US3918447A - Ventilators - Google Patents

Ventilators Download PDF

Info

Publication number
US3918447A
US3918447A US390653A US39065373A US3918447A US 3918447 A US3918447 A US 3918447A US 390653 A US390653 A US 390653A US 39065373 A US39065373 A US 39065373A US 3918447 A US3918447 A US 3918447A
Authority
US
United States
Prior art keywords
piston
tube
compartment
cylinder
ventilator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US390653A
Inventor
John S Inkster
Norman Burn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB602573A external-priority patent/GB1455583A/en
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3918447A publication Critical patent/US3918447A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0057Pumps therefor
    • A61M16/0072Tidal volume piston pumps

Landscapes

  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Pulmonology (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Respiratory Apparatuses And Protective Means (AREA)

Abstract

Apparatus is described for the ventilation of mammals which utilizes a linear arrangement of cylinder, piston and deliveryvolume control means to reduce the size of the ventilator. The preferred embodiment is suitable particularly for the ventilation of neonates and infants.

Description

United States Patent ln-kster et al.
1451 Nov. 11, 1975 [54] VENTILATORS 1,371.702 3/1921 Lyon 128/1457 7 [76] Inventors: John S. lnkster, 16 Oaklands, Gosforth Newcastle-upon-Tyne,3, 31 85147 5/1965 England; Norman Burn, 61 3,530,373 9/1970 Tavistock Road, Newcastle upon 3,749,524 7/1973 Tyne, England, NE2 SHY [22] Filed: 1973 Primary E.\'amine1-Richard A. Gaudet [211 Appl. No.: 390,653 Assistant Examiner-Henry J. Recla Attorney, Agent, or Firm-John A. Dhuey [30] Foreign Application Priority Data Aug. 19, 1972 United Kingdom 38788/72 Feb. 7. 1973 United Kingdom 6025/73 [57] ABSTRACT 8/ 128/ 6; 417/398 Apparatus is described for the ventilation of mammals [51] Int. Cl. A61M 16/00 which utilizes a linear arrangement of cylinder, piston Field Of Search 5 145, 145.6, and delivery-volume control means to reduce the size 128/1457, 4 2/98 D; 417/398 of the ventilator. The preferred embodiment is suitable particularly for the ventilation of neonates and [56] References Cited infants.
UNITED STATES PATENTS 1,202,126 10/1916 Tullar 128/145?! 3 Claims, 5 Drawing Figures 1t 1| (IF/P II A;
a V I M 30 t L; 13 I? l l 1\27 I 1 p r 4 in l5--M US. Patent Nov. 11,1975
FIGURE 1 12 I I I,
Sheet 1 of 3 US. Patent Nov. 11,1975 Sheet2of3 3,918,447
FIGURE 2 US. Patent Nov. 11, 1975 Sheet 3 of3 3,918,447
FIGURE 3 FIGURE 4 VENTILATORS The present invention is concerned generally with mechanical ventilators. More particularly, it is concerned with mechanical ventilators for delivery of a pre-determined volume of gas to a mammal, wherein the ventilator is of such configuration that the overall size is minimized.
Conventional ventilators are generally large units capable of ventilating adults. The large volumes of breathing gas involved in those systems often make them unsuitable for the ventilation of pediatric patients. Thus, it is an object of this invention to provide a ventilator which can be used for the ventilation of pediatric patients. It is a further object of this invention to provide a ventilator which is of such size that it may be placed inside an incubatorfor the ventilation of neonates.
A better understanding of the present invention and of its many advantages will be had by referring to the following drawings, in which:
FIG. l'is a perspective view of the ventilator;
FIG. 2 is a partial sectional view of the ventilator;
FIG. 3 is a cross-sectional view of the breathing gas inlet and outlet valve plate;
FIG. 4 is a top view of the breathing gas inlet and outlet valve plate; and
FIG. 5 is a bottom view of the cylinder end plate.
With reference to those figures, the present invention comprises a cylinder substantially closed at the upper end by cover flange 38 and at the bottom end by cover flange 33, a movable piston 11 dividing the cylinder 1.0 into two compartments, a driving gas connection 12 to one compartment, breathing gas inlet 13 and outlet 16 connected to the other compartment, valves 20 and 29 associated with said breathing gas inlet and outlet connections, respectively, to direct the flow of breathing gas from the inlet connection 13 to the outlet connection 16, and volume control means defining the relative volumes of the two compartments.
The ventilator further may be provided with a valve 15 through which expiredgas from the animal must pass, the valve requiring a pre-determined and adjustable gas pressure to allow flow of expired gas through it, thereby maintaining a residual pressure within the lungs of the patient. Also, a pressure relief valve 34 and a condensate drain 35 may be provided in bottom cover flange 33.
The ventilator of the present invention is a unit capable of providing a pre-determined volume of respiratory gas to an animal while minimizing the amount of dead space in the system, which dead space contains breathing gas which will not be delivered to the patient during the normal delivery cycle of the ventilator. The ventilator is conveniently driven by the gas supply from a conventional respiratory ventilator or from an auxilliary unit capable of providing the necessary gas pulses.
