Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3902414 A
Publication typeGrant
Publication date2 Sep 1975
Filing date28 Sep 1971
Priority date1 Oct 1970
Also published asDE2148871A1, DE2148871B2
Publication numberUS 3902414 A, US 3902414A, US-A-3902414, US3902414 A, US3902414A
InventorsPeter Zimmer, Hans Kudlich
Original AssigneePeter Zimmer, Hans Kudlich
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Screen printer using vibration to improve ink penetration
US 3902414 A
Abstract
A device and process to improve the penetration of a permeable flat shaped material by a liquid compound. A printing or dyeing compound or a penetrating agent is put into vibration relative to the permeable flat shaped material. The acceleration maximum of the vibration motion amounts to at least tenfold the acceleration due to the earth's gravity. The alternating field of inertial forces caused by the vibrations and acting on the particles of the printing or dyeing compound to be applied or the penetrating agent or the material has superimposed thereon a static field of forces directed essentially normally to the surface of the permeable flat shaped article. The static field of forces is a static field due to gravity, or an applied static field such as an electrostatic field, or a magnetostatic field. The frequency of vibrations may amount to about 100 hertzian units. The permeable flat shaped material may be treated with ultrasonics. The apparatus may have at least one swing table over which the permeable flat shaped material passes and which is provided with suction channels to secure the permeable flat shaped material or a conveyor belt supporting the flat shaped material. The printing or dyeing compound may be vibrated by a pressure chamber arranged underneath the sheet material containing a gaseous or liquid medium, the internal pressure of the pressure chamber being subjected to periodic fluctuations.
Images(6)
Previous page
Next page
Description  (OCR text may contain errors)

tlnited States Patent [1 1 Zimmer et al.

['4 Sept. 2, 1975 1 SCREEN PRINTER USING VIBRATION TO IMPROVE INK PENETRATION [22] Filed: Sept. 28, 1971 [21] Appl. No.: 184,534

[30] Foreign Application Priority Data Oct. 1, 1970 Austria 0 98879/70 June 21, 1971 Austria 95325/71 [52] US. Cl. 101/129; 101/115; 101/116; 101/119; 101/126; l0l/DIG. 8; 117/DIG. 8; l01/DIG. 13 [51] Int. Cl. B41m l/12; B4lf 15/06 [58] Field of Search ll7/D1G. 8; 118/57, 406;

101/ll5,119,120,l26,129, 116,123,124, 114, DIG. 5, 118, DIG. 8; 310/26; 198/230; 162/356 [56] References Cited UNITED STATES PATENTS 1,935,194 11/1933 Wilsey 101/407 R X 2,462,297 2/1949 Adams 1l7/DIG. 8 2,700,366 l/l955 Griebling.... 118/57 2,727,442 12/1955 Hayes 162/356 2,864,592 12/1958 Camp." 10l/DIG. 5 3,084,020 4/1963 Loosli ll7/DIG. 8 3,098,370 7/1963 Poole et al.. ll7/DIG. 8 3,140,199 7/1964 York 118/57 X 3,151,543 l0/l964 Preisinger... 310/26 3,211,088 10/1965 Naiman 101/114 3,280,740 lO/l966 Balamuth et al... 101/120 3,502,052 3/1970 Walsh 118/57 3,587,458 6/1971 Feier 101/120 X 3,639,152 2/1972 Bodine 117/113 3,653,948 4/1972 Kaempgen 118/57 X FOREIGN PATENTS OR APPLICATIONS 483,314 2/1970 Switzerland 101/120 1,569,439 4/1969 France 101/120 484,111 10/1929 Germany 162/356 Primary Examiner-Edgar S. lBurr Assistant Examiner-R. E. Suter Attorney, Agent, or FirmWe:nderoth, Lind & Ponack [57] SACT A devicet'and process to improve the penetration of a permeable flat shaped material by a liquid compound. A printing or dyeing compound or a penetrating agent is put into vibration relative to the permeable fiat shaped material. The acceleration maximum of the vibration motion amounts to at least tenfold the acceleration due to the earths gravity. The alternating field of inertial forces caused by the vibrations and acting on the particles of the printing, or dyeing compound to be applied or the penetrating agent or the material has superimposed thereon a static field of forces directed essentially normally to the surface of the permeable flat shaped article. The static field of forces is a static field due to gravity, or an applied static field such as an electrostatic field, or a magnetostatic field. The frequency of vibrations may amount to about 100 hertzian units. The penneable flat shaped material may be treated with ultrasonics. The apparatus may have at least one swing table over which the permeable flat shaped material passes and which is provided with suction channels to secure the permeable flat shaped material or a conveyor belt supporting the flat shaped material. The printing or dyeing compound may be vibrated by a pressure chamber arranged underneath the sheet material containing a gaseous or liquid medium, the internal pressure of the pressure chamber being subjected to periodic fluctuations.

