some pressing action is exerted on the felt-paper sandwich as it passes through the nip between them. Gas leaves the output plenum 159 through passages 162. In order to provide additional support for the felt and paper sandwich, support roller 163 is mounted within the output plenum. In operation gas is fed into input plenum 153 at high pressure. The gas is hot, and thus tends to evaporate the water in the paper as it passes through it, as well as physically entraining it.
  • the gas passes downwardly through the felt and paper sandwich into lower plenum 159 and ultimately out through passages 162.
  • FIGS. 21 through 27 An alternate embodiment which is also quite suitable for providing for hot high pressure gas flow through a felt and paper sandwich is shown in FIGS. 21 through 27.
  • the upper or input plenum 153 is substantially the same as that used in the unit of FIG. 20.
  • the lower unit is considerably modified.
  • ther is no output plenum in the conventionally used sense of the word.
  • a frame 171) is provided equipped with rollers 171 and 172 extending across the width of the web and paper sandwich-150451452. Rollers 171 and 172 are desirably placed opposite rollers 154 and 155 to obtain pressing action in the nip between the rollers.
  • An additional bottom roller 173 is also mounted on the frame. Trained over rollers 1'71, 172.
  • Belt 174 is impervious in that gas and water will not pass through it, but it is specially configured to permit gas to flow into the interior of the belt, and thence along the belt. This mode of flow is in dicated by the arrows 175 in FIG. 22.
  • Gas gathering plenums 1'76 and 177 are provided adjacent rollers 171 and 172 respectfully for collecting gas flowing out of the belt 174 as it bends around these rollers.
  • Plenums 176 and 177 are connected by a shroud 183 for sea] purposes.
  • the side walls (not shown) are sealed to the belt in a manner similar to the outer periphery of the belt in FIG. 21.
  • the structure of the belt 174 may be understood by a consideration of FIGS. 23, 24, and 25. From these figures it can be seen that the belt 174 is made up of a bottom strip or sheet 173 having a number of grooves 179 formed in its. The grooves run lengthwise of the belt. Above the grooves, running traverse of the belt, are a number of strips or rods 181). Thus, when the belt 174 is seen in plan view, as in FIG. 24 it has a grid-like appearance, notwithstanding that it is impervious in the sense described above.
  • FIG. 25 shows in plan view the bottom layer of the belt 178 with grooves 179, the rods 1811 having been removed.
  • FIG. 26 shows a similar structure having deeper grooves 179 in the bottom piece 17%., and having notched rods 180.
  • rollers 171 and 172 of lower frame 170 there is provided a pressure plenum 181. Gas is fed into this plenum to apply a supporting force as indicated by arrows 182 on the underside of belt 174 in the region between rollers 171 and 172.
  • FIG. 27 illustrates the operating features of the embodiment of FIG. .22.
  • I-Iot high pressure gas is fed into input plenum 153 through inlet duct 158. It passes through the felt and paper sandwich 150, 151, 152, and into the interior of belt 174. It flows through the belt to either collectors 176 or 177.
  • Belt 174 is supported by gas under pressure from pressure plenum 181.
  • FIG. 27 illustrates the operating features of the embodiment of FIG. 20. That is, where the flow of gases through the sandwich are not diverted, but are caused to pass directly into plenum 159 and out exhaust 162.
  • FIG. 29 there is shown a unit employing a plurality of input and output plenums of the kind shown in FIG. 20, the plenums being located between a single set of rollers 184, 185, 186, and 187.
  • plenum pair 188-189 is a down-flow pair
  • plenum pair 190, 191 is an up-flow pair.
  • This imparts a pulsating action to the water in the paper and the felts and increases efficiency of water removal.
  • any compacting action of the felt by reason of the high pressure gas pressing against it in any one pair of plenums is remedied by the opposite flow of gas in the next succeeding pair of plenums.
  • FIG. 28 Such a seal is shown in FIG. 28 where it can be seen that two generally parallel slides 200 and 201 are provided for sliding sealing contact with a web 150. Between the parallel slides 200 and 201 is an exhaust line 203 to which suction may be applied to prevent leaks to the atmosphere.
  • FIG. 30 illustrates another form of the invention adapted to remove water from very wet paper webs in accordance with the invention.
  • a drum 210 having a surface configured much like that of the belt 174 described in connection with FIG. 221.
  • the surface of cylinder 210 is impervious, but is arranged to permit gas flow in the interior thereof.
  • Such a grid-like surface is indicated at 211.
  • the surface may merely be grooved, as at 212, to provide for gas flow along the surface.
  • a felt 213, carrying a web of paper 214 is passed over the cylinder 210 in a clockwise direction as FIG. 30 is drawn.
  • An additional felt 215 is fed over the paper web 214 by roller 216 to form a felt-paper sandwich.
  • a gas input plenum 217 is positioned around that portion of cylinder 210 transversed by the felt-paper sandwich.
  • the plenum is divided into a number of compartments 218, 219, 220, 221, and 222, circumferentially around the cylinder so that hot high pressure gas at varying pressures may be fed through the paper being moved around cylinder 211).
  • the gas passes from a given compartment of the plenum downwardly through the felt and paper sandwich and into the grooves provided on the surface of the drum. It then passes around the drum to the collector plenum 2220, or to a similar plenum (not shown) on the opposite side of the drum connected by shroud 225.
  • Pressure loaded seals of the kind described in connection with FIG. 2b are provided at 223 and at 224 on either side of the plenum 217.
  • PAPER AND PAPER BOARD DRYERS In contrast to the Yankeeand MG-type operations discussed in the preceding section, drying operations for heavier papers and boards are usually conducted by passing the web of paper to be dried over many cylinders in series. conventionally, steam is condensed in the interior of such cylinders and hot air drying hoods are sometimes utilized adjacent the outer surface of the cylinders.
  • the number of cylinders utilized on a line can be considerable; a newsprint production line may use as many as 100 or more cylinders, each about five feet in diameter.
  • FIG. 17 illustrates the drying process as a function of the difference between the saturated steam temperature within a conventional dryer, and the surface temperature of the dryer, as a function of time.
  • the saturated steam temperature is shown in FIG. 17 as a series of horizontal lines for various stages, and the surface temperature is shown sloping upwardly to the right.
  • the vertical distance between the horizontal line and the curve is an inverse measure of the resistance to drying exhibited by the paper. This resistance increases as the moisture content of the paper decreases.
  • a great proportion of the drying time is occupied in the high resistance region.
  • FIGS. 18 and 19 illustrate an embodiment of the present invention especially adapted for use with conventional paper drying cylinder.
  • a cylinder is shown at 120, with a web or sheet of paper 121 being passed around it.
  • the cylinder 120 may be conventionally equipped to receive saturated steam in the interior thereof, or may be equipped to utilize hot high pressure gas in the interior thereof in a manner similar to the Yankee dryer illustrated in FIGS. 12 and 13.
  • a drying unit 122 is provided for the cylinder 120. It has a supply plenum 123, a nozzle chamber 124 and an exhaust plenum 125. Gas passes from the supply plenum 123 into the nozzle chamber 124 by passing over a series of throttling gates 126 in the manner indicated by arrow 127. The flow rate may be adjusted by varying the positions of gates 126. If desired, sectional dividers 127 may be included between gates 126 so that different degrees of throttling can be achieved across the width of the plenum 123 by setting various gates 126 at different positions. Gas is fed into the plenum 123 laterally as indicated by arrow 128. It flows from plenum 123 into nozzle chamber 124.
  • One wall of the nozzle chamber is made up of an array of nozzles 129 like those described in connection with the Yankee dryer of FIGS. 12 and 13.
  • Nozzles 129 are helically pitched, and are spaced apart a distance smaller than the helical 14 pitch. They extend substantially across the width of the drum 120.
  • the gas passes through the nozzles and impinges upon the paper in a manner to effect good heat transfer into the paper and good mass transfer of water out of the paper.
  • the highly turbulent condition of the gases contributes to these effects.
  • the before-mentioned exhaust plenum has its intake opening 130. Gas passes from the paper surface into the exhaust plenum, and thence laterally outward as indicated by arrow 13 l.
  • the gas taken out of exhaust plenum 130 may be used in another unit on another cylinder, may be disposed of, or may be recycled in part.
  • a rotatable jet doctor blade 132 which is illustrated in FIG. 19 on an enlarged scale.
  • the jet doctor blade 132 includes a cylindrical manifold 133 having an adjustable sleeve 134 around it.
  • Both the manifold and sleeve are ported in two locations, one port 135 being located opposite inlet passage 136, and the other port 137 being located opposite blades 138 and 139.
  • High pressure gas enters the jet doctor blade through inlet passage 136 and passes outwardly through blades 138 and 139. This gas, being a somewhat higher pressure than the gas passing through nozzles 129, prevents the escape of the bulk of the gas passing through the nozzles.
  • Gas for the jet doctor blade may be provided from the nozzle chamber 124 or may be especially provided.
  • An auxiliary, light, conventional doctor blade is provided at 140.
  • the hot high pressure gases generated in the manner described above are also desirably employed for extracting water from extremely wet paper webs, consisting of approximately 80% moisture by weight, which paper webs may thereafter be subjected to the drying operations and methods disclosed hereinbefore.
  • FIGS. 20 and 21 there is shown one form of an apparatus constructed in accordance with the invention which is designed to utilize hot high pressure gas for removing water from extremely wet paper.
  • the unit consists of a pair of felts and 151 between which is carried the paper 152.
  • Above web 150 is an input plenum 153. It is equipped with a pair of rolls 154 and 155 which extend generally across the width of web 150. At their extremities, rolls 154 and 155 are equipped with teeth 156 over which are trained endless belts 157, so that the outer belt radius is the same as the roll radius. Adjacent these belts 157 are mounted side plates with pressurized seals on the outer belt and roll peripheries
  • An alternate to the embodimenthof FIG. 30 is the case where the drum is pervious to the flow of gases and vapors such as the suction roll well' known to those familiar in the art of paper making. 7
  • top felt In all the embodiments of press drying the use of the top felt is optional when the flow of gases is directed from the top down through the. paper, but then the paper must be narrower than the bottom felt or carrier, and the side plates in sliding seal with the end rolls, must be similarly sealed to the bottom felt or carrier.
  • the method of supplying heat for heat transfer which includes producing clean hot high pressure combustion gases by mixing fuel and oxygen-bearing gases in a confined primary space, combusting said mixture to produce hot high pressure gases as combustion products, expanding at least a portion of said combustion products in the actuation of compressor means whereby to compress additional oxygen-bearing gases, mixing at least a portion of the latter with additional fuel in a secondary combustion space at substantially higher temperatures, and combining the hot high pressure gases from said secondary combustion space with exhaust gases derived from the actuation of said compressor means.
  • the method of supplying heat to a heat transfer surface comprising mixing fuel and oxygen-bearing gases in confined spaced, combusting said mixture at a temperature of at least 900 F., to produce hot, highpressure gases as combustion products, expanding at least a portion of said combustion products in the actuation of compressor means whereby to compress, in at least one compression stage, additional oxygen bearing gases for mixing with additional fuel, delivering the combustion products to nozzles adjacent said heat transfer surface and expanding said combustion products through said nozzles and along said heat transfer surface, whereby to convert a portion of the energy stored in said combustion products as potential energy of pressure into kinetic energy of flow and turbulence at the heat transfer boundary between said combustion products and said heat transfer surface.
  • a method in accordance with claim 6 and further products into the combustion products being delivered comprising establishing a path of flow for the material I to be dried and moving it through said path of flow at a preselected rate, generating hot high pressure gases in a compression-combustion-expansion cycle, said generated gases initially being at temperatures substantially in excess of the degradation temperature of said material to be dried and at pressures substantially in excess of atmospheric pressure, delivering said hot high pressure gases to a region adjacent said path of flow, expanding said hot high pressure gases in said region to convert a portion of the energy stored therein as potential energy of pressure into kinetic energy of flow, whereby to create hot rapidly movig gases, impinging said hot rapidly moving gases on the material to be dried which is moving through said path of flow to effect heat transfer between the gases and the material to be dried and mass transfer of water from said material to said gases, said gases being impinged upon said material at a rate preselected in accordance with the rate of movement of said material, its degradation temperature, and the temperature of said gases, said rate being so selected that the equilibrium
  • the method of supplying heat to a moving heat transfer surface comprising burning combustible material under such conditions as to generate a gas of combustion at substantially elevated temperature and pressure, the temperature being at least 900F. whereof the pressure energy is derived at least for the most part form most of the internal energy released from sad combustible material, and utilizing such pressure energy to supply high temperature gas to and directing a rapid stream of said gas against said moving surface.
  • the method of supplying heat for heat transfer which includes producing clean hot pressure combustion gases by mixing fuel and oxygenbearing gases in a confined primary space, combusting said mixture in a temperature range of about 900 to 1500F.; to produce hot high pressure gases as combustion products, expanding at least a portion of said combustion products in the actuation of compressor means whereby to compress additional oxygen-bearing gases containing most of the available kinetic and flow energy developed by said compressor means, mixing at least a portion of the latter with additional fuel in a secondary combustion space, with combustion at a higher temperature than in said primary combustion space, and delivering the resulting combustion mixture from said secondary space with at least said kinetic and flow energy for such heat transfer.

