US3910246A - Continuous-wave high-frequency AC ignition system - Google Patents

Continuous-wave high-frequency AC ignition system Download PDF

Info

Publication number
US3910246A
US3910246A US387427A US38742773A US3910246A US 3910246 A US3910246 A US 3910246A US 387427 A US387427 A US 387427A US 38742773 A US38742773 A US 38742773A US 3910246 A US3910246 A US 3910246A
Authority
US
United States
Prior art keywords
winding
frequency
circuit
transistors
ignition system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US387427A
Inventor
Robert E Canup
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Texaco Inc
Original Assignee
Texaco Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Texaco Inc filed Critical Texaco Inc
Priority to US387427A priority Critical patent/US3910246A/en
Priority to JP2868274A priority patent/JPS5417897B2/ja
Priority to GB2710374A priority patent/GB1450854A/en
Priority to ZA00744091A priority patent/ZA744091B/en
Priority to AR254536A priority patent/AR203398A1/en
Priority to AU70835/74A priority patent/AU476322B2/en
Priority to DE2434574A priority patent/DE2434574C3/en
Priority to ES74428538A priority patent/ES428538A1/en
Priority to NLAANVRAGE7409909,A priority patent/NL174488C/en
Priority to FR7425647A priority patent/FR2240364B1/fr
Priority to BR6223/74A priority patent/BR7406223A/en
Priority to CH1044574A priority patent/CH582309A5/xx
Priority to IT26133/74A priority patent/IT1019800B/en
Priority to SE7410174A priority patent/SE402152B/en
Priority to CA206,551A priority patent/CA1044751A/en
Priority to DK425574A priority patent/DK425574A/da
Application granted granted Critical
Publication of US3910246A publication Critical patent/US3910246A/en
Priority to HK327/77A priority patent/HK32777A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/01Electric spark ignition installations without subsequent energy storage, i.e. energy supplied by an electrical oscillator