16 Claims, 6 Drawing Figures PATENTEUSEF 3,982,414

sum 1 0;

PETER ZIMMER and HANS KUDLICH,

INVENTOR s mmmmw M ATTORNEYS PATENTED 2|975 3902x414 Sam 2 BF g PETER ZIMMER and HANS KUDLICH,

INVENTOR S wQMZMm/m Qua m ATTORNEYS PATEWBSEF 21975 SHEET 3 [IF 6 PETER ZIMMER and HANS KUDLICH,

INVENTORS bmflmmw (M VMJL ATTORNEY S PATENTEDSEP 21 15 39029114 swim a [15 g ETER ZIMMER and HANS KUDLICH,

INVENTOR lbhmtw M ATTORNEY s PATENTED 21975 3,902,414

sum 5 HF PETER ZIMMER and HANS KUDL ICI-I INVENTOR s IDQMZMM (1M9 ATTORNEYS PATENTEU SEP 2 I975 Fig. 6

PETER ZIMMER and HANS KUDLICH,

INVENTOR S Womb/1mm [2441 1 m ATTORNEY s SCREEN PRINTER USING VIBRATION TO IMPROVE INK PENETRATION BACKGROUND OF THE INVENTION This invention relates to a process to improve penetration of a permeable flat shaped material by a liquid compound or penetrating agent to be applied thereto, as well as to devices to perform the process.

When the surface of a permeable flat shaped material, such as a textile sheet of material, is supplied with a compound to be applied, such as a dye, it is frequently desired that the compound to be applied also penetrates into the permeable flat shaped material. The existing capillary forces are not always sufficient to effect an adequate penetration of the permeable flat shaped material. It is difficult, particularly with thick sheet materials, whose furfaces are printed according to the screen printing process, to attain a good penetration of the sheet material with the compound applied.

Additionally, the edges or outline of the pattern to be printed should be as sharp as possible. Accordingly, in the past a series of measures have been attemped to attain improvement in penetration, i.e. a permeation with dye of the material to be printed. For instance, before the actual printing process, a solvent serving as penetrating agent which should improve penetration of the dye, is applied. However, this has the shortcoming that the sharpness of the edges or outline of the printed pattern suffers under this process.

Furthermore an improvement of penetration has been attempted by using dyes with low viscosity and a high portion of solvents. Here also, the sharpness of the printed pattern suffers. Also, the expenditure in time and energy for the dying process is impractically high.

Furthermore, it is known to blow the dye immediately after application into the sheet material by means of a blower or to suck it in by a vacuum device. However, the operating speed of this arrangement is relatively low, and the advantages are questioned when, e.g. with printing, only part of the surface is supplied with dye, because the air blast or vacuum intake flows through the areas of the sheet material which are not treated with dye.

OBJECTS AND BRIEF DESCRIPTION OF THE INVENTION J printing or dyeing compound to be applied, or the penetrating agent, and the permeable flat shaped material are vibrated relative to each other. In this connection it is useful when the maximum acceleration due to the vibration motion is at least tenfold that of acceleration due to gravity.