Abstract

Regenerative compression-combustion-expansion cycle engines are utilized to generate hot, high pressure gases for heat transfer use. The gas generation equipment includes temperature modulation by water injection, recycle of spent gas, and injection of turbine-expanded gas into the main hot gas stream. Separate combustion chambers are also utilized for exploiting low-cost fuel and increasing gas temperature. Special heat transfer equipment including helical nozzle arrays are provided for paper drying, the nozzle arrays being arranged to indirectly heat materials, such as paper, being dried, to radiantly heat such material, and to directly heat such material by impinging hot gas directly thereon. Continuously cleaned rotary filters, as well as jet operated doctor blades may be used in association with the nozzles. Hot high pressure gases are also employed for water removal from paper and similar materials by being forced through wet paper carried between two felts, and equipment leading the gas to and away from such a felt-papersandwich is provided. One embodiment of such equipment includes an impervious gas conducting belt. The use of hot high pressure gases as a source of flow and turbulent energy for heat transfer purposes results in extremely efficient heat utilization, and the heat transfer equipment exploits to the fullest the properties of such hot high pressure gases to minimize film resistance to heat transfer.

Description

United States Patent [191 Cirrito NOV. 18, 1975 [76] Inventor: Anthony J. Cirrito, 41 Old Upton Road, Grafton, Mass. 01519 122] Filed: May 9, 1973 [21] Appl. No.: 358,498
Related US. Application Data [63] Continuation of Ser. No. 129,165, March 29, 1971, abandoned, which is a continuation of Ser. No. 705.778, Feb. 15, 1968, abandoned.
[52] US. Cl. 34/23; 60/3918; 34/115 [51] Int. Cl. F26B 3/00 [58] Field of Search 34/23, 24, 118, 86, 115, 34/155; 165/85; 60/3918, 18
[56] References Cited UNITED STATES PATENTS 1,870,971 8/1932 Sundstrom et a1 34/115 X 2.119.907 6/1938 Dunlap 165/85 2,532,910 12/1950 Hayward 34/115 X 2,678,532 5/1954 Miller 60/3918 B 2,717,491 9/1955 Barr 60/3918 X 2.802.646 8/1957 .letter 165/85 X 2.975.594 3/1961 Eastman 431/4 3.004.347 10/1961 Dobson 34/86 X 3,150,487 9/1964 Mangan et a1. 60/3918 B 3.299.530 l/l967 Eiss et a1 165/90 X 3,309,786 3/1967 Conti 165/90 X 3,362,080 1/1968 Daane 34/23 3,404,463 10/1968 Kemp, .Ir. 34/23 FOREIGN PATENTS OR APPLICATIONS 237,155 7/1925 United Kingdom 560,064 3/1944 United Kingdom 790,627 2/1958 United Kingdom 1.019.591 2/1966 United Kingdom 1,056,843 2/1967 United Kingdom 617,772 4/1961 Canada 10/1964 Canada 5/1967 Canada Primary Examiner-Charles J. Myhre Assistant ExaminerWilliam C. Anderson Attorney, Agent, or Firm-Synnestvedt & Lechner [57] ABSTRACT Regenerative compression-combustion-expansion cycle engines are utilized to generate hot, high pressure gases for heat transfer use. The gas generation equipment includes temperature modulation by water injection, recycle of spent gas, and injection of turbine-expanded gas into the main hot gas stream. Separate combustion chambers are also utilized for exploiting low-cost fuel and increasing gas temperature. Special heat transfer equipment including helical nozzle arrays are provided for paper drying, the nozzle arrays being arranged to indirectly heat materials, such as paper, being dried, to radiantly heat such material, and to directly heat such material by impinging hot gas directly thereon. Continuously cleaned rotary filters, as well as jet operated doctor blades may be used in association with the nozzles. I-Iot high pressure gases are also employed for water removal from paper and similar materials by being forced through wet paper carried between two felts, and equipment leading the gas to and away from such a felt-papersandwich is provided. One embodiment of such equipment includes an impervious gas conducting belt. The use of hot high pressure gases as a source of flow and turbulent energy for heat transfer purposes results in extremely efficient heat utilization, and the heat transfer equipment exploits to the fullest the properties of such hot high pressure gases to minimize film resistance to heat transfer.
20 Claims, 30 Drawing Figures US. Patent Nov. 18,1975 Sheet50f8 3,919,783
lay
US. Patent Nov. 18,1975 Sheet7of8 3,919,783
IN VEN TOR.
U.S. Patent Nov. 18,1975 Sheet80f8 3,919,783
ATTO/F/VAYS 129,165, filed Mar. 29, 1971, which in turn, is a contin- 5 uation of application Ser. No. 705,778, filed Feb. 15, 1968 both of which are now abandoned. This invention relates to the art of heat transfer and especially to that part of heat transfer art in which hot gases are utilized as a heat transfer material. It is particularly concerned with drying operations by the use of hot gases such as the drying operations involved in the manufacture of paper or paperboard;
In one of its broader aspects the invention is concerned with the provision of methods and equipment for generating hot gases in a form which is particularly suited for effective heat transfer use. Another aspect of the invention involves methods and equipment for making the most effective use of such hot gases.
A number of the features of the present invention are of special advantage in the paper drying field. In order to produce paper at desirably high rates, it is necessary to have means for delivering large quantities of heat to the paper. As will be discussed further herein, the rate at which heat is transferred is dependent upon several factors, among them the coefficient of heat transfer, the temperature gradient, and the length of time during which the paper is exposed to the drying action of the hot gases.
In accordance with the invention steps are taken to maximize the heat transfer coefficient by generating the hot gases at high pressures, by utilizing the pressure of the hot gases to generate rapid turbulent flow of the gases past the heat transfer surface, and by utilizing especially constructed means for bringing the hot gases into turbulent contact with the heat transfer surface. The net effect of these steps is to reduce the film thickness in the gases at the heat transfer surface, which film is the primary resistor of heat flow across the surface.
In order to develop the rapid turbulent flow of the heat containing gases past the heat transfer surface, the invention contemplates the provision of a heat engine especially configured to generate hot gases at high pressure. The high pressure gases are expanded to convert a portion of the energy stored in them to kinetic energy of flowadjacent the heat transfer surfaces. The energy stored in the gas by reason of its pressurization is also used to transfer gas from the heat engine to and beyond the heat exchange surface.
The kinetic energy of flow in the gas moving through the conduits and past the heat transfer surface is dissipated by being converted into heat. But the heat so generated is utilizable for heat transfer purpose in the same manner as the heat initially stored in the gas. Thus it can be seen that, except for minor radiation losses, substantially the entire energy input at the heat engine is available for heat transfer. The theoretical limit for efficiency of heat transfer is thus 100%.
In the preferred embodiments, the heat engines are so arranged internally, and in their cooperation with the remainder of the heat transfer system, that substantially no shaft work is performed-by the heat engine on the surroundings. Internally, however, a portion of the energy of combustion resulting from the burning of fuel in the engine is utilized to operate gas compressor means. The gas no compressed is raised in temperature by being mixed with fuel, and the resulting mixture is 2 combusted in a combustion chamber to provide the high pressure heat transfer gases.
In the preferred embodiments the heat engine is of the regenerative compression-combustion-expansion cycle type as typified by gas turbines and free piston engines. In addition, high temeprature gas eductors or ejectors are advantageously utilized as components of the heat engine. They are especially useful in connec tion with certain features of the invention to be dis cussed more fully below, namely, the provision of recycle of a portion of the heat transfer gases and the provision of modulating material in the heat transfer gases. Various combinations of compressor means, compressor drive means, combustion chamber means and ejector means can be provided to form the heat engine generators of hot high pressure heat transfer gases in accordance with the invention.
It is an object of this invention to provide methods and apparatus for generating hot high pressure gases for heat transfer use. I
Another object of the invention is the provision of generating means and methods for creating hot high pressure gases through a compression-combustionexpansion-type cycle, in a manner to recover substantially all the energy put into such means, through the fuel, for heat transfer purposes.
Another object of the invention is to provide heat transfer equipment, especially drying equipment, adapted to fully exploit heat transfer properties of hot high pressure gases.
Still another object of the invention is the provision of improved plenum and nozzle systems for use in heat transfer, especially for paper drying.
Another object of the invention is the provision of hot high pressure gas heat transfer devices arranged to utilize a gas in a series of stages.
A further object of the invention is the provision of improved filter mechanisms for cleaning hot high pressure gases in connection with their use as heat transfer materials.
An additional object of the invention is the provision of methods and equipment for utilizing hot high pressure gases to effect heat and mass transfer to dry paper by passing such gases through a web of wet paper.
Other objects of the present invention, together with the above objects, may be more readily understood by considering the detailed description which follows, together with the accompanying drawings in which:
FIG. 1 is a diagrammatic illustration of regenerative compression-combustion-expansion cycle equipment for generating hot high pressure heat transfer gases;
FIGS. 2 through 11 are diagrammatic illustrations of other embodiments of the invention utilizing heat engines for generation of hot high pressure heat transfer gases;
FIG. 12 is a somewhat simplified sectional elevational view of a paper drying drum constructed in accordance with the invention;
FIG. 13 is a cross sectional end view of the paper drum of the FIG. 12, the section being taken approximately along line 13-13 of FIG. 12;
FIG. 14 is a cross sectional view, on an enlarged scale, of nozzles employed in the unit of FIGS. 12 and 13;
FIG. 15 is a perspective diagram illustrating certain gas flow characteristics of gases being utilized in the unit of FIGS. 12 and 13;
FIG. 16 is a somewhat diagrammatic perspective view of a gas filter unit construced in accordance with the invention with some parts being broken away;
FIG. 17 is a graph of typical drying characteristics for paper;
FIG. 18 is a perspective view, somewhat simplified, with parts broken away, of another embodiment of heat transfer equipment for utilizing hot high preasure gases;
FIG. 19 is a cross sectional elevational view of a jet doctor blade utilized in the unit of FIG. 18;
FIG. 20 is a cross sectional elevational view of apparatus constructed in accordance with the invention for directing hot high pressure gas through paper to effect water removal therefrom;
FIG. 21 is a cross sectional end elevation of the apparatus of FIG. 20, the section being taken approximately on the line 2121 of FIG. 20;
FIG. 22 shows in cross sectional elevational view of an alternate embodiment of equipment suitable for drying paper by forcing hot high pressure gas therethrough;
FIG. 23 is an end cross sectional view of a special belt for use in the apparatue of FIG. 22;
FIG. 24 is a plan view of the belt of FIG. 23;
FIG. 25 is a plan view of the belt of FIG. 23 with one layer thereof removed;
FIG. 26 is a cross sectional elevational view of an alternate embodiment of the belt of FIG. 23;
FIG. 27 is a fragmentary cross sectional elevational view of the apparatus of FIG. 22, with parts omitted for the sake of simplicity;
FIG. 28 is a fragmentary cross sectional elevational view of a special seal utilized in the apparatus of FIG. 27;
FIG. 29 is a diagrammatic perspective view, with parts broken away, of another embodiment of equipment designed to utilize such hot high pressure gases by passing such gases through the paper.
FIG. 30 is a somewhat diagrammatic perspective view of another embodiment of the invention adapted to remove water from very wet paper.
PRODUCTION OF HOT HIGH PRESSURE GASES FOR HEAT TRANSFER USE As mentioned above, in accordance with the invention, high temperature, high pressure, gases are created in a regenerative compression-cumbustion-expansion cycle for heat transfer. The use of the hot high pressure gases will be discussed later herein, but at this point attention is concentrated on means and techniques for creating them. In this connection, attention is directed to FIG. 1 through 11, which illustrate the various arrangements of regenerative compression-combustionexpansion cycle equipment for these purposes. Throughout this series of figures, the turbine compressor portion of a gas turbine is indicated by the letter C, while the driving turbine is indicated by the letter T. In those instances where free piston devices are shown, they are marked with the letters FP. Combustion chambers in which fuel is mixed with compressed air and burned are marked with the letters CC. Directions of flow are indicated by arrows and various legends appear on the figures to aid in clarity of presentation.