Definitions

  • the inverter employs a single transformer with a high-voltage output winding and a pair of transistors coupled to an input winding plus a feedback winding. There is a saturable-core inductor also coupled to the transistors for causing a frequency shift in the inverter AC signals under load conditions in the spark-signal output.
  • This invention concerns ignition systems for internal combustion engines in general, and more specifically relates to such a system that employs high-frequency continuous-wave AC signals to produce a controlled spark duration for each ignition. It particularly employs only a single transformer. And, it includes means for causing a frequency shift as the output circuit of the oscillator changes from no-load to load conditions.
  • this invention is particularly concerned with a single-transformer, continuous-wave, high-frequency AC ignition system which includes an inverter with means for shifting the oscillation frequency from no-load to load conditions as the spark load appears in the output circuit of the inverterv SUMMARY OF THE INVENTION
  • this invention concerns an ignition system for an internal combustion engine which system comprises an inverter including a single transformer having a secondary winding for supplying a continuous-wave high frequency spark-signal output, only during controlled sparking intervals. It also comprises a primary winding with at least one transistor connected in circuit therewith, and a feedback winding connected to said transistor for providing an oscillator having a predetermined load frequency during said sparking intervals.
  • the said load frequency is substantially different from a harmonic frequency of the fundamental resonant frequency of said secondary winding circuit.
  • the inhaving a high-voltage AC spark-signal output winding
  • It also comprises a feedback winding on said transformer, a control winding on said transformer, and a pair of transistors. It also comprises first circuit means for connecting said transistors to said input and feedback windings to form a square-wave high-frequency oscillator, and second circuit means for connecting a DC source of power to said oscillator. In addition, it comprises a saturable core inductor, and third circuit means for connecting said inductor into said oscillator whereby the no-load frequency equals a harmonic of the fundamental resonant frequency of said output-winding circuit. The said load frequency is substantially different from said harmonic frequency.
  • FIGURE of drawing illustrates a schematic circuit diagram of an ignition system according to the invention.
  • the schematic circuit diagram illustrates an ignition system. It includes a single transformer 11 that has a high-voltage secondary winding 12 which is connected to a ground or common circuit at one end. The other end is connected to a spark-signal circuit which may be for an internal combustion engine (not shown). This is indicated by the caption HIGH VOLTAGE TO DISTRIBUTOR CAP adjacent to a circuit connection 13.
  • the transformer 11 also has a center-tapped primary winding 16 and a separate feedback winding 17 as well as a control winding 18 thereon.
  • a source of DC power which may be a bat tery 23, as indicated.
  • This may be a standard automotive battery, e.g., one providing a 12-volt supply, or it may be a 24-volt type battery.
  • Battery 23 is connected into the circuit with one terminal grounded, as indicated at reference no. 24. The other terminal is connected via circuit connections 27 and 28 to a center tap 29 on the transformer primary winding 16.
  • the collector electrodes of a pair of transistors 33 and 34 Connected to the ends of primary winding 16 are the collector electrodes of a pair of transistors 33 and 34.
  • the emitter electrodes of these transistors are each connected to ground, as indicated by reference num bers 35 and 36, respectively.
  • the base electrodes of the transistors 33 and 34 are connected to the ends of the feedback winding 17, via circuit connections 39 and 40, respectively. Included in the foregoing base drive circuit from feedback winding 17, there is a resistor 41 for partially determining the oscillator frequency.
  • diodes 43 and 44 connected between each of the base electrodes of transistors 33 and 34 and ground, there are diodes 43 and 44, respectively, which act to protect each transistor against harmful reverse voltage that may be applied between its base electrode and ground.
  • the capacitor 30 acts to supply initial energy to the transistors when they conduct, and this compensates for the voltage drop that develops due to the high current which they draw. Consequently, an output voltage in the secondary winding 12 is of greater magnitude than would otherwise be the
  • the control winding 18 is included on the transformer l 1.
  • This type of inverter as applied to ignition systems, has been described in my above-noted application Ser. No. 333,856, filed Feb. 20, 1973. It has a DC bias current applied to the control winding 18 during the nonoscillating periods. Simultaneously, there is a low impedance path connected across the winding 18.
  • the DC bias current is applied via an ignition switch 46 that has a pair of stationary terminals 47 which are A both connected directly to the positive terminal of battery 23 via a circuit connection 48.
  • the movable switch arm of switch 46 When the movable switch arm of switch 46 is placed into electrical contact with either of the terminals 47 (for start or run conditions), the battery voltage from battery 23 is connected over the circuit connection 48 and on via a connection 49 to a resistor 50 and a diode 51 to a circuit connection point 52.
  • circuit carrying DC bat tery potential continues via illustrated circuit connections 55 and 56 to one end of the control winding 18.
  • the other end of winding 18 is connected via circuit connections 59 and 60 to one diagonal point 58 of a diode bridge 61.
  • An adjacent diagonal 62 is connected via a circuit connection 63 to the collector electrode of a transistor 64 which acts as an electronic switch.
  • the emitter electrode of transistor 64 is connected to ground, as indicated by a reference number 67.
  • this inverter circuit acts as a square-wave oscillator which generates high-voltage continuous-wave spark signals in the secondary winding 12 at desired instants for controlled intervals of time.
  • the intervals are controlled by the control winding 18 which stops the oscillations when a lowimpedance AC circuit is applied across the winding.
  • Such low-impedance AC circuit across control winding 18 includes a diode bridge 61 and also a Zener diode that is connected between the circuit point 52 and a diagonal point 71 on the bridge 61.
  • the transistor 64 whenever the transistor 64 is conducting, it provides a low-impedance AC path across the winding 18 which may be traced as follows. Beginning at the lower end (as viewed in the drawing) of winding 18 and going via connections 59 and 60 to the bridge 61, current flowing in such downward direction will have a low-impedance path via the upper left-hand diode of the bridge 61 and the circuit connection 63 to and through the transistor 64 and the ground connection 67. A return circuit continues via two parallel paths. The primary path goes via a ground connection 74, a diagonal point 75, diode 78, diagonal point 71, a conductor 79, Zener diode 70, and then via connections 55 and 56 to the other side of the winding 18.
  • the other return circuit path goes from the ground connection 24 to the battery 23 and then via the circuit connections 27 and 48 to the switch 46 (now closed). Then it continues via the connection 49, the resistor 50, the diode 51, the connections 55 and 56 to the other side of the winding 18.
  • the low-impedance path for return current flow in the opposite direction may be traced via connections 56 and 55 to the circuit point 52.
  • the path then continues through the Zener diode 70 (breakdown voltage exceeded) to the diagonal point 71 on the bridge 61 and then through the lower left-hand diode of the bridge 61 to the diagonal point 62. From point 62 it continues over the connection 63 to the transistor 64 and, thence, via the ground connection 67 back through another ground connection 74 to an opposite diagonal point 75 on the bridge 61. From that point it may be traced over a resistor 76 and a diode 77 to the diagonal point 58 and on via the connection 60 and the connection 59 to the other end of winding 18.
  • capacitors 80, 81 and 82 there are additional capacitors, e.g., capacitors 80, 81 and 82, provided for radio-frequency by-pass. This is important since the oscillator is a square-wave type which consequently generates substantial amounts of radio-frequency energies.
  • the frequency of the oscillator may be controlled since the inductor can be made to saturate at a desired frequency.
  • the open circuit oscillating frequency of the system may be set to match a harmonic frequency of the fundamental resonant frequency that exists in the output circuit to which winding 12 is connected.
  • the power rating of the transistors 33 and 34 may be chosen along with the primary-to-secondary turns ratio of the transformer and the primary inductance under load, so that adequate spark-plug current can be supplied.
  • Ignition system for an internal combustion engine comprising an inverter including a single transformer having a secondary winding for supplying a continuouswave, high-frequency spark-signal output only during controlled sparking intervals, a primary wind ing with at least one transistor connected in circuit therewith, and a feedback winding connected to said transistor for providing an oscillator having a predetermined load frequency during said spark intervals,
  • said load frequency being substantially different from a harmonic frequency of the fundamental resonant frequency of said secondary winding circuit
  • saturable-core inductor means connected in circuit with said feedback winding for determining the noload frequency to be substantially equal to said harmonic frequency.
  • Ignition system according to claim 5, wherein said inverter also includes circuit means for connecting a DC source between said primary winding center tap and said collector-emitter circuits at a point between said transistors.
  • a continuous-wave highfrequency ignition system wherein said system comprises a single transformer having a high voltage AC spark signal output winding,
  • first circuit means for connecting said transistors to said input and feedback windings to form a squarewave high-frequency oscillator
  • said load frequency being substantially different from said harmonic frequency.