In a particularly preferred embodiment of this invention as described with'reference to FIGS. 2-5, the ventilator comprises cylinder 10, substantially closed at the top end by cover flange 38 and at the bottom end by cover flange 33. Clyinder 10 is divided into two major compartments, first compartment 18 and second compartment 19, by movable piston 11 reciprocally I ment 19 is in fluid communication through inlet valve 20 with breathing gas inlet I3 and in fluid communication with breathing gas outlet 16 through outlet valve 29. Outlet 16 is connected to the subject to be ventilated via a patient airway.
A positive gas pressure provided by the driving unit, not shown, enters first compartment 18 through its driving gas connection 12 andforces piston 11 along cylinder 10 thereby enlarging firstcompartment l8 and reducing the volume of second compartment 19. This movement'of piston 11 and consequent increase in breathing gas pressure in second compartment 19 over the inlet breathing gas pressure closes inlet valve 20 on the gas inlet to the second compartment 19 and opens an outlet valve 14 to permit breathing gas to pass through gas outlet 16 to the patient.
Volume control means are provided which adjust the starting position of piston 11 whereby the volume of gas to be displaced by piston 11 can be selected. Such means conveniently includes a first tube 21 attached to the center of piston 11 and disposed along the axis of first compartment 18. Tube 21 is movable within second tube 22 passing through the center of cover flange 38. Tube 22 is movable through and engagable with cover flange 38. In particularly preferred embodiment, tube 22 extends through third tube 36 which is attached to cover flange 38. Tube 36 preferably is threaded on its outer surface and engagable with ring 37, which is threaded on its inner surface. The threaded portion of ring 37 and tube 36 are generally tapered and the threaded portion of tube 36 is segmented, whereby threading ring 37 on tube 36 draws the segmented portions of tube 36 into contact with tube 22 and holds tube 22 stationary at a selected position. Al-
'is retightened to prevent movement of tube 22 within 7 tube 36, thereby defining the volume of second compartment' 19 and the corresponding volume of breathing gas which will be supplied to the patient.
The necessary biasing means to return piston 11 to its normal stop position after driving gas pressure has been removed from compartment 18 is conveniently provided by a spring arrangement which provides a return force to return piston 11 to the starting position. For example, a suitable coil spring 23 may be attached to outer end 25 of second tube 22 and to the piston end of first tube 21. Displacement of piston 11 by means of positive pressure within the first compartment 18 extends spring 23 such that on removal of the positive pressure, spring 23 returns piston 11 to its initial resting position. After removal of the driving gas pressure, reversal of direction of movement of the piston results in increase of the volume of the second compartment 19. The outlet valve 24 in the second compartment therefore closes and inlet valve 20 opens, allowing entry of further respiration gas via gas inlet 13 through inlet valve 20 into the second compartment.
The expired gas from the patient may be passed directly into the atmosphere. However, particularly with neonates and infants, it is advantageous to provide a residual pressure against which the patient must breathe.
Thus, there is provided valve 15 through which the expired gas from the animal must pass, requiring a predetermined gas pressure to allow the flow of the expired gas. Valve 15 conveniently consists of a short tube which rises above the bottom plane of valve plate 30 to contact diagram 27 retained between valve plate '30 and bottom end cover flange 33. Expired gas from *the patient passes through expiration inlet 14, thereby raising the diaphram 27 away from the end of the tube of valve 15 and allowing expired gases to pass through valve 15. Diaphram 27 may be held in a closed position over the end of the tube position by means of spring 28 "passing through the center of valve 15. The tension on spring 28 is adjustable to increase or decrease the pressure required to allow expired gas to pass diaphram 27.
It is then possible to select a pressure at which the expired gas is able to lift the diaphram and permit exhaustion of the expired gas. Simple pressure valves of other kinds may be used. However. it can be appreciated that the above described arrangement is advantageous in minimizing the overall size of the ventilator.
Piston ll of the ventilator must be freely movable within cylinder 10. Conventional sealing rings may be used on the circumference of the piston, but such rings may prevent the relatively free movement of the piston. It is therefore preferred to use a gas-tight seal of the so ealled rolling sock type seal, as the one known under "the registered trademark of Bellofram (Bellofram Corporation). The outer periphery of such a rolling sock seal'17 is attached to the wall of first compartment 18 of cylinder and the inner periphery of the seal is attached to the inner and narrower end of piston 11. This gas-tight seal 17 allows the relatively free movement of piston 11 along the. whole length of cylinder 10. Piston 11 is guided in its movement within cylinder 10 by means of tube 21 which passes reciprocally within tube 22. Furthermore, the axial location of spring 23 within tube 22 and tube 21 provides a force tending to keep piston 11 centrally located within cylinder 10.