Turning now to FIG. 1, there is shown a system employing a gas turbine 50 having a compressor C, and a driving turbine T connected to compressor C by shaft 51. Air is drawn into compressor C through line 52, where it is compressed as the rotor of compressor turns. The compressed air is delivered through line 53 to combustion chamber CC. Fuel is injected into the compressed air through line 54 as it is fed into the combustion chamber. The mixture of fuel and compressed air undergoes combustion in the combustion chamber, producing pressurized, high temperature gases. The main stream of such gases leaves the combustion cham' ber CC through line 55 which delivers it to the blades of turbine T of the gas turbine. In the preferred arrangement, the only load on the gas turbine is that of its compressor, and therefore the only depletion of the energy in the high temperature gases, aside from minor friction losses, is that use for compressing or entering the system. If desired, a minor shaft load may be placed on the turbine, although this will result in some reduction in overall efficiency of the system as a means for heat transfer.
Because the only work extracted from the high pressure gases passing through turbine T is that utilized for air compression, the exhaust gases flowing from the turbine through line 56 are still quite hot and are still at high pressure. These are utilized in heat transfer units diagrammatically indicated as a series of blocks 57. In the embodiment of FIG. 1, the gases are expanded during the course of heat transfer to less than atmospheric pressure; hence, they are restored to atmospheric pressure by fan 58 before being exhausted through line 59. If desired, a portion of the hot high pressure gases from the combustion chamber CC can be drawn off through line 60 for direct use as heat transfer fluid without having been passed through turbine T. Similarly, if desired, a portion of the combustion products can be drawn ofi through line 61 for use in an auxilliary steam generator or for other auxilliary purposes.
In a system such as that shown in FIG. 1, the presence of turbine T between the combustion chamber CC, and the point of use of the hot high pressure gases for heat transfer (57), presents two limitations which can be accepted for some purposes. However, in accordance with the invention, means are provided for overcoming or avoiding both of these limitations, and these means are shown in FIGS. 2 through 11. The first limitation is that the materials of construction of the turbine T can withstand only a certain temperature, the precise value depending on the particular material used to contruct the turbine. The second limitation is that comparatively clean, and hence, comparatively expensive, fuel must be burned to form the gases passing through the turbine. If low cost fuel, such as bunker C, is used, the combustion products tend to be less clean and corrosive to the turbine, thus shortening its life.
One step contemplated in accordance with the invention for overcoming the above limitations is the provision of a second combustion chamber in addition to the combustion chamber supplying gases to the turbine T. As will be explained below, the gases from the second combustion chamber are not passed through the turbine T, but are rather used direct for heat exchange purposes. Fuel which is cheaper and which produces quasi clean combustion products or products which would otherwise corrode turbine blades can be supplied to such a chamber. In addition, the operating conditions in such a chamber may be such that the temperature of the gases produced therein exceeds the temperature limitation of the turbine T. Such an arrangement is shown in FIG. 2, which illustrates a device similar in most respects to FIG. 1 except for the provision of a second combustion chamber CC-Z having a fuel supply separate from that for the first combustion chamber CC. The extremely hot gases from combustion chamber CC-2 are not passed through turbine T, but are fed directly to the heat transfer units. Compressed air is provided by compressor C both for combustion chamber CC which feeds hot gases to turbine T and to combustion chamber CC-2 which feeds very hot high pressure gases to the heat transferring units.
In connection with FIG. 2, it should also be pointed out that in accordance with another aspect of the invention, a portion of the gases which are passed through the heat transfer units can be recycled and mixed with fresh incoming gas originating in combustion chamber CC-2. For this purpose an ejector mixer 60 is provided to draw spent gases through recycle line 61 into the feed stream to the heat transfer units.
In the unit of FIG. 2 the gases passing through turbine T and issuing from that turbine through line 62 are exhausted. They can, of course, be passed through a series of heat transfer units such as those shown in FIG. 1. However, in accordance with an important feature of this invention, it is preferred to mix the gases issuing from turbine T with the hotter gases issuing from combustion chamber CC-2, and to transfer this mixture to the heat transfer units. This feature is shown in FIG. 3 where it can be seen that gases issuing from turbine T through line 62 are blended with hot gases from combustion chamber CC-2 in ejector 60. In FIG. 3 recycle line 61 is shown as a dashed line, since it may be omitted. The arrangement of figures is especially advantageous because in addition to fully exploiting the heat content in the gases issuing from turbine T for heat transfer purposes, these gases are also used to modulate, to the extent desired, the temperature of the hot gases issuing from combustion chamber CC-2. Such modulation may be desired to lower the temperature of the gases fed to the heat transfer units to a suitable level.
FIG. 3 also illustrates a further feature of the invention. This is the provision of water injection means 63, through which water in fed into ejector 60. Addition of water to the gas stream passing through the ejector 60 permits further modulation of the temperature, if this is desired, without any substantial degradation of the desirable high pressure of the gases. Water injection also increases the mass fiow of the gases fed to the heat transfer unit. The water added at ejector 60 is, of course, converted into superheated steam and the heat consumed in this conversion is not lost, but is available for recovery in the heat transfer units.
In summary, the units shown in FIGS. 2 and 3 for I generating hot high pressure gases for the heat transfer units make use of a separate combustion chamber for generating gases hotter than can be tolerated by the turbine T, and these gases can be modulated in temperature by recycle, by water injection, and by mixing with the turbine exhaust gases. Quasi clean burning fuel can be used in the second combustion chamber, while a clean burning fuel is used in the first combustion chamber supplying gases to the turbine.
The unit shown in FIG. 4 makes use of only a single combustion chamber, and in this respect is like the unit of FIG. 1. However, the combustion chamber CC of FIG. 4 is designed to produce gases hotter than can be tolerated by turbine T. The bulk of these gases are fed through ejector 60 where they are mixed with recycle gas from line 61 if desired, and are fed to the heat transfer units. A portion of the very hot high pressure gases 6 from combustion chamber CC are fed to turbine T, but are modulated in temperature by the injection of water through line 64. In the unit of FIG. 4, therefore, the turbine imposes no substantial temperature limitation on the gases issuing from combustion chamber CC, although these gases must still be relatively clean.
FIG. 5 illustrates a unit similar to FIG. 4, which has been modified in several respects. Again it is a single combustion chamber type device using water injection modulation of the gases fed to turbine T through the combustion chamber. In addition, the gases issuing from turbine T are mixed with the very hot high pressure gases from combustion chamber CC in ejector 60. As in FIG. 3, provision is made for injection of water through line 63 to ejector for further temperature modulation and increase of mass flow.
FIGS. 6 and 7 show additional single combustion chamber arrangement. Again, in each of these figures the combustion chamber CC is arranged to produce gases hotter than can be tolerated by turbine T. In FIG. 6, the gases to be fed to turbine T are taken from the dowstream side of ejector 60 and therefore comprise a mixture of gases from combustion chamber CC and recycle gases from line 61. These gases are, of course, modulated in temperature by the recycle gases, and hence may be safely passed through turbine T. In addition, water may be injected through line 64 into the gases passing to turbine T to further lower their temperature. Once again, the turbine imposes no tmeperature limitation on the temperature produced by the combustion chamber CC but does impose a cleanliness limitation on it. The arrangement of FIG. 7 is much like that of FIG. 6 except that an additional water injection line 63 leads to ejector 60 for temperature modulation purposes to replace or supplement the temperature modulation accomplished by recycle gases in line 61.
The embodiments of FIGS. 8 through 11 share a common feature, that of a free piston device. Inasmuch as free piston cycles are well-known in the art, the free piston devices shown on these figures are shown only very diagrammatically. As is know, a free piston unit compresses air, mixes furel with it, burns it, and exhaust hot high pressure gases. These gases may be mixed with additional fuel for further combustion. Furthermore, compressed air, as well as high pressure combustion gases may be taken as a product from the free piston unit.
In the unit of FIG. 8, there is provided, as in other units discussed above, a gas turbine having a compressor C and a turbine T. The compressed air produced in compressor C is mixed with fuel and combusted in combustion chamber CC, the hot high pressure gases issuing from compression chamber CC passing through the ejector to the transfer units. Recycle gas passing through line 61 is mixed with the gas from combustion chamber CC. In this respect, the unit of FIG. 8 operates much like the unit of FIG. 2 and the units of other figures. None of the gas from combustion chamber Cl is used for driving turbine T. Gas for this purpose is produced in the free piston unit FP and a mixture of compressed air and exhaust combustion gases from this unit are fed through line to the turbine. The gases issuing from the turbine through line 62 may be employed directly for heat transfer purposes or may be exhausted.
The unit of FIG. 9 is a modification of that shown in FIG. 8 and includes as additional features the mixing of the exhaust gases turbine T passing through line 62 in ejector 60 with the hot high pressure gases from combustion chamber CC. In this figure, recycle mixing through line 61 is shown in dotted lines as an optional feature, as is water injection through line 63. The objects achieved by this arrangement are the same as discussed above, that is, the hot high pressure gases from combustion chamber CC are modulated to the extent desired by being mixed with turbine exhaust gases and, if desired, recycle gases and water.
In FIGS. 10 and Ill free piston units are shown which do not operate in conjunction with gas turbine units. In the installation of FIG. 10, compressed air from the free piston unit FP is delivered through line 67 to combustion chamber CC, where it is mixed with fuel and burned to produce hot high temperature gases which are then passed to the heat transfer units by means of ejector 60 which blends recycle gas from line 61 with the combustion gases. The combustion gases from free piston unit FP are delivered through line 68 for separate use. If desired, some of these gases may be delivered through line 69 to combustion chamber CC where they enter the stream of gases passing to the heat transfer units. FIG. 111 shows an installation much like that of FIG. 10 except that water injection means are provided for injecting water through line 63 to ejector 60 for temperature modulation purposes.