Abstract

An ignition system which employs an inverter to develop a continuous-wave high-frequency spark signal from a DC supply. The inverter employs a single transformer with a high-voltage output winding and a pair of transistors coupled to an input winding plus a feedback winding. There is a saturable-core inductor also coupled to the transistors for causing a frequency shift in the inverter AC signals under load conditions in the spark-signal output.

Description

Inventor:
U.S.Cl.v 123/148 E; 331/113.1;315/209T Int. Cl. F021 l/OO Field of Search 123/148 E, 148 CD;
References Cited UNITED STATES PATENTS 5/1962 Ruckelshaus 123/148 E 7/1966 Lister 10/1968 Aiken 2/ l 969- Hufton 6/1969 Weiss 7/1973 Canup 123/148 E United States Patent 1 [111 3,910,246
Canup [4 Oct. 7, 1975 CONTINUOUS-WAVE HIGH-FREQUENCY OTHER PUBLICATIONS Transistor Inverters and Converters, T. Roddam, London lliffe Books, Ltd., Princeton, N.J., 1963, pp. 139145.
Primary ExamirierCharles J. Myhre Assistant ExaminerRonald B. Cox
Attorney, Agent, or FirmThomas H. Whaley; Carl G. Ries 57 ABSTRACT An ignition system which employs an inverter to develop a continuous-wave high-frequency spark signal from a DC supply. The inverter employs a single transformer with a high-voltage output winding and a pair of transistors coupled to an input winding plus a feedback winding. There is a saturable-core inductor also coupled to the transistors for causing a frequency shift in the inverter AC signals under load conditions in the spark-signal output.
7 Claims, 1 Drawing Figure US. Patent Oct. 7,1975
CONTINUOUS-WAVE HIGH-FREQUENCY AC IGNITION SYSTEM CROSS-REFERENCES TO RELATED APPLICATIONS This invention concerns subject matter that relates to previous applications by the same applicant, as follows:
Ser. No. 263,803 An Ignition-Control System for Internal Combustion Engines, now US. Pat. No. 3,861,369 filed June 19, 1972 Ser. No. 333,856 Improved High-Frequency Continuous-Wave Ignition System, now US. Pat. No. 3,836,503 filed Feb. 20, 1973 Ser. No. 337,509 Ignition System Utilizing Saturable-Core Square Wave Oscillator Circuit, now US. Pat. No. 3,847,129 filed Mar. 2, 1973 BACKGROUND OF THE INVENTION 1. Field of the Invention This invention concerns ignition systems for internal combustion engines in general, and more specifically relates to such a system that employs high-frequency continuous-wave AC signals to produce a controlled spark duration for each ignition. It particularly employs only a single transformer. And, it includes means for causing a frequency shift as the output circuit of the oscillator changes from no-load to load conditions.
2. Description of the Prior Art Heretofore, there have been a considerable number of proposed arrangements that purportedly would employ AC spark signals for internal combustion engines, and the like. However, in such prior arrangements, there have been difficulties in the practical applications. An important aspect of such difficulties related to the ability of such systems to start the oscillation at the instant when a spark signal is called for. While the applicant has earlier overcome that particular difficulty in some of the inventions described in copending previous applications, they did not provide for a beneficial improvement which was only recognized in connection with a two-transformer type of oscillator or inverter. Such beneficial improvement relates to the ability to increase the initial voltage amplitude along with substantial reduction thereof upon striking a spark. This invention teaches how that concept may be applied to a single-transformer type of inverter.
Consequently, this invention is particularly concerned with a single-transformer, continuous-wave, high-frequency AC ignition system which includes an inverter with means for shifting the oscillation frequency from no-load to load conditions as the spark load appears in the output circuit of the inverterv SUMMARY OF THE INVENTION Briefly, this invention concerns an ignition system for an internal combustion engine which system comprises an inverter including a single transformer having a secondary winding for supplying a continuous-wave high frequency spark-signal output, only during controlled sparking intervals. It also comprises a primary winding with at least one transistor connected in circuit therewith, and a feedback winding connected to said transistor for providing an oscillator having a predetermined load frequency during said sparking intervals. The said load frequency is substantially different from a harmonic frequency of the fundamental resonant frequency of said secondary winding circuit. Also, the inhaving a high-voltage AC spark-signal output winding,
and an input winding on said transformer. It also comprises a feedback winding on said transformer, a control winding on said transformer, and a pair of transistors. It also comprises first circuit means for connecting said transistors to said input and feedback windings to form a square-wave high-frequency oscillator, and second circuit means for connecting a DC source of power to said oscillator. In addition, it comprises a saturable core inductor, and third circuit means for connecting said inductor into said oscillator whereby the no-load frequency equals a harmonic of the fundamental resonant frequency of said output-winding circuit. The said load frequency is substantially different from said harmonic frequency.
DESCRIPTION OF THE DRAWING The foregoing and other objects and benefits of the invention will be more fully set forth below in connec tion with the best mode contemplated by the inventor of carrying out the invention, and in connection with which there are illustrations provided in the drawing, wherein:
The FIGURE of drawing illustrates a schematic circuit diagram of an ignition system according to the invention.
DESCRIPTION OF THE PREFERRED EMBODIMENT As indicated above, it should be understood that this invention is similar in basic principles to that shown and described in my above-noted earlier application Ser. No. 337,509, filed Mar. 2, 1973. However, in that case, the inverter circuit employed two transformers, and the parameters of both were adjusted for setting the desired frequency shift conditions. In this invention, the ability to obtain similar results was not subject to mere application of the teachings of the prior art. Thus, while a single-transformer inverter system had the advantages of reduction in cost and a compact structure, the ability to strike a spark by extra high initial voltage without adversely affecting power requirements was lacking.