It will be appreciated that this novel arrangement of piston stop means, piston guide means, volume control means and piston return'means, all being substantially contained within the cylinder of the ventilator, greatly minimizes the required size of the ventilator. Furthermore, the novel arrangement of valves 20 and 29 on valve plate 30 and valve in communication with expired gas outlet 14 also reduces the necessary space required for the ventilator. As seen in FIGS. 3 and 4, valves and 29 conveniently are mushroom shaped and extend over a plurality of vents 31 and 32 in valve plate 30, which is sealed to cylinder 10 by O-ring 26 and to cover flange 33 by diaphram 27. Opening 39 through valve plate provides space into which diaphram 27 may intrude when diaphram 27 is moved away from the raised mouth of valve 15 by the pressure of expired gas. Thus, a ventilator may be produced having a size large enough to ventilate adults yet small enough to ventilate neonates and infants.
The ventilator may be constructed of materials which make it capable of being cleaned and sterilized. lt may also be constructed that it can be dismantled by unskilled personnel. The inlet and outlet valves may be simple mushroom valves constructed of synthetic rub? ber. These, together with the rolling sock seal may be removed and discarded after each use of the ventilator. Construction of the cylinder piston end and the wall of the first compartment, with suitable materials, allows the whole assembly to be heat sterilized by conventional means, together with the end wall of the second compartment, the gas inlet and outlet and the residual pressure valve. Following sterilization, the ventilator may be re-assembled with new, steril inlet and outlet valves and the rolling sock seal. The cylinder may be, for example, constructed of glass and the end walls of chrome-plated brass or stainless steel. The piston should be light and be capable of being autoclaved, a suitable material being poly'carbonate.
The dimensions of the ventilator depend upon the use to which it is to be put. A particular advantage of V the present invention is that the ventilator may be constructed to provide a very small volume of respiratory gas required by neonates and infants. For example, a total volume of between 10 ml. and 250 ml. may be provided by a simple unit. An adjustable residual pressure valve for such a ventilator may provide a residual pressure of between 0 and 5 cm. of water.
The simple designof the present ventilator allows construction of a compact, device. In use as a pediatric ventilator, the device may therefore be incorporated inside the incubator in which the child is maintained. Air provided by the ventilator is taken from the atmosphere of the incubator and is therefore already humidified and warmed. Alternatively, it is possible to provide suitably humidified air to the ventilator and to heat the face plate of the incubator through which the respiratory gas passes. The temperature of the air may be monitored at the infant and the temperature of the face plate adjusted to maintain the correct temperature. It
is possible to provide an enclosure for the ventilator and a jacket for an inhalation tube to the subject, through both of which is passed warmed, humidified air, thus maintaining the gas supplied from the subject at the correct humidity and temperature.
The foregoingdescription of the preferred embodiments of the present invention is presented for illustration and is not intended to limit the invention thereto. Various modifications will be apparent to those skilled in the art without departing from the spirit or scope of this invention.
What is claimed is:
l. A ventilator comprising a cylinder having a piston reciprocally movable therein-between a first position and a second position, sealing means disposed between said cylinder and said piston, said sealing means and said piston defining a first compartment and a second compartment within said cylinder, piston guide means having a first tube attached to said piston and a second tube attached to said cylinder, said tubes being concentric, and said first tube being reciprocally movable within said second tube, biasing means within said first compartment urging said piston toward said first position, said biasing means consisting of a coil spring connected to said first tube and to said second tube, said spring being within said first tube and said second tube, and adjustable piston stop means within said first compartment defining said first position, said first compartment being operably connected to a source of driving gas to move said piston from said first position to said second position and said second compartment being operably connected to a source of breathing gas and to a patient airway.
2. A ventilator as in claim 1, wherein said second tube is movable relative to said cylinder and engagable therewith, whereby said second tube operates as said piston stop means and defines said first position.
3. A ventilator as in claim 2, wherein said sealing means is an annular diaphram having its outer periphery attached to said cylinder and its inner periphery attached to said piston.