According to a preferred embodiment of the invention, the permeable flat shaped material is vibrated in a direction essentially normally to the surface thereof to which the compound is applied. The vibration of the permeable flat shaped material results in an alternating field of inertial forces acting on the liquid particles of the printing or dyeing compound to be applied or the penetrating agent. The term alternating field of inertial forces is herein intended to refer to the constantly changing forces of inertia acting on each particle of the printing or dyeing compound or penetrating agent. More specifically, as the liquid is vibrated, each liquid particle will vibrate or oscilla'te". Thus, each particle will be subjected to repeatedly changing or alternating inertial forces. The amplitude of the resultant vibration of the compound differs from the amplitude of the flat material, thereby causing relative movement between the compound and flat material, and resulting in greater penetration.

According to another useful embodiment of the invention, the permeable flat shaped material is treated with ultrasonics, whereby the compound to be applied or the penetrating agent is ultrasonically vibrated.

It is useful to have a static field of forces, essentially normal to the surface of the permeable flat shaped material and acting on the particles of the compound, superimposed on the alternatingfield of inertial forces which are due to relative motion created between the compound and the flat material caused by the vibrations imparted thereto. This static field of forces may be a gravitational field, if the compound is applied downwardly onto the material, the gravity acting on the compound particles creating a static pressure difference between the surface of the flat shaped material to which the compound is applied and the opposite surface thereof.

Furthermore, electrostatic fields may be used, provided that the compound on which such fields act, comprises electric charge carriers or ferromagnetic particles.

If the process according to the invention is e.g. used with a rotary screen printing material, it is useful to have the squeegee for pressing the compound vibrated. It is also possible to arrange a pressure chamber in the printing table underneath the sheet material in the area of the contact zone between sheet material and the screen. A gaseous or liquid medium within the chamber is periodically pressurized, thereby transmitting vibrations to the sheet material and the compound to be applied. The generation of fluctuations of pressure may be effected by means of an oscillating piston in opera tive connection with the pressure chamber.

If a magnetic attraction of the squeegee device exists, it is possible to effect the energizing of vibrations by periodic changes of the field intensity of the magnetic sys tem.

A further useful embodiment of the invention consists in effecting the energizing of vibrations by means of an ultrasonic generator. This may be done by inserting an ultrasonic generator into the dye container in the inside of a rotary screen. Also, vibration may be cre ated by vibrating a squeegee blade or roller within the screen.

BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagrammatic side view of a rotary screen printing machine employing a first embodiment of the invention.

FIG. 2 is a diagrammatic side view of a rotary screen printing machine employing a second embodiment of the invention.

FIGS. 3 to 6 are diagrammatic views of further embodiments of rotary screen printing machines provided with the devices according to the invention.

DETAILED DESCRIPTION OF THE INVENTION In FIG. 1 the endless rotary printers blanket or supporting web 1 supporting the sheet material 2, a guide roller 3 for the printers blanket, as well as one of the printing devices include the essential elements of a rotary screen printing machine. The printing device consists of a rotary screen 4, a dye feeding pipe 5 and a roller squeegee 6 within the rotary screen 4, as well as a printing table 7 comprising a magnetic system 8 for magnetically attracting the roller squeegee 6 in a known manner. The sheet material 2 is lifted from the printers blanket at 9 and is supplied to a drying or steaming device. The lower strand of the printers blanket 1 runs in direction 10 back to the inlet of the material or to secondary aggregates of the printing machine, such as a washing and a gumming device, in which the sheet material 2 to be printed is glued onto the upper strand of the printers blanket l for transport through the machine.