Referring to the FIGURE of drawings, it will be observed that the schematic circuit diagram illustrates an ignition system. It includes a single transformer 11 that has a high-voltage secondary winding 12 which is connected to a ground or common circuit at one end. The other end is connected to a spark-signal circuit which may be for an internal combustion engine (not shown). This is indicated by the caption HIGH VOLTAGE TO DISTRIBUTOR CAP adjacent to a circuit connection 13.
The transformer 11 also has a center-tapped primary winding 16 and a separate feedback winding 17 as well as a control winding 18 thereon.
There is a source of DC power which may be a bat tery 23, as indicated. This, of course, may be a standard automotive battery, e.g., one providing a 12-volt supply, or it may be a 24-volt type battery. Battery 23 is connected into the circuit with one terminal grounded, as indicated at reference no. 24. The other terminal is connected via circuit connections 27 and 28 to a center tap 29 on the transformer primary winding 16. Also, there is a capacitor 30 that is connected between the circuit connection 28 and ground. It is important that the capacitor 30 be physically located close to the center tap 29. Its principal purpose is to nullify the effects of the impedance of the conductor 28 and the internal impedance of the battery 23.
Connected to the ends of primary winding 16 are the collector electrodes of a pair of transistors 33 and 34. The emitter electrodes of these transistors are each connected to ground, as indicated by reference num bers 35 and 36, respectively. The base electrodes of the transistors 33 and 34 are connected to the ends of the feedback winding 17, via circuit connections 39 and 40, respectively. Included in the foregoing base drive circuit from feedback winding 17, there is a resistor 41 for partially determining the oscillator frequency. Also, it may be noted that connected between each of the base electrodes of transistors 33 and 34 and ground, there are diodes 43 and 44, respectively, which act to protect each transistor against harmful reverse voltage that may be applied between its base electrode and ground. As indicated above, the capacitor 30 acts to supply initial energy to the transistors when they conduct, and this compensates for the voltage drop that develops due to the high current which they draw. Consequently, an output voltage in the secondary winding 12 is of greater magnitude than would otherwise be the case.
In order to control the starting and stopping of oscillation of the foregoing inverter circuit, the control winding 18 is included on the transformer l 1. This type of inverter (oscillator), as applied to ignition systems, has been described in my above-noted application Ser. No. 333,856, filed Feb. 20, 1973. It has a DC bias current applied to the control winding 18 during the nonoscillating periods. Simultaneously, there is a low impedance path connected across the winding 18.
The DC bias current is applied via an ignition switch 46 that has a pair of stationary terminals 47 which are A both connected directly to the positive terminal of battery 23 via a circuit connection 48. When the movable switch arm of switch 46 is placed into electrical contact with either of the terminals 47 (for start or run conditions), the battery voltage from battery 23 is connected over the circuit connection 48 and on via a connection 49 to a resistor 50 and a diode 51 to a circuit connection point 52.
From the circuit point 52 the circuit carrying DC bat tery potential continues via illustrated circuit connections 55 and 56 to one end of the control winding 18. The other end of winding 18 is connected via circuit connections 59 and 60 to one diagonal point 58 of a diode bridge 61. An adjacent diagonal 62 is connected via a circuit connection 63 to the collector electrode of a transistor 64 which acts as an electronic switch. The emitter electrode of transistor 64 is connected to ground, as indicated by a reference number 67.
It will be noted that this completes a circuit from the battery 23 for application of a DC bias current through the control winding 18 whenever the transistor 64 is conducting. The latter condition is controlled by enginetimed controls, as indicated by the caption adjacent to the base circuit input to the transistor 64.
Simultaneously with the DC bias current fiow through control winding 18, i.e., when the transistor 64 is conducting, there is a low-impedance AC circuit across the winding that permits induced AC signals (from the oscillator) to load down the oscillator so that it will not oscillate. These nonoscillating conditions are created in between spark-signal intervals so that the oscillator remains shut down, and no high-voltage, sparkproducing signal will be developed until the desired time for each engine-controlled instant that is related to the spark interval for each cylinder of an internal combustion engine.
I As indicated above, this inverter circuit acts as a square-wave oscillator which generates high-voltage continuous-wave spark signals in the secondary winding 12 at desired instants for controlled intervals of time. The intervals are controlled by the control winding 18 which stops the oscillations when a lowimpedance AC circuit is applied across the winding. Such low-impedance AC circuit across control winding 18 includes a diode bridge 61 and also a Zener diode that is connected between the circuit point 52 and a diagonal point 71 on the bridge 61.
In this manner, whenever the transistor 64 is conducting, it provides a low-impedance AC path across the winding 18 which may be traced as follows. Beginning at the lower end (as viewed in the drawing) of winding 18 and going via connections 59 and 60 to the bridge 61, current flowing in such downward direction will have a low-impedance path via the upper left-hand diode of the bridge 61 and the circuit connection 63 to and through the transistor 64 and the ground connection 67. A return circuit continues via two parallel paths. The primary path goes via a ground connection 74, a diagonal point 75, diode 78, diagonal point 71, a conductor 79, Zener diode 70, and then via connections 55 and 56 to the other side of the winding 18. The other return circuit path goes from the ground connection 24 to the battery 23 and then via the circuit connections 27 and 48 to the switch 46 (now closed). Then it continues via the connection 49, the resistor 50, the diode 51, the connections 55 and 56 to the other side of the winding 18.