Claims (3)

1. A ventilator comprising a cylinder having a piston reciprocally movable therein between a first position and a second position, sealing means disposed between said cylinder and said piston, said sealing means and said piston defining a first compartment and a second compartment within said cylinder, piston guide means having a first tube attached to said piston and a second tube attached to said cylinder, said tubes being concentric, and said first tube being reciprocally movable within said second tube, biasing means within said first compartment urging said piston toward said first position, said biasing means consisting of a coil spring connected to said first tube and to said second tube, said spring being within said first tube and said second tube, and adjustable piston stop means within said first compartment defining said first position, said first compartment being operably connected to a source of driving gas to move said piston from said first position to said second position and said second compartment being operably connected to a source of breathing gas and to a patient airway.
2. A ventilator as in claim 1, wherein said second tube is movable relative to said cylinder and engagable therewith, whereby said second tube operates as said piston stop means and defines said first position.
3. A ventilator as in claim 2, wherein said sealing means is an annular diaphram having its outer periphery attached to said cylinder and its inner periphery attached to said piston.
US390653A 1972-08-19 1973-08-22 Ventilators Expired - Lifetime US3918447A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB3878872 1972-08-19
GB602573A GB1455583A (en) 1973-02-07 1973-02-07 Lung ventilators

Publications (1)

Publication Number Publication Date
US3918447A true US3918447A (en) 1975-11-11

Family

ID=26240345

Family Applications (1)

Application Number Title Priority Date Filing Date
US390653A Expired - Lifetime US3918447A (en) 1972-08-19 1973-08-22 Ventilators

Country Status (1)