In the area 11 a vertical vibration of the printers blanket 1 as well as of the sheet material 2 fixed thereto is caused in direction 13 by a swing table 12 arranged in this area under the printer blanket 1. Because the sheet material 2 is fixed to the printers blanket by glueing, relatively high vertical forces may be exerted onto the sheet material 2 when choosing the appropriate adhesive before the sheet material lifts from the printers blanket. The printers blanket l is maintained in contact with the swing table by means of a vacuum channel system consisting of the vacuum grooves 14 and the connecting pipes 15 and 16. At the bottom 17 of the swing table 12 there is positioned a vibration device, eg in the form of two contrarotating eccentricweight means 18. The swing table 12 is furthermore elastically supported by springs 19 on the frame of the machine. Upon rotation of the eccentric weight means 18 the swing table 12 is moved in the vertical direction 13 by rapidly successive vibrations. The printers blanket 1 held against the swing table 12 by vacuum, and thus the sheet material glued onto the printers blanket follow the vibratory movement. Since such vibrations have, as generally known, a sine-shaped path, the entire mass moved with the swing table 12 is subjected to a maximum acceleration at points of maximum amplitude of movement.

As the acceleration forces act in the vertical direction, the particles of the compound applied to the surface of the sheet material in the printing devices are subjected to strong forces due to inertia which may amount to a thousandfold of the earths gravitational force. These forces due to inertia cause at the lower points of movement of the particles of the compound a penetration downwards of the particles of the compound. As the forces due to inertia directionally act in each particle of the compound, penetration is effected nearly exclusively in this vertical direction. The sharpness of contour of the printed pattern therefore is not damaged. A rotary screen printing machine usually has several printing devices. Thus, instead of a single swing table 12 in the area of the outlet of the sheet material, swing tables may be arranged following each printing device.

In FIG. 2 the essential elements of a rotary screen printing machine are referenced in the same manner as in FIG. I: Printers blanket 1, sheet material 2, guide roller 3, rotary screen 4 with dye feeding pipe 5 and roller squeegee 6, printing table 7 with magnetic system 8.

After each printing device the sheet material 2 is vibrated ultrasonically by ultrasonic generators 22 over an area 20 in which the printers blanket 1 passes over a support 21.

The compound applied to the sheet material 2 thereby has imparted thereto an intensive vibration movement. Thus, high acceleration values and therewith forces are imparted to the dye applied to the sheet material 2. The migration of the dye, in particular within the capillaries formed within the sheet material, thereby is greatly improved and an increased penetration through the sheet material 2 takes place. The acceleration values resulting from treatment with ultrasonic vibration may amount to a hundred thousandfold of the acceleration due to earths gravity. As a generator of ultrasonics or supersonics the known magnetorestrictive generators, oscillators, crystal transmitters or sound transmitters may be used.

In the embodiments according to FIGS. 1 and 2 not only the alternating field of forces (caused by the vibrations) acts on the particles of the compound, but also the forces due to gravity, i.e. the weight of the particles. These gravity forces form a static (or constant) field, the direction of which is directed downwardly, or if the material is arranged horizontally, vertical to the surface (or plane) of the material. Thus, the static field is superimposed on the alternating field, thereby intensifying the penetration by vibration and capillary forces.

Instead of or in addition to the field of gravity, other static forces may be employed to aid in penetration of the compound into the sheet material, such as by an electrostatic field or by a magnetostatic field.