On the reverse half-cycles of induced voltage in winding 18, the low-impedance path for return current flow in the opposite direction may be traced via connections 56 and 55 to the circuit point 52. The path then continues through the Zener diode 70 (breakdown voltage exceeded) to the diagonal point 71 on the bridge 61 and then through the lower left-hand diode of the bridge 61 to the diagonal point 62. From point 62 it continues over the connection 63 to the transistor 64 and, thence, via the ground connection 67 back through another ground connection 74 to an opposite diagonal point 75 on the bridge 61. From that point it may be traced over a resistor 76 and a diode 77 to the diagonal point 58 and on via the connection 60 and the connection 59 to the other end of winding 18.
It may be noted in passing that there are additional capacitors, e.g., capacitors 80, 81 and 82, provided for radio-frequency by-pass. This is important since the oscillator is a square-wave type which consequently generates substantial amounts of radio-frequency energies.
The details of the operation of a system like that described so far, have been fully set forth in my earlier related application Ser. No. 333,856, filed Feb. 20, 1973 That application explains the action of the control winding in stopping oscillation while setting the core of the transformer so that when the DC bias is removed the oscillator will always start positively and instantaneously. Also, it may be noted that the engine-timed control signals which are applied to the base electrode of the transistor 64, might be derived from various sources. For example, see my copending application Ser. No. 263,803, filed June 19, 1972. This invention is particularly concerned with improved results that are obtained from the use of a saturable-core inductor 85. This inductor 85 is connected into the oscillator circuit and across the feedback winding 17. It is also connected between the base electrodes of transistors 33 and 34.
By determining the particular parameters related to the structure of the core and winding for inductor 85, the frequency of the oscillator may be controlled since the inductor can be made to saturate at a desired frequency. In this manner, the open circuit oscillating frequency of the system may be set to match a harmonic frequency of the fundamental resonant frequency that exists in the output circuit to which winding 12 is connected. At the same time the power rating of the transistors 33 and 34 may be chosen along with the primary-to-secondary turns ratio of the transformer and the primary inductance under load, so that adequate spark-plug current can be supplied.
In the foregoing manner, the no-load or striking voltage at the output of winding 12 is increased a substantial amount by the resonant effect, in the manner that has been explained in my above-mentioned application Ser. No. 337,509, filed Mar. 2, 1973. However, when that concept is applied to a single-transformer system, the ability to obtain adequate power in the spark signal after a spark is struck, is impaired unless a saturable core inductor according to this invention is employed. This is because the adjustment of the primary inductance of the transformer would raise the impedance and, consequently, reduce the power that could be delivered. But such adverse adjustment is not necessary when a saturable-core inductance is employed.
While the invention has been described above in considerable detail and in accordance with the applicable statutes, this is not in any way to be taken as limiting the invention, but merely as being descriptive thereof.
I claim:
1. Ignition system for an internal combustion engine, comprising an inverter including a single transformer having a secondary winding for supplying a continuouswave, high-frequency spark-signal output only during controlled sparking intervals, a primary wind ing with at least one transistor connected in circuit therewith, and a feedback winding connected to said transistor for providing an oscillator having a predetermined load frequency during said spark intervals,
said load frequency being substantially different from a harmonic frequency of the fundamental resonant frequency of said secondary winding circuit, and
saturable-core inductor means connected in circuit with said feedback winding for determining the noload frequency to be substantially equal to said harmonic frequency.
2. Ignition system according to claim 1, further comprising an oscillator-control winding on said transformer,
and
means controlled by said engine for connecting a loading circuit to said control winding and for applying a DC bias thereto between said sparking intervals whereby removal of said DC bias and said control winding load causes instantaneous starting of said oscillation.
3. Ignition system according to claim 2, wherein said primary winding is center-tapped with two transistors connected in circuit therewith, and said feedback winding is also connected to said two transistors. 4. Ignition system according to claim 3, wherein each of said two transistors has the collectoreniitter circuit across half of said primary winding, and said feedback winding is connected to the bases of both said transistors.
5. Ignition system according to claim 4, wherein said saturable-core inductor means is connected across said bases.
6. Ignition system according to claim 5, wherein said inverter also includes circuit means for connecting a DC source between said primary winding center tap and said collector-emitter circuits at a point between said transistors.
7. In combination, a continuous-wave highfrequency ignition system, wherein said system comprises a single transformer having a high voltage AC spark signal output winding,
an input winding on said transformer,
a feedback winding on said transformer,
a control winding on said transformer,
21 pair of transistors,
first circuit means for connecting said transistors to said input and feedback windings to form a squarewave high-frequency oscillator,
second circuit means for connecting a DC source of power to said oscillator.
a saturable core inductor,
third circuit means for connecting said inductor into said oscillator whereby the no-load frequency equals a harmonic of the fundamental resonant fre quency of said output winding circuit,
said load frequency being substantially different from said harmonic frequency.

