US3897708A - Electrically operated musical instrument - Google Patents

Electrically operated musical instrument Download PDF

Info

Publication number
US3897708A
US3897708A US472688A US47268874A US3897708A US 3897708 A US3897708 A US 3897708A US 472688 A US472688 A US 472688A US 47268874 A US47268874 A US 47268874A US 3897708 A US3897708 A US 3897708A
Authority
US
United States
Prior art keywords
contacts
keys
generators
group
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US472688A
Inventor
Yoshiro Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US05/571,626 priority Critical patent/US4015092A/en
Application granted granted Critical
Publication of US3897708A publication Critical patent/US3897708A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H1/00Details of electrophonic musical instruments
    • G10H1/18Selecting circuits
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H2230/00General physical, ergonomic or hardware implementation of electrophonic musical tools or instruments, e.g. shape or architecture
    • G10H2230/045Special instrument [spint], i.e. mimicking the ergonomy, shape, sound or other characteristic of a specific acoustic musical instrument category
    • G10H2230/155Spint wind instrument, i.e. mimicking musical wind instrument features; Electrophonic aspects of acoustic wind instruments; MIDI-like control therefor.
    • G10H2230/205Spint reed, i.e. mimicking or emulating reed instruments, sensors or interfaces therefor
    • G10H2230/221Spint saxophone, i.e. mimicking conical bore musical instruments with single reed mouthpiece, e.g. saxophones, electrophonic emulation or interfacing aspects therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S84/00Music
    • Y10S84/07Electric key switch structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S84/00Music
    • Y10S84/17Cabinets