In FIG. 3 reference numeral 4 shows the rotary screen. Under the latter a thick sheet material 2, e.g. a carpet, passes on a printers blanket l in the direction 23, while at the same time the rotary screen 4 rolls on the sheet material 2 in the circumferential direction 24. A printing table 7 is provided underneath the rotary screen 4, in which printing table 7 the electromagnet system 8 is arranged. In the inside of the rotary screen 4 the dye feeding pipe 5 is arranged, supporting a squeegee sheet metal plate 26 by means of fasteners 25. At the end of a known type flexible squeegee sheet metal plate 26 a weight 27 responsive to magnetic attraction of electromagnet system 8 is provided. Contact pressure between the squeegee sheet metal plate 26 and screen 4 is caused by the electromagnetic system 8. This squeegee sheet metal plate 26 is vibrated vertically, e.g. by a vibration impulse of the dye feeding pipe 5 in the direction 28. During these vibrations the end 29 of the squeegee sheet metal plate 26 remains in contact with the rotary screen 4. Due to the vibration of plate 26, periodic fluctuations of pressure are caused in the compound to be applied, thereby facilitating penetration of the dye into the sheet material. The vibration of the dye feeding pipe 5 is usefully effected with frequencies to a maximum of hertzian units. The weight 27 may also be replaced by a roller squeegee, wherein the squeegee sheet-metal plate 26 rubs tangentially such roller squeegee, and the roller squeegee rolls on the rotary screen 4 under the effect of the magnetic field.

FIG. 4 is a longitudinal section of the printing device of FIG. 3, and similar reference numerals are used. The dye feeding pipe 5 is supported at both of its ends by oscillators 31, effecting synchronous vibrations of equal amplitude in the direction 32, thereby vertically vibrating the dye feeding pipe 5 along the total length thereof. At the ends of the rotary screen 4 the heads 33 of the screen are provided; the right screen head (as viewed in FIG. 4) supporting the gear 34 mating with a corresponding gear 35.

In FIG. 5 the same reference numerals are used as in FIGS. 3 and 4. Instead of a squeegee sheet metal plate, a roller squeegee 36 is provided. The vibration impulse is not effected by movement of the dye feeding pipe 5, but rather by the pressure chamber 37 provided in the printing table 7. The printing table 7 is covered with a metal foil 38 which is connected at the ends 39 thereof with the printing table 7 by means of backing strips. In the pressure chamber 37 there is a pressure medium e.g. liquid or air. This pressure medium is connected to an oscillating piston, not shown in the drawings by a feeding pipe 40. The piston causes periodic fluctuations of pressure in the mentioned medium. Thereby, vibration is transmitted through the metal foil 38 and the printers blanket 1 onto the sheet material 2 and the compound to be applied 30 within the rotary screen 4, thereby resulting in increased penetration.

In FIG. 6 again previous reference numerals are used. However the printing of a thick sheet material is accomplished without the use of a magnet field as in the embodiments according to FIGS. 3, 4 and 5. Within the rotary screen 4 a dye container 41 is arranged near the dye feeding pipe 5. The bottom part of dye container 41 is sealed to the rotary screen 4 by means of two lips 42. In dye container 41 the dye reaches a level 43. In the dye is positioned an ultrasonic generator 44, whereby the dye is ultrasonically vibrated, thereby penetrating deeply into the sheet material at 45 through the rotary screen cylinder 4. Underneath the rotary screen 4 the sheet material 2 supports a printing table 7 in the form of a box girder having a groove 46 at its surface. The breadth 47 of groove 46 is at least equal to the distance between lips 42.

A particularly useful variation of the invention is that the vibrations or treatment with supersonics of the sheet material is not effected in the printing machine but in a subsequently added steaming and drying device.

Furthermore, the sheet material may be impregnated with penetrating agent before the printing. The penetration of the sheet material with the penetrating agent according to the process of the invention may be intensified, eg by a swing table or with an ultrasonic treatment.

Furthermore, the printed sheet material may be treated with a dilutent for the compound to be applied, eg by depositing an aerosol in the area which is vibrated. Thereby penetration is furthermore facilitated.

Also, the present invention may be used in a rotary screen printing machine with flat screen or in some other device, where sheet materials or generally a permeable flat shaped article (e.g. a foam plastics mat) is supplied with a compound to be applied which should penetrate into the flat shaped material.