Country Link
US (1) US3918447A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3817091A1 (en) * 1988-05-19 1989-11-30 Draegerwerk Ag PISTON CYLINDER UNIT AS A CONVEYOR IN A VENTILATOR
DE3817092A1 (en) * 1988-05-19 1989-11-30 Draegerwerk Ag CONVEYOR DEVICE FOR SUPPLYING A VENTILATOR WITH BREATHING GAS
WO1991012033A1 (en) * 1990-02-07 1991-08-22 Flow-Meter S.P.A. Jar for picking up and retaining liquids
EP0504977A1 (en) * 1991-03-22 1992-09-23 Kontron Instruments Holding N.V. Method and device for reduction of pulmonary tidal volume for mechanical pulmonary ventilators
EP0691135A1 (en) * 1991-02-19 1996-01-10 University Of Manitoba Piston-based ventilator design and operation
US5484270A (en) * 1994-02-28 1996-01-16 Carmeli Adahan Pump particularly useful in respirator apparatus and exhalation valve assembly therefor
US5628305A (en) * 1995-09-27 1997-05-13 Richard J. Melker Universal ventilation device
EP0917883A1 (en) * 1997-11-20 1999-05-26 Siemens-Elema AB Gas pressure generator for a ventilator
US6067984A (en) * 1997-10-14 2000-05-30 Piper; Samuel David Pulmonary modulator apparatus
US6427691B1 (en) * 1999-07-09 2002-08-06 Walter Jinotti Medical valve
US6431169B1 (en) * 1999-08-05 2002-08-13 Vent-Logos Sistemas Logicos S/A Mini pneumatic mechanical pulmonary ventilator
US20100139660A1 (en) * 2008-12-10 2010-06-10 Carmeli Adahan Pump and exhalation valve control for respirator apparatus
US8783251B2 (en) 2010-02-12 2014-07-22 Piper Medical, Inc Enhanced manually actuated pressure controlled modulator technology
WO2015198000A1 (en) * 2014-06-24 2015-12-30 Smiths Medical International Limited Ventilators
US9289573B2 (en) 2012-12-28 2016-03-22 Covidien Lp Ventilator pressure oscillation filter
US10683966B2 (en) * 2015-07-15 2020-06-16 Gree Electric Appliances, Inc. Of Zhuhai Liquid storage container

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1202126A (en) * 1915-04-14 1916-10-24 Respiratory Apparatus Company Apparatus for producing artificial respiration.
US1371702A (en) * 1919-01-11 1921-03-15 Edward H Lyon Respirating device
US3158152A (en) * 1960-09-16 1964-11-24 Sierra Engineering Company Mouth to mouth resuscitator
US3166068A (en) * 1961-02-02 1965-01-19 Meopta Narodni Podnik Automatic apparatus for artificial respiration
US3185147A (en) * 1961-09-13 1965-05-25 George L Champagne Resuscitator
US3530873A (en) * 1969-03-26 1970-09-29 Leon J Arp Fluid delivery device
US3749524A (en) * 1972-01-03 1973-07-31 D Jordan Manually operated pump utilizing backpressure for easement of pump stroke

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1202126A (en) * 1915-04-14 1916-10-24 Respiratory Apparatus Company Apparatus for producing artificial respiration.
US1371702A (en) * 1919-01-11 1921-03-15 Edward H Lyon Respirating device
US3158152A (en) * 1960-09-16 1964-11-24 Sierra Engineering Company Mouth to mouth resuscitator
US3166068A (en) * 1961-02-02 1965-01-19 Meopta Narodni Podnik Automatic apparatus for artificial respiration
US3185147A (en) * 1961-09-13 1965-05-25 George L Champagne Resuscitator
US3530873A (en) * 1969-03-26 1970-09-29 Leon J Arp Fluid delivery device
US3749524A (en) * 1972-01-03 1973-07-31 D Jordan Manually operated pump utilizing backpressure for easement of pump stroke