Claims (7)

1. Ignition system for an internal combustion engine, comprising an inverter including a single transformer having a secondary winding for supplying a continuous-wave, high-frequency sparksignal output only during controlled sparking intervals, a primary winding with at least one transistor connected in circuit therewith, and a feedback winding connected to said transistor for providing an oscillator having a predetermined load frequency during said spark intervals, said load frequency being substantially different from a harmonic frequency of the fundamental resonant frequency of said secondary winding circuit, and saturable-core inductor means connected in circuit with said feedback winding for determining the no-load frequency to be substantially equal to said harmonic frequency.
2. Ignition system according to claim 1, further comprising an oscillator-control winding on said transformer, and means controlled by said engine for connecting a loading circuit to said control winding and for applying a DC bias thereto between said sparking intervals whereby removal of said DC bias and said control winding load causes instantaneous starting of said oscillation.
3. Ignition system according to claim 2, wherein said primary winding is center-tapped with two transistors connected in circuit therewith, and said feedback winding is also connected to said two transistors.
4. Ignition system according to claim 3, wherein each of said two transistors has the collectoremitter circuit across half of said primary winding, and said feedback winding is connected to the bases of both said transistors.
5. Ignition system according to claim 4, wherein said saturable-core inductor means is connected across said bases.
6. Ignition system according to claim 5, wherein said inverter also includes circuit means for connecting a DC source between said primary winding center tap and said collector-emitter circuits at a point between said transistors.
7. In combination, a continuous-wave high-frequency ignition system, wherein said system comprises a single transformer having a high voltage AC spark signal output winding, an input winding on said transformer, a feedback winding on said transformer, a control winding on said transformer, a pair of transistors, first circuit means for connecting said transistors to said input and feedback windings to form a squarewave high-frequency oscillator, second circuit means for connecting a DC source of power to said oscillator. a saturable core inductor, third circuit means for connecting said inductor into said oscillator whereby the no-load frequency equals a harmonic of the fundamental resonant frequency of said output winding circuit, said load frequency being substantially different from said harmonic frequency.
US387427A 1973-08-10 1973-08-10 Continuous-wave high-frequency AC ignition system Expired - Lifetime US3910246A (en)

Priority Applications (17)

Application Number Priority Date Filing Date Title
US387427A US3910246A (en) 1973-08-10 1973-08-10 Continuous-wave high-frequency AC ignition system
JP2868274A JPS5417897B2 (en) 1973-08-10 1974-03-14
GB2710374A GB1450854A (en) 1973-08-10 1974-06-19 Continuous-wave high-frequency ac ignition system
ZA00744091A ZA744091B (en) 1973-08-10 1974-06-25 Continuous-wave high-frquency ac ignition system
AR254536A AR203398A1 (en) 1973-08-10 1974-07-04 IGNITION DEVICE FOR INTERNAL COMBUSTION ENGINE
AU70835/74A AU476322B2 (en) 1973-08-10 1974-07-04 Continuous-wave high-frequency ac ignition system
DE2434574A DE2434574C3 (en) 1973-08-10 1974-07-18 Ignition arrangement for internal combustion engines
NLAANVRAGE7409909,A NL174488C (en) 1973-08-10 1974-07-23 IGNITION DEVICE FOR AN INTERNAL COMBUSTION ENGINE.
ES74428538A ES428538A1 (en) 1973-08-10 1974-07-23 Continuous-wave high-frequency AC ignition system
FR7425647A FR2240364B1 (en) 1973-08-10 1974-07-24
BR6223/74A BR7406223A (en) 1973-08-10 1974-07-29 HIGH FREQUENCY CONTINUOUS WAVE AC IGNITION SYSTEM
CH1044574A CH582309A5 (en) 1973-08-10 1974-07-30
SE7410174A SE402152B (en) 1973-08-10 1974-08-08 IGNITION SYSTEM FOR COMBUSTION ENGINE
IT26133/74A IT1019800B (en) 1973-08-10 1974-08-08 IGNITION SYSTEM FOR HIGH FREQUENCY INTERNAL COMBUSTION ENGINES
CA206,551A CA1044751A (en) 1973-08-10 1974-08-08 Continuous-wave high-frequency ac ignition system
DK425574A DK425574A (en) 1973-08-10 1974-08-09
HK327/77A HK32777A (en) 1973-08-10 1977-06-23 Continuous-wave high-frequency ac ignition system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US387427A US3910246A (en) 1973-08-10 1973-08-10 Continuous-wave high-frequency AC ignition system