We claim:

1. In a system for applying viscous or liquid printing compound onto a flat shaped material permeable to said compound, said system including a rotary screen printing machine having a perforated rotary cylinder screen, means to force said printing compound through the perforations in said screen onto said material, and means for moving said material in a longitudinal direction to be contacted by the periphery of said cylinder screen, the improvement comprising:

means for increasing the penetration of said printing compound into said material comprising means for creating relative vibrations between said material and said printing compound for creating alternating inertial forces acting on the particles of said printing compound to cause said printing compound particles to further penetrate into said material; and

means for superimposing static forces on said alternating inertial forces, and thereby on said printing compound particles, to increase the relative movement between said printing compound and said material, said static forces being in a direction substantially normal to the plane of said material, said means for superimposing static forces comprising means for imparting an electrostatic field to said printing compound.

2. A system as claimed in claim 1, wherein said material is moved horizontally, and wherein said means for creating relative vibrations comprises means to create relative vibrations between said material and said printing compound in a vertical direction.

3. In a system for applying viscous or liquid printing dye onto a flat shaped material permeable to said dye, said system including a rotary screen printing machine having a perforated rotary cylinder screen, a squeegee positioned within said screen for pressing said printing dye through the perforations in said screen onto said material, a dye feeding pipe supporting said squeegee for feeding said dye to the inner surface of said screen adjacent said squeegee, and means for moving said material in a longitudinal direction to be contacted by the periphery of said cylinder screen, the improvement comprising:

means for increasing the penetration of said printing dye into said material comprising means for creating relative vibrations between said material and said printing dyefor creating alternating inertial forces acting on the particles of said printing dye to cause said printing dye particles to further penetrate into said material, said means for creating rel ative vibrations comprising means located on the same side of said material as said screen for imparting vibratory movement directly to only said print ing dye during the application of said printing dye to said material, said means for imparting vibratory movement comprising means for vertically reciprocating said dye feeding pipe.

4. In a system for applying viscous or liquid printing dye onto a flat shaped material permeable to said dye, said system including a rotary screen printing machine having a perforated rotary cylinder screen, dye container means positioned within said screen for forcing said printing dye through the perforations in said screen onto said material, and means for moving said material in a longitudinal direction to be contacted by the periphery of said cylinder screen, the improvement comprising:

means for increasing the penetration of said printing dye into said material comprising means for creating relative vibrations between said material and said printing dye for creating alternating inertial forces acting on the particles of said printing dye to cause said printing dye particles to further penetrate into said material, said means for creating relative vibrations comprising means located on the same side of said material as said screen for imparting vibratory movement directly to only said printing compound during the application of said printing dye to said material, said means for imparting vibratory movement comprising ultrasonic generator means immersed in said dye in said dye container.

5. In a system for applying viscous or liquid printing compound onto a flat shaped material permeable to said compound, said system including a rotary screen printing machine having a perforated rotary cylinder screen, means to force said printing compound through the perforations in said screen onto said material, and means for moving said material in a longitudinal direction to be contacted by the periphery of said cylinder screen, the improvement comprising:

means for increasing the penetration of said printing compound into said material comprising means for creating relative vibrations between said material and said printing compound for creating alternating inertial forces acting on the particles of said printing compound to cause said printing compound particles to further penetrate into said material, said means for creating relative vibrations comprising means located on the same side of said material as said screen for imparting vibratory movement directly to only said printing compound during the application of said printing compound to said material, said vibratory movement imparting means comprising means to move said printing compound in a vertical direction.

6. In a process for applying a viscous or liquid printing compound onto a flat shaped material permeable to said printing compound, by forcing said printing compound through the perforations in a perforated rotary cylinder screen of a rotary screen printing machine onto said material while moving said material in a longitudinal direction to be peripherally contacted by said cylinder screen the improvement comprising:

increasing the penetration of said printing compound into said material by:

creating relative vibrations, between said material and said printing compound, thereby creating alternating inertial forces acting on the particles of said printing compound to cause said printing compound particles to further penetrate into said material; and

superimposing static forces on said alternating inertial forces, and thereby on said printing compound particles, to increase the relative movement between said printing compound and said material, said static forces being in a direction substantially normal to the plane of said material, said static forces being superimposed by applying an electrostatic field to said compound.