Definitions

  • Woodwind instruments such as a saxophone, a flute, a clarinet and the like utilize a reed mouthpiece for producing sound with pitch variations as a function of breath-release pressure within the mouthpiece, a hollow tube resonating the produced tones and a plurality of depressable keys actuating valves which modify the effective tube length to produce frequency variations whereby in turn to produce musical notes as a function of the keys depressed by the player.
  • the distance between the mouthpiece and valve is generally several times the wave length of each musical scale.
  • the characteristic of each musical note is determined by the size, shape and the material of which the tube is made. Since the tube design is substantially uniform for woodwind instruments, the fingering is substantially the same for each woodwind instrument.
  • an objective of my invention is to provide a novel electric instrument which includes switch groups and related circuits completed when keys on the instruments are operated with finger action similar to that used in depressing keys of conventional woodwind instruments.
  • I provide an electrically operated musical instrument which includes groups of change-over switches ofa number corresponding to the number of keys which the conventional woodwind instrument has.
  • My instrument also includes groups of sound generators for generating notes of predeter mined frequencies in a given scale, current paths being provided to the generators by selecting combinations of change-over switches governed by combinations of key depressions on the musical instrument to provide notes of predetermined frequency generated by the sound generators.
  • the change-over switches have contacts a first group of which are provided on an external contact panel and the second group of which are provided on an internal contact panel, there being interposed between such external and internal panels an intermediate panel carrying movable contacts of the change-over switches.
  • the movable contacts on the intermediate panel engage the contacts on the internal panel and when released engage the contacts on the external panel.
  • the contacts on the interior and external panels are wired to provide current paths to the sound source generators which produce sounds determined by the finger operation of the keys on the instrument.
  • the external and internal contact panels and the intermediate contact panel therebetween are accommodated in a casing of the musical instrument of the invention.
  • a further objective of the invention is to provide an electrically operated musical instrument which enables production of desired musical tones with simple circuit arrangements.
  • Another objective of the invention is to provide an electrically operated musical instrument which is capable of producing appropriately controlled and delicate musical sounds.
  • a further objective of the present invention is to provide an electrically operated musical instrument which produces a desired musical sound without being burdened by the limitations of size or configuration as in the case of conventional woodwind instruments.
  • FIG. 1 is an entire circuit diagram of the musical instrument embodied according to the invention
  • FIG. 2 is a circuit diagram for actuating a specific generator in accordance with the fingering
  • FIG. 3 is a perspective view of the switch casing
  • FIG. 4 is a cross sectional view of FIG. 3;
  • FIG. 5(A) is a front elevation of the external contact panel for the scale selection
  • FIG. 5(B) is a front elevation of movable contact panel for the scale selection
  • FIG. 5(C) is a wiring diagram of the internal contact panel for the scale selection provided with the wiring on the rear side thereof;
  • FIG. 6(A) is a front elevation of an external contact panel for selecting the octaves
  • FIG. 6(8) is an elevation of the oscillation contact panel for selecting the octaves
  • FIG. 6(C) is a wiring diagram of the internal contact panel for selecting the octaves and provided with the wiring on the rear side thereof;
  • FIG. 7 is a graph showing the musical notes produced by group generators l to 20 and the keys which are depressed to select the sound generators.
  • FIG. 1 is a circuit diagram of the overall system constituting the musical instrument of the invention and includes keys A'Y' inclusive mounted in relation to one another on a casing (see FIG. 3) in a manner to correspond to the spacial relationship of the keys on a woodwind instrument, such, for example, as a saxophone.
  • the system includes switch groups A-Y inclusive, each switch having a movable contact and fixed contacts and being operated by the correspondingly lettered key primed," as will be more fully disclosed hereinafter.
  • the mechanical linking for example of key A with switch A, key B with switch B etc. has not been illustrated in FIG. I in the interest of clarity and to avoid confusion.
  • the system further includes sound wave generators divided into groups such as groups I, 2, 3, 20 as illustrated in FIG. I.
  • the sound wave generators are furthermore divided into groups a, b, c, d, and e. It is to be understood that each of the sound generators in a given vertical column, i.e., group 1 emit the same note, for example, B but with octave differentials, the same applying to the group 2 sound generators which are also designed to emit the same note, for example, B, but with octave differences governed by keys V, W, X and Y and the corresponding switches V, W, X and Y the actuation of which determine which octave is se lected in groups a-e.