Publications (1)

Publication Number Publication Date
US3910246A true US3910246A (en) 1975-10-07

Family

ID=23529819

Family Applications (1)

Application Number Title Priority Date Filing Date
US387427A Expired - Lifetime US3910246A (en) 1973-08-10 1973-08-10 Continuous-wave high-frequency AC ignition system

Country Status (17)

Country Link
US (1) US3910246A (en)
JP (1) JPS5417897B2 (en)
AR (1) AR203398A1 (en)
AU (1) AU476322B2 (en)
BR (1) BR7406223A (en)
CA (1) CA1044751A (en)
CH (1) CH582309A5 (en)
DE (1) DE2434574C3 (en)
DK (1) DK425574A (en)
ES (1) ES428538A1 (en)
FR (1) FR2240364B1 (en)
GB (1) GB1450854A (en)
HK (1) HK32777A (en)
IT (1) IT1019800B (en)
NL (1) NL174488C (en)
SE (1) SE402152B (en)
ZA (1) ZA744091B (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4022177A (en) * 1975-04-23 1977-05-10 Texaco Inc. Controlled spark duration ignition system
US4203404A (en) * 1978-03-13 1980-05-20 Texaco Inc. Distributorless ignition method and system for a multicylinder internal combustion engine
US4216412A (en) * 1977-07-05 1980-08-05 Gerry Martin E Transient modulated AC ignition system
US4293797A (en) * 1979-05-01 1981-10-06 Gerry Martin E Inductive-capacitive cyclic charge-discharge ignition system
US4358813A (en) * 1980-11-20 1982-11-09 Matsushita Electric Industrial Co., Ltd. Ignition apparatus for a burner
US4733646A (en) * 1986-04-30 1988-03-29 Aisin Seiki Kabushiki Kaisha Automotive ignition systems
US5065073A (en) * 1988-11-15 1991-11-12 Frus John R Apparatus and method for providing ignition to a turbine engine
US5148084A (en) * 1988-11-15 1992-09-15 Unison Industries, Inc. Apparatus and method for providing ignition to a turbine engine
US5245252A (en) * 1988-11-15 1993-09-14 Frus John R Apparatus and method for providing ignition to a turbine engine
US5473502A (en) * 1992-09-22 1995-12-05 Simmonds Precision Engine Systems Exciter with an output current multiplier
US5754011A (en) * 1995-07-14 1998-05-19 Unison Industries Limited Partnership Method and apparatus for controllably generating sparks in an ignition system or the like
CN113958416A (en) * 2021-11-11 2022-01-21 四川泛华航空仪表电器有限公司 High-voltage frequency-stabilizing ignition device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5729743A (en) * 1980-07-26 1982-02-17 Takenaka Komuten Co Application of reinforced concrete composite floor board
US5509048A (en) * 1993-07-26 1996-04-16 Meidan; Reuven Radio transceiver with interface apparatus which visually displays information and method therefor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3032683A (en) * 1959-01-06 1962-05-01 John G Ruckelshaus Ignition system
US3260299A (en) * 1966-07-12 Transistor ignition system
US3407795A (en) * 1966-06-02 1968-10-29 Texaco Inc Ignition system for internal combustion engines
US3426740A (en) * 1966-10-21 1969-02-11 Motorola Inc Distributor
US3448732A (en) * 1966-09-06 1969-06-10 August C Weiss Capacitor-discharge electronic ignition system and a method for adjusting the circuit
US3749973A (en) * 1970-12-22 1973-07-31 Texaco Inc Continuous wave high frequency ignition system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3260299A (en) * 1966-07-12 Transistor ignition system
US3032683A (en) * 1959-01-06 1962-05-01 John G Ruckelshaus Ignition system
US3407795A (en) * 1966-06-02 1968-10-29 Texaco Inc Ignition system for internal combustion engines
US3448732A (en) * 1966-09-06 1969-06-10 August C Weiss Capacitor-discharge electronic ignition system and a method for adjusting the circuit
US3426740A (en) * 1966-10-21 1969-02-11 Motorola Inc Distributor
US3749973A (en) * 1970-12-22 1973-07-31 Texaco Inc Continuous wave high frequency ignition system