7. A process as claimed in claim 6, wherein said printing compound is a dye.

8. A process as claimed in claim 7, wherein said material is moved horizontally, and said relative vibrations are created in a vertical direction.

9. In a process for applying a viscous or liquid printing compound onto a flat shaped material permeable to said printing compound, by forcing said printing compound through the perforations in a perforated rotary cylinder screen of a rotary screen printing machine onto said material while moving said material in a longitudinal direction to be peripherally contacted by said cylinder screen the improvement comprising:

increasing the penetration of said printing compound into said material by:

creating relative vibrations, between said material and said printing compound, thereby creating alternating inertial forces acting on the particles of said printing compound to cause said printing compound particles to further penetrate into said material, said step of creating relative vibrations comprising imparting vibratory movement directly to only said printing compound.

10. A process as claimed in claim 9, wherein said printing compound is a dye.

11. A process as claimed in claim 9, wherein said material is moved horizontally, and wherein said vibratory movement is imparted to said printing compound in a vertical direction. I

12. A process as claimed in claim 9, wherein said vibratory movement is imparted to said printing compound after said printing compound is applied to said material.

13. A process as claimed in claim 12, wherein said vibratory movement is imparted to said printing compound by subjecting said printing compound to ultrasonic energy.

14. A process as claimed in claim 9, wherein said vibratory movement is imparted to said printing compound during the application of said printing compound to said material.

15. A process as claimed in claim 14, wherein said printing compound is a dye supplied from a dye feeding pipe to the inner surface of said perforated rotary cylinder screen and forced through said perforations of said screen by a squeegee resiliently supported by said dye feeding pipe, and said vibratory movement is imparted to said dye by vertically reciprocating said dye feeding pipe.