With the foregoing description of a number of devices for producing hot high pressure gases for heat transfer use in hand, some general comments concerning features of the present invention as they apply to such means can be made. First, the gases heat transfer use are generated in regenerative compression-combustion-expansion cycles, and the fuel is commonly introduced into the cycle at the combustion stage after the combustion air has been compressed. Secondly, the cycles employed, whether they are performed in a gas turbine, 21 free piston device, or in a combination of both kinds of devices, result in the production of high pressure hot gases which are expandible, and are, in fact, at least in part expanded, either in a turbine device or in a free piston device, to provide the energy necessary to compress air entering the cycle. Thirdly, it should be noted that in the preferred arrangements, there is no shaft load on any of the devices by which the compression-combustion-expansion cycle is carried out, other than an internal load for operating the compression operation of the cycle. In other words, no net work is removed to the surroundings from the gas generation equipment in accordance with the preferred arrangement. Fourthly, if special steps are taken, at least part of the combustion portion of the cycle can be performed under conditions where the gases produced are both too hot and too dirty for use in driving mechanism, such as a turbine, for powering the compression stage of the cycle. These special steps include mixing of water into the gases to modulate the temperature, and provision of a separate combustion source for providing gases to drive the turbine or other device for compression power. These means may be used separately or in combination. Fifthly, the temperature of the compression gases can be modulated for heat transfer use in several ways. The preferred way is to mix them with gases which have been used in the expansion portion of the cycle, which maximizes the efficiency of the use of both streams of gases. In addition, and alternately, the gases may be modulated by being mixed with recycle gases or by having water injected into them. The last means also increases the mass flow of gases to the heat transfer units without substantial loss of pressure.
UTILIZATION OF HOT HIGH PRESSURE GASES FOR HEAT TRANSFER PURPOSES The hot high pressure gases generated by the means and in the manner just described differ from more conventional heat transfer fluids, such as steam, or fan driven heated air, in several material respects. They are hot, having a temperature as high as about 900 to l500F., if they come directly from combustion chamher, or 600 to 1200F., if they come from the turbine exhaust. Furthermore, the gases are at high pressure, and the energy represented by their high pressure is potentially available for creating turbulent flow and conversion into heat for heat transfer purposes. The gases, unlike steam (which can also be hot and at high pressure) are, in the main, made up of noncondensibles. Thus, they consist of nitrogen, unburned oxygen, carbon dioxide, and carbon monoxide as well as a certain amount of water vapor resulting from combustion of hydrogen in the fuel and/or the injection of water into the gases as outlined above. Despite a certain measure of water vapor in the gases, they differ radically from steam in that the fraction of condensibles is relatively low. This combination of properties in the hot high pressure gases generated in accordance with the invention gives them great potential for use as a heat transfiuid, especially in drying operations of the kind necessary in the production of paper, kraftboard and the like.
However, in order to fully exploit the potential of the hot high pressure gases for heat transfer purposes, special steps and equipment arrangements are necessary. These will be discussed in this section, chiefly in the context of paper drying.
Because the operating conditions for various paper drying operations vary so widely, the application of the invention will be described with reference to several different characteristic types of paper drying operations and equipment. These different operations will also illustrate varsatility of the present invention in heat transfer systems having widely varying operating conditions.
YANKEE AND MG DRYERS Yankee and MG Dryers are commonly used in the paper industry for forming light weight tissue-type paper. The water is removed from the paper in a single pass around a relatively large diameter drum. Such drying is characterized by high heat flows and relatively high temperature, although care must be taken to avoid excessive temperatures which will degrade the paper.
FIGS. 12 and 13 illustrate the application of various features of the present invention to a Yankee-or MG- type dryer. The dryer has a relatively large diameter drum 80., which is rotated counter-clockwise as FIG. 13 is drawn. Wet paper is carried to the dryer on a web or felt 81 and is transferred to drum by means of pressure roll 82. The paper, after drying, is stripped from the drum 80 by doctor blade 83. The strip of paper is designated in FIG. 13 by the letter P.
Heat for drying the paper is supplied to the Yankeetype drum by hot high pressure gases generated by the means and methods described above. Heat transfer is effected between these gases and the drum 80 and the paper P in three stages, according to the preferred embodiment. The heat transfer gas may be used serially in the three stages, or, two or more of the stages may be supplied with gas directly from the generating means.
The three stages, in their preferred sequence, if the gas is passed through them serially, are first, heating by gas impingement on the internal surface of the Yankee cal surface 84 having two gas-tight end pieces 85 and 86 fitted to it. The end pieces include shaft members 87 and 88 journaled respectively in bearings 89 and'90. The construction just described results in a drum dryer mounted for rotation, which drum dryer is adapted to contain hot heat transfer gases in the interior thereof.
As mentioned above, one stage in which hot high pressure heat transfer gases are utilized involves the heating of the drum from the interior thereof. In order to accomplish this, shaft member 88 is hollow and is fitted at its outer end with a gas-tight rotary joint 91. A heat transfer gas input line 92 passes through joint 91 and shaft member 88 coaxial therewith, and substantially coaxial with the Yankee drum 80. This line feeds hot heat transfer gases to the interior of plenum 93. Plenum 93 is mounted in the'interior of drum 80, but does not rotate therewith. It is roughly shaped like a segment of a circle, in end view, as shows most clearly in FIG. 13. The curved surface 94 of plenum 93 which is presented to the interior surface of drum 80 is made up of a series of slot-like nozzles 95 arranged in side-byside relationship to one another across the width of drum 80. As can be seen in both FIGS. 12 and 13, the exit ends of nozzles 95 are spaced slightly from the interior surface of drum 80. I
In accordance with the invention, nozzles 95 are pitched helically with respect to the interior of drum 7 80. This has several advantages. By this means, every increment of width of drum 80 is at some point directly I exposed to hot high pressure gases issuing directly from nozzles 95, even though the nozzles are spaced a finite distance apart.
Hot high pressure gas is fed into plenum 93 through input line 92 as indicated by arrow 96. It passes through nozzles 95 and impinges against the interior surface of drum 80. Because of the rotation of drum 80' with respect to nozzles 95, and because of the slot-like configuration of the nozzles, and further because of the high pressure of the gases in the interior of the plenum 93, conditions are created at the interior surface of drum 80 which are extremely favorable for efiicient heat transfer. That is to say, the three features just mentioned tend to result in a very thin gas film on the interior of drum 80, which film offers a relatively low resistance to heat flow. The turbulent condition of gases passing through nozzles 95 and the turbulent condition of the gases on the underside of the nozzles 95 tends to maximize the transport of heat to the interior surface of drum 80, as well as tending to reduce the film thicknessof the film of relatively, quiescent gases at the very surface of drum 80. In this manner, efficiency of heat transfer from the gases to the paper being dried is materially increased.
FIG. 14 illustrates, in an enlarged cross-sectional view, two of the nozzles 95 constructed in accordance with the invention. The distance (d) between the center lines of adjacent slot-like nozzles is preferably less than the helical pitch of each nozzle from one end to the other. This feature provides complete assurance that every increment of width of drum 80 is exposed di- 10 rectly to hot high pressure gas, as explained above. The highly turbulent flow of the gases after passage through the nozzles is shown by the arrows on FIG. 14.
Returning now to FIG. 13, it can be seen that converging nozzles 96 and 97 are provided at each end of the plenum 94 for directing hot gases which have passed through nozzles 95 in paths adjacent the interior surface of drum as the gases flow into the upper portion 98 of the interior of the drum 80. Such nozzles extend the effective exposure time of the hot gases to the interior surface of drum 80.
The upper portion 98 may be thought of as a gathering chamber for the partially spent heat transfer gases which have passed through plenum94, nozzles 95, and converging nozzles 96 and 97. The gases pass out of this chamber 98 through hollow shaft 88 and into duct 99. Duct 99, the end of which is shown in phantom outline in FIG. 13, conveys the hot high pressure gases into the next heat transfer stage. This stage consists of a plenum 100 having a concave radiator plate 101 forming one wall thereof. The curved radiator plate 101 is shaped and positioned to fit closely around a portion of the surface drum 80, but does not contact the drum. There is a narrow passage or space between the concave face of radiator plate 101 and the outer surface of drum 80 drum 80 through which the paper (p) being dried passes.
Mounted within the second stage plenum 100, closely adjacent the convex inner surface of radiator plate 101, is an array of nozzles 102. Nozzles 102 are much like nozzles in structure and arrangement, inthat they are arranged side by side across the width of second stage plenum 100, and thus extend substantially across the width of the drum 80. In addition, they are helically pitched, and adjacent nozzles are spaced from one another a distance less then the helical pitch. Hot high pressure gases obtained from the first heat transfer stage as just described enter plenum from duct 99. They pass through nozzles 102 and impinge against the inner surface of radiator plate 101. The heat thus transferred to radiator plate 101 is ultimately transferred radiantly to the paper passing by the plate on the surface of drum 80.
The foregoing structure results in the creation of conditions at the interiorsurface of radiator plate 101 which are very favorable for. efficient transfer of heat from the gases to the radiator plate. That is to say, the hot high pressure gases passing through nozzles 102impinge on plate 101 strongly and have high intemalturbulence. Thus, the film of quiescent gases at the surface is very thin and presents a reduced barrier to heat transfer.
The partially spent gases which have passed through nozzles 102 and have given up heat to radiator plate 101 are exhausted directly into the third heat transfer stage. The structure of the third stage can be seen in both FIGS. 12 and 13. It includes a third stage plenum 103, which is positioned adjacent the outer surface of drum 80. One side of this plenum is made up of an array of impingement nozzles 104 and are curved to fit closely around part of the surface of drum 80, and to discharge thereon. These nozzles 104 are structurally very similar to the nozzles 102 of the second stage and the nozzles 95 of the first stage. Like the earlier set of nozzles, the nozzles 104 are arranged in side by side array across the width of plenum 104, and thus substantially across the width of drum 80, and are helically pitched, in addition to being spaced from one another 1 1 a distance less than the helical pitch. The gases passing from the second stage into plenum 103 of the third stage are metered by an adjustable gate 105. It should also be noted that the nozzle array 104 is provided with a series of deflector plates 106 to give downward impetus to the gas.
The gases from the second stage pass through gate 105 into plenum 103 and then downwardly through nozzles 104 to impinge directly on the paper on the outside of drum 80. The high velocity impingement of the hot gases provides for good heat transfer from the gases into the paper and for good mass transfer of water out of the paper into the gas. The third stage is provided with an exhaust plenum 107, which is positioned near the surface of drum 80 adjacent the downstream end of nozzle array 104. This plenum is preferably operated at slightly below atmospheric pressure, and the low pressure gases are withdrawn through duct 108 for recycle or auxiliary use or disposal.
As mentioned above, the gases are impinged in the third stage directly onto the paper. FIG. illustrates somewhat diagrammatically the mechanism by which this occurs. The paper is indicated by the letter (P) and the helically pitched lines 109 represent the nozzle outlets. The set of vectors designated (A) illustrate the fact that the initial velocity of the gas passing through the nozzles is greater than the velocity of the paper and the gas will therefore tend both to spread into the space between nozzles and to move down the paper. Eventually, the gas loses enough velocity so that it does not tend to move down the paper but rather tends to spread across the paper, this condition being indicated by the bracket (B). Still later, the paper will give an impetus to the gas and restore a downstream component to it by means of a drag effect. This condition is illustrated by the bracket (C). It should also be realized that a similar mechanism of gas flow occurs adjacent the interior surface of drum 80 when gas passes through nozzles 95.