  • group I, 2, 3 20 sound generators are vertically oriented and connected in parallel while group a, b, c, d, and e sound generators are horizontally oriented and also connected in parallel.
  • keys A U respectively control the operational state of switches A to U and select as shown in FIGS. l and 7 the numbered groups of sound generators; i.e. group I, 2, 3, 20.
  • keys A U respectively control the operational state of switches A to U and select as shown in FIGS. l and 7 the numbered groups of sound generators; i.e. group I, 2, 3, 20.
  • a key such for example as key B will operate switch B which in turn selects one of the numbered groups of sound generators (group I7) and that operating any one of octave keys V, W, X or Y will operate the corresponding switch V, W, X or Y with consequent selection of any one of groups a, b, c or d or group e if none of keys V to Y is operated.
  • FIG. 7 clearly shows, for example, that group 15 generators may be selected by either operating key G alone or keys E and Q simultaneously.
  • FIGS. 1 and 7 jointly considered illustrate the various notes (B, B, C, D etc.) that can be produced upon depressing one or more of the keys A to U with actuation of corresponding switches A to U, to select one or more of the sound generators l to 20.
  • group 1 sound generators will be selected for producing note B by operating keys E, G, H, L, M, N, O and U;
  • group 2 sound generators 2a, 2b, 2c, will be selected for generating note B by operating keys E, G, H, K, M, N, O and U;
  • group 3 sound generators will be selected for generating note C by operating keys E, G, H, M, N, O and U;
  • group 4 sound generators will be selected for generating note D by operating keys E G, H, J, M, N, O and U;
  • group 4 sound generators will be selected for generating note D by operating keys E, G, H, M, N and 0;
  • group 6 sound generators will be selected for generating a note E by operating keys E G, H, M, N, 0 and T;
  • group 7 sound generators will be selected for generating not E by operating keys E, G, H, M, and N;
  • group 8 sound generators will be selected for generating note F by operating keys E, G
  • the generators generally are arranged in a horizontal grouping including elements a, b, c individual generators in the vertical and horizontal groups being connected in parallel with each other.
  • the generators 13a, I311; I411, 14b; and 15a, 15b are provided for dual key operation in the same octave stage for smooth finger key operation; also generators 16a, l6b; 17a, 17b; and 20a, 20b are provided to generate still one octave higher musical sound.
  • the number of the generators included in the musical instrument is governed by purpose.
  • the scale change-over switches A U of a number equal to that of the keys of a saxophone, control circuit paths between amplifier 113 and the sound generators with which the switches are electrically connected by wiring means.
  • each switch movable contact is either in engagement with one or another of the fixed contacts of the switch, engagement with one of the fixed contacts being effected in the nonoperated position of a key and with the other fixed contact on operation of the key.
  • the musical instrument is normally provided with 21 scale operation keys A U which govern the operational state of the change-over switches A U respectively.
  • the change-over switch A is provided with the contacts 21, 22 and 23, the change-over switch B with a contact 24 functioning as an input terminal and contacts 25 and 26 and likewise the change-over switch U is provided with the contacts 98, 99 and 100. On non-operation of any of the keys A to U, the following contacts will be engaged.
  • switch A is connected to switch B by interconnecting the contacts 21 and 26, switch A to P by interconnecting contacts 23 and 83, switch B to D by interconnecting contacts 25 and 33.
  • the following contacts are interconnected; contacts 27 and contacts 30 and 43; contacts 34 and 35; contacts 36 and 41; contacts 37 and 38; contacts 39 and 47; contacts 40 and 44; contacts 46 and 51; contacts 48 and 68; contacts 49 and 89; contacts 50 and 90; contacts 52 and 53; contacts 54 and 65; contacts 56 and contacts 57 and 59; contacts 60 and 62; contacts 66 and 74; contacts 67 and 77; contacts 69 and 71; contacts 72 and 86; contacts 78 and 200; contacts 79 and 92; contacts 80 and 93; contacts 82 and 95 and between the contacts 96 and 98; contacts 94 and 202 and contacts 32 and 203.
  • contact 64 is connected to the group 1 generators, contact 63 to the group 2 generators, contact 61 to the group 3 generators, contact 58 to the group 4 generators, contact 99 to the group 5 generators, contact 97 to the group 6 generators, contact 81 to the group 7 generators, contact 201 to the group 8 generators, contacts 76 and 94 to the group 9 generators, contact 75 to the group 10 generators, contact 55 to the group 11 generators, contact 51 to the group 12 generators, contacts 45, 70, 73 and 91 to the group 13 generators, contact 87 to the group 14 generators, contacts 31 and 88 to the group 15 generators, contact 42 to the group 16 generators, contact 22 to the group 17 generators, contact 84 to the group 18 generators, contact 28 to the group 19 generators and contacts 29 and 32 to the group 20 generators.
  • each of the current paths to the group 1 to group 12 generators for generating the different notes in a scale is selected by operating the relevant key or keys in the same manner of operating the keys of a saxophone instrument. As will be seen from FIG. 7, the same note may be produced by operating different combination of keys which selectively control the circuit path between a selected sound generator and amplifier.