16. A process as claimed in claim 14, wherein said printing compound is a dye positioned in a dye container within said perforated rotary cylinder screen, said dye contacting the inner surface of said screen, and said vibratory movement is imparted to said dye by ultrasonically vibrating said dye.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US1935194 *30 Dec 193114 Nov 1933Wilsey Irven HMethod of and machine for writing checks
US2462297 *9 Apr 194522 Feb 1949Los Angeles Paper Box FactoryApparatus for saturating fabrics
US2700366 *14 Jul 195125 Jan 1955Firestone Tire & Rubber CoApparatus for treating coated fabric to remove excess coating material therefrom
US2727442 *18 Sep 195220 Dec 1955Sandy Hill Iron & Brass WorksApparatus for the manufacture of paper
US2864592 *7 Mar 195516 Dec 1958Bendix Aviat CorpLiquid-vibrating apparatus
US3084020 *16 Oct 19582 Apr 1963Rene RueggMethod of treating knitted superpoly-amide textile fabric with an aqueous phenol bath subjected to ultra-sonic waves and fabric produced thereby
US3098370 *17 Aug 195523 Jul 1963Harmon A PooleTreatment of liquid immersed material
US3140199 *28 Apr 19617 Jul 1964Eastman Kodak CoVibrating belt powder cloud generator for xerography
US3151543 *28 Sep 19616 Oct 1964IbmHigh speed printer with magnetostrictive impression members
US3211088 *4 May 196212 Oct 1965Sperry Rand CorpExponential horn printer
US3280740 *15 Feb 196225 Oct 1966Cavitron Ultrasonics IncPrinting methods and apparatus
US3502052 *6 Sep 196724 Mar 1970Indev IncFlocking apparatus
US3587458 *23 Sep 196828 Jun 1971Buser Ag Maschf FritzRolling contact screen printing machine with deformable counterpressure member
US3639152 *28 Mar 19661 Feb 1972Bodine Albert GMethod and apparatus for fluid impregnation utilizing sonic mechanical vibration
US3653948 *27 Nov 19684 Apr 1972Kalle AgProcess and apparatus for compressing string-forming polymer substances by mechanical vibration
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4054091 *5 Apr 197618 Oct 1977Micro-Circuits Company, Inc.Silk screen printing process and apparatus
US4173928 *22 Sep 197713 Nov 1979Mathias MitterScreen printing machine
US4557194 *25 May 198410 Dec 1985Johannes ZimmerRotary-screen printer with magnetically attracted wiper
US4887527 *6 Oct 198819 Dec 1989Stork Brabant B.V.Magnetic beam for a roller squeegee of a rotary screen printing installation
US4974509 *27 Jun 19884 Dec 1990Johannes ZimmerSqueegee device
US5254362 *23 Oct 199219 Oct 1993Motorola, Inc.Method and apparatus for deposition of solder paste on a printed wiring board
US5407488 *12 Oct 199318 Apr 1995At&T Corp.Method and apparatus for in-situ removal of material from openings in a stencil
US5579690 *7 Jun 19953 Dec 1996Tani Electronics Industry Co., Ltd.Printer system for printing circuit patterns or like on base board
US5590596 *31 Aug 19957 Jan 1997Tani Electronics Industry, Co., Ltd.Printer system for printing circuit patterns or like on base board
US5640907 *7 Jun 199524 Jun 1997Tani Electronics Industry Co., Ltd.Ink supplier in a printer system for printing circuit patterns or like on base board
US5937750 *21 May 199717 Aug 1999Tohoku Ricoh Co., Ltd.Stencil printer having an electric field between the print drum and the pressing member
US6016746 *19 Aug 199725 Jan 2000Micron Communications, Inc.Flip chip screen printing method
US6135024 *11 Jul 199624 Oct 2000Matsushita Electric Industrial Co., Ltd.Screen printing method and printing apparatus
US6155165 *11 Aug 19955 Dec 2000Giesecke & Devrient GmbhRotary screen printing cylinder having separated ink zones
US645381130 Aug 200024 Sep 2002Matsushita Electric Industrial Co., Ltd.Printing method and printing apparatus
US756825128 Dec 20064 Aug 2009Kimberly-Clark Worldwide, Inc.Process for dyeing a textile web
US767430028 Dec 20069 Mar 2010Kimberly-Clark Worldwide, Inc.Process for dyeing a textile web
US774066628 Dec 200622 Jun 2010Kimberly-Clark Worldwide, Inc.Process for dyeing a textile web
US818255212 Jul 200722 May 2012Kimberly-Clark Worldwide, Inc.Process for dyeing a textile web
US863261327 Dec 200721 Jan 2014Kimberly-Clark Worldwide, Inc.Process for applying one or more treatment agents to a textile web
EP0842772A1 *11 Jul 199620 May 1998Matsushita Electronics CorporationPrinting method and apparatus
EP1340552A2 *31 May 20023 Sep 2003hhs Leimauftrags-Systeme GmbHApparatus for applying fluid material
WO2008081357A1 *3 Dec 200710 Jul 2008Kimberly Clark CoProcess for dyeing a textile web
WO2008081358A1 *3 Dec 200710 Jul 2008Kimberly Clark CoProcess for dyeing a textile web
WO2008081364A1 *3 Dec 200710 Jul 2008Kimberly Clark CoProcess for dyeing a textile web
WO2011110795A2 *9 Nov 201015 Sep 2011Dtg International GmbhScreen printing
Classifications
U.S. Classification101/129, 101/126, 101/116, 101/DIG.370, 101/115, 101/119, 101/DIG.340
International ClassificationB41M1/12, B41F23/00, B41F15/12, D06B11/00
Cooperative ClassificationB41M1/12, B41M1/125, B41P2215/13, Y10S101/37, D06B11/0066, B41F15/12, Y10S101/34, B41F23/00
European ClassificationB41F15/12, B41F23/00, D06B11/00G4, B41M1/12, B41M1/12B