It will be noted that the arrangement of equipment for the Yankee dryer just described makes use of two stages in which the hot high pressure gases are brought into indirect heat transfer relationship with the paper being dried, followed by one stage in which the gases are directly contacted with the paper. This arrangement is of great advantage when the initial temperature of the heat transfer gases is very high. When the initial temperature of the heat transfer gases is somewhat lower, it may be desirable to have two stages in which the gases are directly contacted with the paper to be dried.
This goal may be accomplished by a very simple modification of the equipment just described. The second stage, that is the stage which includes plenum 100, radiator plate 101, and nozzles 102, may be modified to omit radiator plate 101 so that noules 102 discharge directly onto the paper passing around drum 80. The gas, after it contacts the paper, passes into plenum 103 of the third stage.
In both of the arrangements just described, the hot gas is brought into direct contact with the paper being dried in at least one stage. When the gas is employed in this manner, it must be relatively clean, that is, free of soot and other particulate matter, because such entrained dirt will tend to be deposited on the paper being dried. Even if all of the stages utilizing the hot gas for heat transfer are like the first stage just described, and involve only indirect contact between the gas the paper, it may be desirable to have the gases in reasonably 12 clean condition so that a deposit of dirt and soot is not accumulated on the heat transfer surface, such as the interior of drum 80. Soot and the like, when formed into a layer, has a relatively low coefficient of heat transfer, and hence, is not a particularly desirable material to have in the path of heat transfer.
From the above discussion it will be remembered that in accordance with the invention provision is made to take advantage of low cost, relatively dirty burning fuel in the generation of the hot high pressure heat transfer gases. In order to take full advantage of this feature of the invention, without encountering the disadvantage caused by soot just discussed, it may be desirable to interpose filter means between the point where the hot high pressure gases are created, and the point where they are utilized, and especially before the point where they are utilized in direct contact with the paper being dried.
Such filter means are illustrated in FIG. 16. This figure illustrates a cylindrical continuously operating and continuously cleaned filter which may be positioned at a point in the gas flow path, for example, within plenum 100. As can be seen in FIG. 16, the filter unit consists of a cylindrical tube 111 having a foraminous surface, and a porous filter material 112 lining the interior thereof. The cylinder 11 1 is mounted for rotation in the interior of plenum 113, which may be, as marked above, plenum 100 of FIG. 13, or another plenum in a different arrangement. In operation, hot, high pressure, and relatively dirty, gas is fed into the interior of a cylinder 111 as indicated by the arrow 114. The gas passing into the interior of cylinder 111 flows through the walls thereof and outwardly into the interior of plenum 113. The particulate matter in the gas is filtered by filter material 112.
Mounted within cylinder 111 is a small plenum 115, and mounted exteriorly of the cylinder 111, immediately opposite plenum 1 15 is still another plenum 116. Plenum l 16 may be termed a purge input plenum, and plenum 115 may be termed a purge exhaust plenum. Purge fluid, such as air, is forced through plenum 116 as indicated by arrow 117. The purge fluid passes inwardly through the wall of cylinder 111 into the exhaust plenum 115. In doing so, it dislodges and entrains the soot on the filter material 112 positioned at the moment between plenums 116 and 115. Thus the purge gas picks up the dirt from the filter. The purge gas then passes out through exhaust plenum 113 as indicated by the arrow 118 carrying the dirt with it. One convenient source for the purge fluid is compressed air from the compressor of the hot high pressure gas generating means.
As was mentioned above cylinder 1 1 1 is mounted for rotation, and in operation is turned continuously, and in consequence part of the filter material 112 is constantly being cleaned by the purge means just described, while the remainder of filter material 112 is filtering incoming gas.
According to the preferred arrangement, a filter of the kind shown in FIG. 16 should be positioned to extend substantially across the full width of a plenum of a given stage. In this way large filter areas are obtained, and the natural resistance of the filter tends to equalize the pressure distribution across the plenum, and thus to equalize the distribution across the array of nozzles associated with the plenum.
In another embodiment, the sealing stripe 119 between the rotary cylindrical tube 111 and the plenum closing the sides of the plenum chamber. The inner belt periphery outboard of the teeth is also smooth to seal against the inner side plate in similar manner. The belts and side plates thus cooperate to prevent loss of gas laterally from the plenum chamber 153. Gas is fed into the plenum chamber through inlet 158.
Mounted below input plenum 153 is output plenum 159. It is provided with end rolls 1611 and 161 for sealing purposes. Rolls 154, 160, and 155, 161 respectively are opposed to each other, so that some pressing action is exerted on the felt-paper sandwich as it passes through the nip between them. Gas leaves the output plenum 159 through passages 162. In order to provide additional support for the felt and paper sandwich, support roller 163 is mounted within the output plenum. In operation gas is fed into input plenum 153 at high pressure. The gas is hot, and thus tends to evaporate the water in the paper as it passes through it, as well as physically entraining it. The gas passes downwardly through the felt and paper sandwich into lower plenum 159 and ultimately out through passages 162. As the high pressure gas moves through the paper it both entrains water and evaporates water from the paper. It will also entrain and tend to evaporate the water which has been driven from the paper into the lower felt.
An alternate embodiment which is also quite suitable for providing for hot high pressure gas flow through a felt and paper sandwich is shown in FIGS. 21 through 27. In these figures, the upper or input plenum 153 is substantially the same as that used in the unit of FIG. 20. However, the lower unit is considerably modified. As can best be seen in FIG. 22, ther is no output plenum in the conventionally used sense of the word. Instead a frame 171) is provided equipped with rollers 171 and 172 extending across the width of the web and paper sandwich-150451452. Rollers 171 and 172 are desirably placed opposite rollers 154 and 155 to obtain pressing action in the nip between the rollers. An additional bottom roller 173 is also mounted on the frame. Trained over rollers 1'71, 172. and 173 is an endless flat belt 174. Belt 174 is impervious in that gas and water will not pass through it, but it is specially configured to permit gas to flow into the interior of the belt, and thence along the belt. This mode of flow is in dicated by the arrows 175 in FIG. 22. Gas gathering plenums 1'76 and 177 are provided adjacent rollers 171 and 172 respectfully for collecting gas flowing out of the belt 174 as it bends around these rollers. Plenums 176 and 177 are connected by a shroud 183 for sea] purposes. The side walls (not shown) are sealed to the belt in a manner similar to the outer periphery of the belt in FIG. 21.
The structure of the belt 174 may be understood by a consideration of FIGS. 23, 24, and 25. From these figures it can be seen that the belt 174 is made up of a bottom strip or sheet 173 having a number of grooves 179 formed in its. The grooves run lengthwise of the belt. Above the grooves, running traverse of the belt, are a number of strips or rods 181). Thus, when the belt 174 is seen in plan view, as in FIG. 24 it has a grid-like appearance, notwithstanding that it is impervious in the sense described above. FIG. 25 shows in plan view the bottom layer of the belt 178 with grooves 179, the rods 1811 having been removed. FIG. 26 shows a similar structure having deeper grooves 179 in the bottom piece 17%., and having notched rods 180.
Between rollers 171 and 172 of lower frame 170 there is provided a pressure plenum 181. Gas is fed into this plenum to apply a supporting force as indicated by arrows 182 on the underside of belt 174 in the region between rollers 171 and 172.
FIG. 27 illustrates the operating features of the embodiment of FIG. .22. I-Iot high pressure gas is fed into input plenum 153 through inlet duct 158. It passes through the felt and paper sandwich 150, 151, 152, and into the interior of belt 174. It flows through the belt to either collectors 176 or 177. Belt 174 is supported by gas under pressure from pressure plenum 181.
The left half of FIG. 27 illustrates the operating features of the embodiment of FIG. 20. That is, where the flow of gases through the sandwich are not diverted, but are caused to pass directly into plenum 159 and out exhaust 162.
In FIG. 29 there is shown a unit employing a plurality of input and output plenums of the kind shown in FIG. 20, the plenums being located between a single set of rollers 184, 185, 186, and 187. Such an arrangement results in economy in equipment and space. Furthermore, in accordance with the invention, alternate pairs of plenums have gas passed through them in opposite directions. Thus plenum pair 188-189 is a down-flow pair while plenum pair 190, 191 is an up-flow pair. This imparts a pulsating action to the water in the paper and the felts and increases efficiency of water removal. In addition, any compacting action of the felt by reason of the high pressure gas pressing against it in any one pair of plenums is remedied by the opposite flow of gas in the next succeeding pair of plenums.
At various points in the equipment of FIGS. 20, 22 and 29, as well as in the equipment to be described in FIG. 30, pressure loaded seals are desirable. Such a seal is shown in FIG. 28 where it can be seen that two generally parallel slides 200 and 201 are provided for sliding sealing contact with a web 150. Between the parallel slides 200 and 201 is an exhaust line 203 to which suction may be applied to prevent leaks to the atmosphere.
FIG. 30 illustrates another form of the invention adapted to remove water from very wet paper webs in accordance with the invention. In this embodiment, there is provided a drum 210 having a surface configured much like that of the belt 174 described in connection with FIG. 221. Thus, the surface of cylinder 210 is impervious, but is arranged to permit gas flow in the interior thereof. Such a grid-like surface is indicated at 211. Alternately, the surface may merely be grooved, as at 212, to provide for gas flow along the surface. A felt 213, carrying a web of paper 214 is passed over the cylinder 210 in a clockwise direction as FIG. 30 is drawn. An additional felt 215 is fed over the paper web 214 by roller 216 to form a felt-paper sandwich. A gas input plenum 217 is positioned around that portion of cylinder 210 transversed by the felt-paper sandwich. The plenum is divided into a number of compartments 218, 219, 220, 221, and 222, circumferentially around the cylinder so that hot high pressure gas at varying pressures may be fed through the paper being moved around cylinder 211). The gas passes from a given compartment of the plenum downwardly through the felt and paper sandwich and into the grooves provided on the surface of the drum. It then passes around the drum to the collector plenum 2220, or to a similar plenum (not shown) on the opposite side of the drum connected by shroud 225. Pressure loaded seals of the kind described in connection with FIG. 2b are provided at 223 and at 224 on either side of the plenum 217.
13 116 may be removed, thereby allowing the filtered gases to also purge in place of an independent supply 117. This would of course require that the pressure of the filtered gases is higher than the exhaust 118.
PAPER AND PAPER BOARD DRYERS In contrast to the Yankeeand MG-type operations discussed in the preceding section, drying operations for heavier papers and boards are usually conducted by passing the web of paper to be dried over many cylinders in series. conventionally, steam is condensed in the interior of such cylinders and hot air drying hoods are sometimes utilized adjacent the outer surface of the cylinders. The number of cylinders utilized on a line can be considerable; a newsprint production line may use as many as 100 or more cylinders, each about five feet in diameter.
In the drying of paper there is a distinct general pattern to the process, the particulars of which will vary for each operation, and each kind of paper, but the general outlines of which remain the same. This general pattern is illustrated in FIG. 17, which illustrates the drying process as a function of the difference between the saturated steam temperature within a conventional dryer, and the surface temperature of the dryer, as a function of time. The saturated steam temperature is shown in FIG. 17 as a series of horizontal lines for various stages, and the surface temperature is shown sloping upwardly to the right. The vertical distance between the horizontal line and the curve is an inverse measure of the resistance to drying exhibited by the paper. This resistance increases as the moisture content of the paper decreases. As can be seen from FIG. 17, a great proportion of the drying time is occupied in the high resistance region.