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4022177A (en) * 1975-04-23 1977-05-10 Texaco Inc. Controlled spark duration ignition system
US4216412A (en) * 1977-07-05 1980-08-05 Gerry Martin E Transient modulated AC ignition system
US4203404A (en) * 1978-03-13 1980-05-20 Texaco Inc. Distributorless ignition method and system for a multicylinder internal combustion engine
US4293797A (en) * 1979-05-01 1981-10-06 Gerry Martin E Inductive-capacitive cyclic charge-discharge ignition system
US4358813A (en) * 1980-11-20 1982-11-09 Matsushita Electric Industrial Co., Ltd. Ignition apparatus for a burner
US4733646A (en) * 1986-04-30 1988-03-29 Aisin Seiki Kabushiki Kaisha Automotive ignition systems
US5245252A (en) * 1988-11-15 1993-09-14 Frus John R Apparatus and method for providing ignition to a turbine engine
US5148084A (en) * 1988-11-15 1992-09-15 Unison Industries, Inc. Apparatus and method for providing ignition to a turbine engine
US5065073A (en) * 1988-11-15 1991-11-12 Frus John R Apparatus and method for providing ignition to a turbine engine
US5399942A (en) * 1988-11-15 1995-03-21 Unison Industries Limited Partnership Apparatus and method for providing ignition to a turbine engine
US5561350A (en) * 1988-11-15 1996-10-01 Unison Industries Ignition System for a turbine engine
US5473502A (en) * 1992-09-22 1995-12-05 Simmonds Precision Engine Systems Exciter with an output current multiplier
US5754011A (en) * 1995-07-14 1998-05-19 Unison Industries Limited Partnership Method and apparatus for controllably generating sparks in an ignition system or the like
US6034483A (en) * 1995-07-14 2000-03-07 Unison Industries, Inc. Method for generating and controlling spark plume characteristics
US6353293B1 (en) 1995-07-14 2002-03-05 Unison Industries Method and apparatus for controllably generating sparks in an ignition system or the like
US20020101188A1 (en) * 1995-07-14 2002-08-01 Unison Industries, Inc. Method and apparatus for controllably generating sparks in an ingnition system or the like
US7095181B2 (en) 1995-07-14 2006-08-22 Unsion Industries Method and apparatus for controllably generating sparks in an ignition system or the like
CN113958416A (en) * 2021-11-11 2022-01-21 四川泛华航空仪表电器有限公司 High-voltage frequency-stabilizing ignition device
CN113958416B (en) * 2021-11-11 2023-11-17 四川泛华航空仪表电器有限公司 High-voltage frequency-stabilizing ignition device

Also Published As

Publication number Publication date
FR2240364B1 (en) 1980-10-31
CH582309A5 (en) 1976-11-30
IT1019800B (en) 1977-11-30
AR203398A1 (en) 1975-09-08
JPS5417897B2 (en) 1979-07-03
ES428538A1 (en) 1976-12-01
BR7406223A (en) 1976-03-23
FR2240364A1 (en) 1975-03-07
DE2434574C3 (en) 1980-03-13
CA1044751A (en) 1978-12-19
HK32777A (en) 1977-06-30
NL174488C (en) 1984-06-18
AU476322B2 (en) 1976-09-16
JPS5037928A (en) 1975-04-09
ZA744091B (en) 1975-11-26
AU7083574A (en) 1976-01-08
SE402152B (en) 1978-06-19
DE2434574A1 (en) 1975-02-27
DK425574A (en) 1975-04-07
NL7409909A (en) 1975-02-12
SE7410174L (en) 1975-02-11
NL174488B (en) 1984-01-16
DE2434574B2 (en) 1979-07-19
GB1450854A (en) 1976-09-29

Similar Documents

Publication Publication Date Title
US3910246A (en) Continuous-wave high-frequency AC ignition system
US4033316A (en) Sustained arc ignition system
US4245594A (en) Ignition device
US3407795A (en) Ignition system for internal combustion engines
GB1164097A (en) Improvements in Ignition System for Internal Combustion Engines
JPH01500683A (en) Method and device for generating ignition spark for internal combustion engine
US4245609A (en) Modulated AC ignition system
US3818885A (en) High-frequency continuous-wave ignition system
US3749973A (en) Continuous wave high frequency ignition system
US3961613A (en) Controlled spark-duration ignition system
JPS5620759A (en) Ignition device for internal combustion engine
US4820957A (en) Process for burning a carbonaceous fuel using a high energy alternating current wave
KR910020318A (en) Internal combustion engine ignition device
US4291661A (en) Inductive-capacitive modulated ignition system
US3847129A (en) Ignition system utilizing a saturable-core square wave oscillator circuit
US3808513A (en) Ignition system including dc-ac inverter
US4258296A (en) Inductive-capacitive charge-discharge ignition system
US3841287A (en) Ignition system
US4414954A (en) Internal combustion engine ignition system with improvement
US4381757A (en) Continuous type ignition device for an internal combustion engine
US2433650A (en) Ignition system
US3673998A (en) Electronic ignition
JPS5581269A (en) Ignition apparatus for internal combustion engine
US3391352A (en) Oscillator starting circuit
US2100210A (en) Ignition system for internal com