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3817091A1 (en) * 1988-05-19 1989-11-30 Draegerwerk Ag PISTON CYLINDER UNIT AS A CONVEYOR IN A VENTILATOR
DE3817092A1 (en) * 1988-05-19 1989-11-30 Draegerwerk Ag CONVEYOR DEVICE FOR SUPPLYING A VENTILATOR WITH BREATHING GAS
WO1991012033A1 (en) * 1990-02-07 1991-08-22 Flow-Meter S.P.A. Jar for picking up and retaining liquids
EP0691135A1 (en) * 1991-02-19 1996-01-10 University Of Manitoba Piston-based ventilator design and operation
US5540222A (en) * 1991-02-19 1996-07-30 University Of Manitoba Piston-based ventilator design and operation
EP0504977A1 (en) * 1991-03-22 1992-09-23 Kontron Instruments Holding N.V. Method and device for reduction of pulmonary tidal volume for mechanical pulmonary ventilators
US5484270A (en) * 1994-02-28 1996-01-16 Carmeli Adahan Pump particularly useful in respirator apparatus and exhalation valve assembly therefor
US5683232A (en) * 1994-02-28 1997-11-04 Adahan; Carmeli Pump particularly useful in respirator apparatus and exhalation valve assembly thereof
US6073630A (en) * 1994-02-28 2000-06-13 Flight Medical Ltd. Exhalation valve assembly
US5628305A (en) * 1995-09-27 1997-05-13 Richard J. Melker Universal ventilation device
US6067984A (en) * 1997-10-14 2000-05-30 Piper; Samuel David Pulmonary modulator apparatus
EP0917883A1 (en) * 1997-11-20 1999-05-26 Siemens-Elema AB Gas pressure generator for a ventilator
US6234170B1 (en) 1997-11-20 2001-05-22 Siemens Elema Ab Gas pressure generator
US6427691B1 (en) * 1999-07-09 2002-08-06 Walter Jinotti Medical valve
US6431169B1 (en) * 1999-08-05 2002-08-13 Vent-Logos Sistemas Logicos S/A Mini pneumatic mechanical pulmonary ventilator
US20100139660A1 (en) * 2008-12-10 2010-06-10 Carmeli Adahan Pump and exhalation valve control for respirator apparatus
US8303276B2 (en) * 2008-12-10 2012-11-06 Covidien Lp Pump and exhalation valve control for respirator apparatus
US8783251B2 (en) 2010-02-12 2014-07-22 Piper Medical, Inc Enhanced manually actuated pressure controlled modulator technology
US9289573B2 (en) 2012-12-28 2016-03-22 Covidien Lp Ventilator pressure oscillation filter
WO2015198000A1 (en) * 2014-06-24 2015-12-30 Smiths Medical International Limited Ventilators
GB2557908A (en) * 2014-06-24 2018-07-04 Smiths Medical International Ltd Ventilators
US10683966B2 (en) * 2015-07-15 2020-06-16 Gree Electric Appliances, Inc. Of Zhuhai Liquid storage container

Similar Documents

Publication Publication Date Title
US3918447A (en) Ventilators
US10156232B2 (en) High frequency oscillator ventilator
US3814091A (en) Anesthesia rebreathing apparatus
US3861385A (en) Anaesthetist{3 s ventilation
US5590644A (en) Heat and moisture exchanger for breathing
US6123075A (en) Resuscitator regulator with carbon dioxide detector
US5357951A (en) Cardiac pulmonary resuscitator apparatus valve with integral air sampling port
EP0217573B1 (en) A high frequency oscillating ventilator
US3901230A (en) Anesthesia rebreathing apparatus including improved reservoir means
US5679884A (en) Resuscitator with carbon dioxide detector
US3890967A (en) Breathing indicator and ventilator
CN102438571B (en) Full neonatal critical care equipment
SE8602277L (en) SET AND DEVICE FOR HUMIDATING GASES
SE7603396L (en) HEATING AND MOISTURE EXCHANGING BREATHING DEVICE
CN105617527A (en) Safety valve and breathing apparatus
CN107335118B (en) Breathing machine
US2581450A (en) Resuscitator
US3266488A (en) Lung ventilating equipment
USRE20226E (en) Respiration apparatus
US3841327A (en) Anesthesia ventilator apparatus
CN113209729A (en) Anti-infection nursing device
CN210409088U (en) Breathing machine waste gas sterilizing machine
US1834580A (en) Respiration apparatus
US4603691A (en) Pulmonary ventilator-bellows-assembly kit
USRE23845E (en) Resuscitator