As mentioned above, hot air hoods have been used to force air onto paper passing over the cylinders, to supplement the heating obtained from condensing steam inside the cylinders. The hot air typically exhausts laterally from the surface of the paper. This has the unfortunate effect of tending to make the paper float on the cylinder. FIGS. 18 and 19 illustrate an embodiment of the present invention especially adapted for use with conventional paper drying cylinder. In FIG. 18 such a cylinder is shown at 120, with a web or sheet of paper 121 being passed around it. The cylinder 120 may be conventionally equipped to receive saturated steam in the interior thereof, or may be equipped to utilize hot high pressure gas in the interior thereof in a manner similar to the Yankee dryer illustrated in FIGS. 12 and 13.
A drying unit 122 is provided for the cylinder 120. It has a supply plenum 123, a nozzle chamber 124 and an exhaust plenum 125. Gas passes from the supply plenum 123 into the nozzle chamber 124 by passing over a series of throttling gates 126 in the manner indicated by arrow 127. The flow rate may be adjusted by varying the positions of gates 126. If desired, sectional dividers 127 may be included between gates 126 so that different degrees of throttling can be achieved across the width of the plenum 123 by setting various gates 126 at different positions. Gas is fed into the plenum 123 laterally as indicated by arrow 128. It flows from plenum 123 into nozzle chamber 124. One wall of the nozzle chamber is made up of an array of nozzles 129 like those described in connection with the Yankee dryer of FIGS. 12 and 13. Nozzles 129 are helically pitched, and are spaced apart a distance smaller than the helical 14 pitch. They extend substantially across the width of the drum 120.
The gas passes through the nozzles and impinges upon the paper in a manner to effect good heat transfer into the paper and good mass transfer of water out of the paper. The highly turbulent condition of the gases contributes to these effects. At the end of the nozzle section the before-mentioned exhaust plenum has its intake opening 130. Gas passes from the paper surface into the exhaust plenum, and thence laterally outward as indicated by arrow 13 l. The gas taken out of exhaust plenum 130 may be used in another unit on another cylinder, may be disposed of, or may be recycled in part.
The ends of the plenums and nozzle chamber are sealed, and the sealing walls closely approach the cylinder 120 so that little gas escapes laterally from the surface. In order to minimize gas loss circumferentially of the cylinder, seals are used at each circumferential limit of drying unit 122. While in some cases, conventional roller sealing may be effectively employed, in other instances such seals would be undersirable because of their tendency to damage the paper. Hence, there is provided in accordance with the invention a rotatable jet doctor blade 132 which is illustrated in FIG. 19 on an enlarged scale. The jet doctor blade 132 includes a cylindrical manifold 133 having an adjustable sleeve 134 around it. Both the manifold and sleeve are ported in two locations, one port 135 being located opposite inlet passage 136, and the other port 137 being located opposite blades 138 and 139. High pressure gas enters the jet doctor blade through inlet passage 136 and passes outwardly through blades 138 and 139. This gas, being a somewhat higher pressure than the gas passing through nozzles 129, prevents the escape of the bulk of the gas passing through the nozzles. Gas for the jet doctor blade may be provided from the nozzle chamber 124 or may be especially provided. An auxiliary, light, conventional doctor blade is provided at 140.
PRESS DRYING In accordance with the invention the hot high pressure gases generated in the manner described above are also desirably employed for extracting water from extremely wet paper webs, consisting of approximately 80% moisture by weight, which paper webs may thereafter be subjected to the drying operations and methods disclosed hereinbefore.
According to prior practice, extremely wet paper webs have been mounted between endless felts which are then pressed between pairs of rollers. This practice has several disadvantages, amoung them being that the felts are compressed almost closed and are hence not able to receive water forced from the paper efficiently.
In FIGS. 20 and 21 there is shown one form of an apparatus constructed in accordance with the invention which is designed to utilize hot high pressure gas for removing water from extremely wet paper. The unit consists of a pair of felts and 151 between which is carried the paper 152. Above web 150 is an input plenum 153. It is equipped with a pair of rolls 154 and 155 which extend generally across the width of web 150. At their extremities, rolls 154 and 155 are equipped with teeth 156 over which are trained endless belts 157, so that the outer belt radius is the same as the roll radius. Adjacent these belts 157 are mounted side plates with pressurized seals on the outer belt and roll peripheries An alternate to the embodimenthof FIG. 30 is the case where the drum is pervious to the flow of gases and vapors such as the suction roll well' known to those familiar in the art of paper making. 7
In all the embodiments of press drying the use of the top felt is optional when the flow of gases is directed from the top down through the. paper, but then the paper must be narrower than the bottom felt or carrier, and the side plates in sliding seal with the end rolls, must be similarly sealed to the bottom felt or carrier.
By way of summary, it can be pointed out that the equipment described herein results in the provision of means and methods for generating hot high pressure gases for heat transfer purposes and methods and equipment which exploit the excellent properties of such gases as heat transfer fluids to the fullest possible extent in a wide range of drying applications, varying from very wet fragile paper webs, through tissue-type paper, to heavy Kraft paper and paper board.
I claim;
1. The method of supplying heat for heat transfer, which includes producing clean hot high pressure combustion gases by mixing fuel and oxygen-bearing gases in a confined primary space, combusting said mixture to produce hot high pressure gases as combustion products, expanding at least a portion of said combustion products in the actuation of compressor means whereby to compress additional oxygen-bearing gases, mixing at least a portion of the latter with additional fuel in a secondary combustion space at substantially higher temperatures, and combining the hot high pressure gases from said secondary combustion space with exhaust gases derived from the actuation of said compressor means.
2. The method of claim 1 wherein the temperatures in said secondary combustion space are substantially higher than permissible in said primary combustion space or said compressor means.
3. The method of claim 2 wherein vaporizing liquids are injected into the clean hot gas streams to moderate the temperatures of said clean hot gases.
'4. The method of claim 1 wherein vaporizing liquids are injected into the clean hot gas streams to moderate the temperatures of said clean hot gases.
5. The method of supplying heat to a heat transfer surface comprising mixing fuel and oxygen-bearing gases in confined spaced, combusting said mixture at a temperature of at least 900 F., to produce hot, highpressure gases as combustion products, expanding at least a portion of said combustion products in the actuation of compressor means whereby to compress, in at least one compression stage, additional oxygen bearing gases for mixing with additional fuel, delivering the combustion products to nozzles adjacent said heat transfer surface and expanding said combustion products through said nozzles and along said heat transfer surface, whereby to convert a portion of the energy stored in said combustion products as potential energy of pressure into kinetic energy of flow and turbulence at the heat transfer boundary between said combustion products and said heat transfer surface.
6. The method of supplying heat to a heat transfer surface according to claim 5 wherein said surface is of interstitial structure, and moves in a predetermined path.
7. A method in accordance with claim 6 and further products into the combustion products being delivered comprising establishing a path of flow for the material I to be dried and moving it through said path of flow at a preselected rate, generating hot high pressure gases in a compression-combustion-expansion cycle, said generated gases initially being at temperatures substantially in excess of the degradation temperature of said material to be dried and at pressures substantially in excess of atmospheric pressure, delivering said hot high pressure gases to a region adjacent said path of flow, expanding said hot high pressure gases in said region to convert a portion of the energy stored therein as potential energy of pressure into kinetic energy of flow, whereby to create hot rapidly movig gases, impinging said hot rapidly moving gases on the material to be dried which is moving through said path of flow to effect heat transfer between the gases and the material to be dried and mass transfer of water from said material to said gases, said gases being impinged upon said material at a rate preselected in accordance with the rate of movement of said material, its degradation temperature, and the temperature of said gases, said rate being so selected that the equilibrium temperature of said material in the vicinity of said impingement is lower than its degradation temperatures, and displacing the impinged gases after said transfer of mass and heat, by impinging additional hot rapidly moving gases of the material.
11. A method according to claim 10 and further including the step of cooling said hot high pressure gases to a temperature below the degradation temperature of said material by placing said gases in indirect heat transfer relationship with said material prior to converting them to said hot rapidly moving gases and impinging them directly on said meterial.
12. The method of claim 10 and further including the step of partially cooling said hot high pressure gases prior to impinging them upon the material to be dried.
13. The method of claim 12 wherein said partial cooling is effected by placing said gases in indirect heat transfer relationship with said material prior to impringing them directly on said material.
14. The method of supplying heat to a moving heat transfer surface, comprising burning combustible material under such conditions as to generate a gas of combustion at substantially elevated temperature and pressure, the temperature being at least 900F. whereof the pressure energy is derived at least for the most part form most of the internal energy released from sad combustible material, and utilizing such pressure energy to supply high temperature gas to and directing a rapid stream of said gas against said moving surface.
15. The method of claim 14 wherein at least 'a substantial portion of said gas it utilized as a power stream for jet pumping.
16. The method of claim 14, wherein said surface is of interstitial structure, including moving said structure across a pressure zone and constraining at least a por- 19 tion of said gas to pass through said structure in said zone.
17. The method of claim 14, wherein said surface constitutes one side of a foraminous web, and wherein at least a portion of said gas of combustion is passed through said web by a pressure differential 18. The method of supplying heat, to a heat transfer surface movable in a predetermined path, comprising burning combustible material under such conditions as to generate a gas of combustion at substantially elevated temperature and pressure, whereof the pressure energy is derived at least for the most part from the internal energy released from said combustible material, and supplying such hot high pressure gas to and directing a rapid stream of said gas against said surface in such manner and in such a direction that at least a substantial component of the force exerted thereby is in the general direction of movement of said heat transfer surface so as to impart to the latter a tendency to move in said predetermined path while at the same time heating said surface.
19. The method of supplying heat for heat transfer, which includes producing clean hot pressure combustion gases by mixing fuel and oxygenbearing gases in a confined primary space, combusting said mixture in a temperature range of about 900 to 1500F.; to produce hot high pressure gases as combustion products, expanding at least a portion of said combustion products in the actuation of compressor means whereby to compress additional oxygen-bearing gases containing most of the available kinetic and flow energy developed by said compressor means, mixing at least a portion of the latter with additional fuel in a secondary combustion space, with combustion at a higher temperature than in said primary combustion space, and delivering the resulting combustion mixture from said secondary space with at least said kinetic and flow energy for such heat transfer.
20. The method of claim 19, wherein said gases containing most of said energy are first delivered to ejector means to admix with at least one other gas before the specified delivery for heat transfer. =l