  • the current path to group 14 or 15 sound generators is established respectively through switch E (for group 14) or G or E, Q, (for group 15) by operating keys E or G or E, Q respectively.
  • switch E for group 14
  • G or E, Q for group 15
  • keys E or G or E, Q respectively.
  • FIG. 7 it will be seen from FIG. 7 that to switch from sound generator 14 to sound generator 15 it is only necessary to depress the key Q in addition to key E which latter key selects the group 14 generators.
  • the additional key N as will be seen from the showing in FIG. 7.
  • FIG. 2 FIGURES Figure illustrates the selection of, for example, group 4 generators which emit the note D.
  • This note will be generated by depressing keys E, G, H, .I, M, N, O and U which selectively operate switches E, G, H, .l, M, N, O and U by closing contacts 35 and 36, contacts 47 and 49, contacts 50 and 52, contacts 56 and 58, contacts 65 and 67, contacts 77 and 79, contacts 80 and 82 and contacts 98 and 100.
  • the group 4 generators will be selected via contacts 24-25-33-34-35-37-38-39-47-49-89-90-50-52-53-54- 65-67-77-79-92-93-80-82-95-96-98-100-56-58.
  • two current paths are provided for the group 9 generators, the group 15 generators and the group 20 generators while three current paths are provided for the group 13 generators.
  • the keys E, G, H and M and E, G, H, N are sequentially operated.
  • the keys are made by for example fingering keys E, G, H and M (note F) instead of E, G, H and N (note G") the error can be corrected so that the note F will not be sounded by merely depressing key S (along with keys E, G, H and M; see FIG. 7).
  • multiple current paths are provided for the group 14 generators, the group 15 generators and for the group 20 generators.
  • the octave change-over switches V, W, X, and Y are operatively connected to the octave operation keys V, W, X and Y to provide current paths to the group a generators, the group b generators, the group c generators, the group d generators and the group e generators of the octave stage.
  • the change-over switch V is provided with the contacts 101, 102 103, the change-over switch ⁇ V with the contacts 104, 105 and 106, the change-over switch X with the contacts 107, 108 and 109 and the change-over switch Y with the contacts 110, 111 and 112.
  • FIG. 2 illustrates the circuit in which the group 4 generators are operatively selected by the scale changeover switches E, G, H, .l, M, N, O and U to produce the tone D. If the octave group b is to be selected (generator 4b) the octave change-over switch is operated to produce a note at the octave level in the desired group b. At this time, current is supplied to the amplifier 113 through contacts 106-104-102-101.
  • the reference numeral 114 identifies a main switch, 115 a speaker, II6 an interrupting switch for producing a discontinuous sound when operating the musical instrument and 117 is a variable resistor for controlling the frequency of current supplied through the intermediary of switch 16 to the individual generators Ia, lb ,2a, 2b and 20a, 20b. 20c.
  • the interrupting switch 116 and the variable resistor 117 are adapted to convert the mechanical motion into electrical signals.
  • there may be provided an independent mouthpiece (not shown) corresponding to the reed mouthpiece of the wind instrument which may be provided with an interrupting switch 16 operated by pressure of the user's breath and the variable resistor 117 may be made responsive to the upward and downward movements of the jaw of the player. Thereby the mechanical movement of the interrupting switch and resistor I17 will affect the current flow to the sound generators.
  • element 117 might be provided in form of a variable impedance rather than as a variable resistor.
  • FIG. 2 illustrates the circuit for selecting the group 4 generators for producing the note D by depressing, as shown in FIG. 7, keys E, G, H, J', M, N, O' and U which respectively operate switches E, G, H, J, M, N, O and U.
  • the FIG. 2 circuits form part of the circuitry shown in FIG. 1 and can be traced in FIG. 1 via contacts 24, 25, 33, 34, 35, 37, 38, 39, 47, 49,89, 90, 50,52, 53, 54, 65, 67, 77, 79, 92, 93, 80, 82, 95, 96, 98, I00, 56 and 58.
  • FIG. 1 illustrates the circuit for selecting the group 4 generators for producing the note D by depressing, as shown in FIG. 7, keys E, G, H, J', M, N, O' and U which respectively operate switches E, G, H, J, M, N, O and U.
  • the FIG. 2 circuits form part of the circuitry shown in FIG.
  • FIG. 1 shows the required connections between change-over switches A to U and the group of sound generators 120 to enable selection of any other sound generator in the series I-20 by depressing the keys A to U singly, in combination, or not at all in accordance with the showing in FIG. 1.
  • FIG. 1 also shows the required connections between the change-over octave switches V to Y and the group of sound generators a to e to enable selection of a predetermined sound generator in the series a to e by depressing keys V to Y respectively, singly, in combination or not at all.
  • the circuit for selecting predetermined sound generators in groups 1 to 20 and in groups a to e via changeover switches are shown in FIG. 1.
  • the circuits for each sound generator may be traced in the same manner as the circuit was traced for the group 4 generators. In each instance the circuit may be traced (ignoring elements 113, I16, 117 which are in the circuit path) starting with switch B by way of contact 25 if key B is not operated and by way of contact 26 if key B is operated.
  • FIG. 1 shows the connections made by the movable contact of each switch with the fixed contacts thereof when the keys associated with said switches are not operated.