Claims (20)

1. THE METHOD OF SUPPLYING HEAT FOR HEAT TRANSFER, WHICH INCLUDES PRODUCING CLEAN HOT HIGH PRESSURE COMBUSTION GASES BY MIXING FUEL AND OXYGEN-BEARING GASES IN A CONFINED PRIMARY SPACE, COMBUSING SAID MIXTURE TO PRODUCE HOT HIGH PRESSURE GASES AS COMBUSTION PRODUCTS, EXPANDING AT LEAST A PORTION OF SAID COMBUSTION PRODUCTS IN THE ACTUATION OF COMPRESSOR MEANS WHEREBY TO COMPRESS ADDITIONAL OXYGEN-BEARING GASES, MIXING AT LEAST A PORTION OF THE LATTER WITH ADDITIONAL FUEL IN A SECONDARY COMBUSTION SPACE AT SUBSTANTIALLY HIGHER TEMPERATURES, AND COMBINING THE HOT HIGGH PRESSURE GASES FROM SAID SECONDARY COMBUSTION SPACE WITH EXHAUST GASES DERIVED FROM THE ACTUATION OF SAID COMPRESSOR MEANS.
2. The method of claim 1 wherein the temperatures in said secondary combustion space are substantially higher than permissible in said primary combustion space or said compressor means.
3. The method of claim 2 wherein vaporizing liquids are injected into the clean hot gas streams to moderate the temperatures of said clean hot gases.
4. The method of claim 1 wherein vaporizing liquids are injected into the clean hot gas streams to moderate the temperatures of said clean hot gases.
5. The method of supplying heat to a heat transfer surface comprising mixing fuel and oxygen-bearing gases in confined spaced, combusting said mixture at a temperature of at least 900* F., to produce hot, high-pressure gases as combustion products, expanding at least a portion of said combustion products in the actuation of compressor means whereby to compress, in at least one compression stage, additional oxygen bearing gases for mixing with additional fuel, delivering the combustion products to nozzles adjacent said heat transfer surface and expanding said combustion products through said nozzles and along said heat transfer surface, whereby to convert a portion of the energy stored in said combustion products as potential energy of pressure into kinetic energy of flow and turbulence at the heat transfer boundary between said combustion products and said heat transfer surface.
6. The method of supplying heat to a heat transfer surface according to claim 5 wherein said surface is of interstitial structure, and moves in a predetermined path.
7. A method in accordance with claim 6 and further comprising recycling a portion of said combustion products into the combustion products being delivered along said interstitial heat transfer surface.
8. A method in accordance with claim 6 and further comprising directing said combustion products in at least one subsequent stage into contact with said interstitial surfaces for further heat transfer thereinto.
9. The method of claim 6, wherein at least a portion of said combustion products is passed through said interstitial structure by a pressure differential.
10. The method of drying a water bearing material of the kind which degrades at a determinable temperature comprising establishing a path of flow for the material to be dried and moving it through said path of flow at a preselected rate, generating hot high pressure gases in a compression-combustion-expansion cycle, said generated gases initially being at temperatures substantially in excess of the degradation temperature of said material to be dried and at pressures substantially in excess of atmospheric pressure, delivering said hot high pressure gases to a region adjacent said path of flow, expanding said hot high pressure gases in said region to convert a portion of the energy stored therein as potential energy of pressure into kinetic energy of flow, whereby to create hot rapidly movig gases, impinging said hot rapidly moving gases on the material to be dried which is moving through said path of fLow to effect heat transfer between the gases and the material to be dried and mass transfer of water from said material to said gases, said gases being impinged upon said material at a rate preselected in accordance with the rate of movement of said material, its degradation temperature, and the temperature of said gases, said rate being so selected that the equilibrium temperature of said material in the vicinity of said impingement is lower than its degradation temperatures, and displacing the impinged gases after said transfer of mass and heat, by impinging additional hot rapidly moving gases of the material.
11. A method according to claim 10 and further including the step of cooling said hot high pressure gases to a temperature below the degradation temperature of said material by placing said gases in indirect heat transfer relationship with said material prior to converting them to said hot rapidly moving gases and impinging them directly on said meterial.
12. The method of claim 10 and further including the step of partially cooling said hot high pressure gases prior to impinging them upon the material to be dried.
13. The method of claim 12 wherein said partial cooling is effected by placing said gases in indirect heat transfer relationship with said material prior to impringing them directly on said material.
14. The method of supplying heat to a moving heat transfer surface, comprising burning combustible material under such conditions as to generate a gas of combustion at substantially elevated temperature and pressure, the temperature being at least 900* F. whereof the pressure energy is derived at least for the most part form most of the internal energy released from sad combustible material, and utilizing such pressure energy to supply high temperature gas to and directing a rapid stream of said gas against said moving surface.
15. The method of claim 14 wherein at least a substantial portion of said gas it utilized as a power stream for jet pumping.
16. The method of claim 14, wherein said surface is of interstitial structure, including moving said structure across a pressure zone and constraining at least a portion of said gas to pass through said structure in said zone.
17. The method of claim 14, wherein said surface constitutes one side of a foraminous web, and wherein at least a portion of said gas of combustion is passed through said web by a pressure differential.
18. The method of supplying heat, to a heat transfer surface movable in a predetermined path, comprising burning combustible material under such conditions as to generate a gas of combustion at substantially elevated temperature and pressure, whereof the pressure energy is derived at least for the most part from the internal energy released from said combustible material, and supplying such hot high pressure gas to and directing a rapid stream of said gas against said surface in such manner and in such a direction that at least a substantial component of the force exerted thereby is in the general direction of movement of said heat transfer surface so as to impart to the latter a tendency to move in said predetermined path while at the same time heating said surface.
19. The method of supplying heat for heat transfer, which includes producing clean hot pressure combustion gases by mixing fuel and oxygenbearing gases in a confined primary space, combusting said mixture in a temperature range of about 900* to 1500* F.; to produce hot high pressure gases as combustion products, expanding at least a portion of said combustion products in the actuation of compressor means whereby to compress additional oxygen-bearing gases containing most of the available kinetic and flow energy developed by said compressor means, mixing at least a portion of the latter with additional fuel in a secondary combustion space, with combustion at a higher temperature than in said primary combustion space, and delivering the resulting combustion mixtUre from said secondary space with at least said kinetic and flow energy for such heat transfer.
20. The method of claim 19, wherein said gases containing most of said energy are first delivered to ejector means to admix with at least one other gas before the specified delivery for heat transfer.
US358498A 1971-03-29 1973-05-09 Method for hot gas heat transfer, particularly for paper drying Expired - Lifetime US3919783A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US358498A US3919783A (en) 1971-03-29 1973-05-09 Method for hot gas heat transfer, particularly for paper drying

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12916571A 1971-03-29 1971-03-29
US358498A US3919783A (en) 1971-03-29 1973-05-09 Method for hot gas heat transfer, particularly for paper drying

Publications (1)

Publication Number Publication Date
US3919783A true US3919783A (en) 1975-11-18

Family

ID=26827305

Family Applications (1)

Application Number Title Priority Date Filing Date
US358498A Expired - Lifetime US3919783A (en) 1971-03-29 1973-05-09 Method for hot gas heat transfer, particularly for paper drying

Country Status (1)

Country Link
US (1) US3919783A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2813933A1 (en) * 1977-04-04 1978-10-12 Valmet Oy METHOD OF GUIDING A WEB IN THE DRY SECTION OF A PAPER MACHINE AND DRYING CYLINDER GROUP FOR PERFORMING THE METHOD
US4148493A (en) * 1978-04-14 1979-04-10 Vsesojuzny Nauchno-Issledovatelsky I Experimentalny Istitut Po Pererabotke Khinicheskikh Volokon Sealing device for high pressure apparatus
US4688335A (en) * 1986-02-18 1987-08-25 James River Corporation Of Nevada Apparatus and method for drying fibrous web material
US5134786A (en) * 1990-03-21 1992-08-04 Carbonell Compania Anonima Pressing and drying machine
US5437107A (en) * 1992-06-30 1995-08-01 The Proctor & Gamble Company Limiting orifice drying of cellulosic fibrous structures, apparatus therefor, and cellulosic fibrous structures produced thereby
US5729910A (en) * 1996-10-29 1998-03-24 Marquip, Inc. Rotary drying drum
US5915813A (en) * 1996-05-21 1999-06-29 Fort James Corporation Apparatus and method for drying a wet web and modifying the moisture profile thereof
US5938975A (en) * 1996-12-23 1999-08-17 Ennis; Bernard Method and apparatus for total energy fuel conversion systems
US6294050B1 (en) 1998-09-11 2001-09-25 Voith Sulzer Papiertechnik Patent Gmbh Drying end of a machine for the production of a material web and method of drying a material web
US6397493B1 (en) * 1999-08-31 2002-06-04 Voith Sulzer Papiertechnik Patent Gmbh Machine for producing and/or treating a material web
US20050160618A1 (en) * 2002-03-19 2005-07-28 Metso Paper, Inc. Method and equipment for producing driving power in a paper or board mill
US20090165462A1 (en) * 2007-10-27 2009-07-02 Ludwig Lohr Operating site with an electricity/heat generator which functions on a combustion basis
US7918040B2 (en) * 2004-03-02 2011-04-05 Nv Bekaert Sa Drier installation for drying web
US7926200B2 (en) 2004-03-02 2011-04-19 Nv Bekaert Sa Infrared drier installation for passing web
US8919008B2 (en) * 2010-05-06 2014-12-30 Andritz Ag Yankee dryer for drying a pulp web

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1870971A (en) * 1928-04-17 1932-08-09 Sundstrom Einar Fritiof Process and apparatus for preparing webs from fibrous materials
US2119907A (en) * 1935-12-28 1938-06-07 John C Dunlap Heating apparatus for liquid
US2532910A (en) * 1947-09-02 1950-12-05 Kalamazoo Vegets Le Parchment Apparatus for drying paper, paperboard, pulp, and the like
US2678532A (en) * 1951-03-16 1954-05-18 Chemical Foundation Inc Gas turbine process using two heat sources
US2717491A (en) * 1951-09-28 1955-09-13 Power Jets Res & Dev Ltd Heat and power supply system with integrated steam boiler and gas turbine plant
US2802646A (en) * 1954-05-14 1957-08-13 Air Preheater Fluid reactant rotor in regenerative heat exchange apparatus
US2975594A (en) * 1955-02-10 1961-03-21 Texaco Inc Generation of power from ash-forming hydrocarbons
US3004347A (en) * 1958-12-08 1961-10-17 Sun Oil Co Drying of solid materials
US3150487A (en) * 1963-04-08 1964-09-29 Gen Electric Steam turbine-gas turbine power plant
US3299530A (en) * 1965-03-11 1967-01-24 Kimberly Clark Co Papermaking machine
US3309786A (en) * 1965-03-18 1967-03-21 Fmc Corp Heated roll
US3362080A (en) * 1966-02-14 1968-01-09 Beloit Corp Through drying of paper
US3404463A (en) * 1967-08-08 1968-10-08 Robert B. Kemp Jr. Process and apparatus for drying photographic prints

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1870971A (en) * 1928-04-17 1932-08-09 Sundstrom Einar Fritiof Process and apparatus for preparing webs from fibrous materials
US2119907A (en) * 1935-12-28 1938-06-07 John C Dunlap Heating apparatus for liquid
US2532910A (en) * 1947-09-02 1950-12-05 Kalamazoo Vegets Le Parchment Apparatus for drying paper, paperboard, pulp, and the like
US2678532A (en) * 1951-03-16 1954-05-18 Chemical Foundation Inc Gas turbine process using two heat sources
US2717491A (en) * 1951-09-28 1955-09-13 Power Jets Res & Dev Ltd Heat and power supply system with integrated steam boiler and gas turbine plant
US2802646A (en) * 1954-05-14 1957-08-13 Air Preheater Fluid reactant rotor in regenerative heat exchange apparatus
US2975594A (en) * 1955-02-10 1961-03-21 Texaco Inc Generation of power from ash-forming hydrocarbons
US3004347A (en) * 1958-12-08 1961-10-17 Sun Oil Co Drying of solid materials
US3150487A (en) * 1963-04-08 1964-09-29 Gen Electric Steam turbine-gas turbine power plant
US3299530A (en) * 1965-03-11 1967-01-24 Kimberly Clark Co Papermaking machine
US3309786A (en) * 1965-03-18 1967-03-21 Fmc Corp Heated roll
US3362080A (en) * 1966-02-14 1968-01-09 Beloit Corp Through drying of paper
US3404463A (en) * 1967-08-08 1968-10-08 Robert B. Kemp Jr. Process and apparatus for drying photographic prints

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2813933A1 (en) * 1977-04-04 1978-10-12 Valmet Oy METHOD OF GUIDING A WEB IN THE DRY SECTION OF A PAPER MACHINE AND DRYING CYLINDER GROUP FOR PERFORMING THE METHOD
US4148493A (en) * 1978-04-14 1979-04-10 Vsesojuzny Nauchno-Issledovatelsky I Experimentalny Istitut Po Pererabotke Khinicheskikh Volokon Sealing device for high pressure apparatus
US4688335A (en) * 1986-02-18 1987-08-25 James River Corporation Of Nevada Apparatus and method for drying fibrous web material
US5134786A (en) * 1990-03-21 1992-08-04 Carbonell Compania Anonima Pressing and drying machine
US5437107A (en) * 1992-06-30 1995-08-01 The Proctor & Gamble Company Limiting orifice drying of cellulosic fibrous structures, apparatus therefor, and cellulosic fibrous structures produced thereby
US5915813A (en) * 1996-05-21 1999-06-29 Fort James Corporation Apparatus and method for drying a wet web and modifying the moisture profile thereof
US5729910A (en) * 1996-10-29 1998-03-24 Marquip, Inc. Rotary drying drum
US6734331B2 (en) 1996-12-23 2004-05-11 Egt Developments, Llc Process for producing olefins and diolefins
US5938975A (en) * 1996-12-23 1999-08-17 Ennis; Bernard Method and apparatus for total energy fuel conversion systems
US6294050B1 (en) 1998-09-11 2001-09-25 Voith Sulzer Papiertechnik Patent Gmbh Drying end of a machine for the production of a material web and method of drying a material web
US6397493B1 (en) * 1999-08-31 2002-06-04 Voith Sulzer Papiertechnik Patent Gmbh Machine for producing and/or treating a material web
US20050160618A1 (en) * 2002-03-19 2005-07-28 Metso Paper, Inc. Method and equipment for producing driving power in a paper or board mill
US7150111B2 (en) * 2002-03-19 2006-12-19 Metso Paper, Inc. Method and equipment for producing driving power in a paper or board mill
US7918040B2 (en) * 2004-03-02 2011-04-05 Nv Bekaert Sa Drier installation for drying web
US7926200B2 (en) 2004-03-02 2011-04-19 Nv Bekaert Sa Infrared drier installation for passing web
US20090165462A1 (en) * 2007-10-27 2009-07-02 Ludwig Lohr Operating site with an electricity/heat generator which functions on a combustion basis
US8919008B2 (en) * 2010-05-06 2014-12-30 Andritz Ag Yankee dryer for drying a pulp web

Similar Documents

Publication Publication Date Title
US4146361A (en) Apparatus for hot gas heat transfer particularly for paper drying
US3919783A (en) Method for hot gas heat transfer, particularly for paper drying
US3668785A (en) Integrated drying processes and apparatus
US6694639B2 (en) Sheet material and method and apparatus for drying therefor
CA1117300A (en) Power generation system
US3694926A (en) Sonic drying of webs
US4026037A (en) Apparatus for steam drying
PL177359B1 (en) Method of and system for facilitating fuel admission into pressurised space
US3296710A (en) Absorbent dryer
US3176412A (en) Multiple nozzle air blast web drying
US3316657A (en) Air deflector utilizing coanda effect
US3284920A (en) Apparatus for drying web material
US4127946A (en) Method for steam drying
JPS6261861B2 (en)
US6138381A (en) Treatment of moist fuel
JP2019132439A (en) Apparatus and method for drying high-moisture biomass resource
US3362080A (en) Through drying of paper
US3289315A (en) Drying rolls utilizing belts transparent to infrared radiation
US2763477A (en) Drying machine
RU2192136C1 (en) Beet pulp drying method
CA1193432A (en) Conduction dryer for flaked or fluffed material
EP0377723B1 (en) Drying method in a power-plant process and dryer used in the method
Steinwall Integration of biomass gasification and evaporative gas turbine cycles
GB1558913A (en) Drying of wet material
FI80757C (en) KOMBINERAT GASTURBINS- OCH AONGTURBINSKRAFTVERK OCH FOERFARANDE FOER ATT UTNYTTJA BRAENSLETS VAERME-ENERGI FOER ATT FOERBAETTRA KRAFTVERKSPROCESSENS TOTALA VERKNINGSGRAD.