  • FIGS. 3 to 6 illustrate a switch casing which accommodates the keys, switches, current paths and the generators.
  • an external contact panel I18 which carries the contacts of switches A to U engaged by the movable contacts during non-operation of keys A to U.
  • An internal panel 119 carries contacts of switches A to U which are engaged by the movable contacts upon actuation of keys A to U'.
  • an intermediate contact panel having resilient movable contacts which are normally in engagement with the contacts on panel 118 but moved therefrom when keys A to U are depressed to urge the resilient contact members instead into en gagement with the contacts on internal panel 119.
  • FIG. 5 The manner in which the contacts on the different panels are connected by leads, or other wiring means, is illustrated in FIG. 5.
  • the contact panels 118, 119 and 120 are each wired at their rear sides.
  • the contacts on panel 118 shown in FIG. 5A are adapted to be engaged on non-operation of the keys, and the contacts on panel 119 are adapted to be engaged on operation of the keys.
  • the movable contacts mounted on a movable panel 120 as shown in FIG. 5B are adapted to be interposed between panels 118 and 119.
  • the panels when assembled in superposed alignment provide the changeover switches A to U as shown in FIG. 1. Printed circuit panels are preferred for this purpose.
  • An input terminal for each generator in the respective group may selectively be provided either in the external contact panel 118 or in the internal contact panel 119. However, for ease of wiring, it is preferred to provide the terminals on the internal contact panel 119.
  • the operation of the movable contact shown in FIG. 58 serving to switch-over switches A to U may be effected as disclosed, by depression of keys A to U.
  • the keys A to U are pivotally carried by the switch casing 121 which accommodates the external contact panel 118, the internal contact panel "9 and the movable contact panel 120 interposed therebetween, the keys A to U being arranged as to conform to the spatial positions of, for example, the keys of a saxaphone.
  • the keys A to U instead of arranging the keys A to U on casing 121 as shown in FIG.
  • a projecting element 122 attached to individual operating keys A to U is engaged with an upper side of the movable contact panel 120 to move the movable contacts carried thereby, on depression of keys A to U, from engagement with the contacts on the external contact panel 118 into engaging relation with the contacts on the internal contact panel 119 to thereby switch the current path.
  • the movable contacts on the contact panel 120 return to normal position, wherein the contacts again engage the contacts on the external panel, upon releasing the keys, due to their resilience to re-establish the initial current path.
  • a return spring 123 is mounted to the keys A to U for returning the same to their normal position upon release of finger pressure.
  • the scale operation keys D, G. M and N are intended to operatively actuate plural sets of contacts 30 and 33", 41 and 47'; 65' and 71, 74 and 77 each set being operated simultaneously.
  • FIG. 6 shows the external octave-selection contact panel 124, the internal octave panel 125 and the intermediate contact panel 126 carrying movable contacts which form switches V Y, shown in FIG. 1, for selecting group a to e generators.
  • the external contact panel 124 is provided with contacts 101, 105', I08 and 111' which are normally engaged by the movable contacts in the nonactuated position of the keys.
  • the internal contact panel 125 is provided with contacts 103', 106', 109' and 112' which are engaged by the movable contacts on operation of the keys.
  • the movable contact panel 126 which is provided with movable contact 101, 104', 107 and These contacts are urged upon the depression of the octave operation keys V, W, X and Y from engagement with contacts on panel 124 and into engagement with the contacts on panel 125.
  • the casing l2l is proportioned like a saxaphone and is provided with the operation keys A to U' related to one another to correspond to the location of saxaphone keys on a saxaphone instrument.
  • An electrically operated musical instrument including an electrical system comprising a plurality of keys having a normal and an actuated position, a plurality of electrically interconnected change-over switches operated by said keys, an amplifier, and sound generators electrically connected to said switches for selective connection to said amplifier as a function of switch position, the improvement being characterized in that said change-over switches are provided as an assembly comprising a first contact panel having a first plurality of fixed contacts, a second contact panel having a second plurality of fixed contacts and an intermediate contact panel in superposed alignment with said first and second panels and carrying movable contacts adapted to engage the contacts on the first panel in the normal position of the keys and adapted to engage the fixed contacts on the second panel on moving the keys to their actuated position.
  • An instrument according to claim 1 including a casing which carries said keys and houses said switches and said sound generators.

Abstract

This invention relates to a musical instrument operated by keys which in turn actuate change-over switches for selecting a predetermined one of a series of sound generators. The switches are provided by a composite structure constituted of aligned panels which carry the switch contact, the movable arms of which are operated by the keys.

Description

United States Patent Suzuki Aug. 5, 1975 [54] ELECTRICALLY OPERATED MUSICAL 3.429.976 2/1969 Tomcik 84/].04 X 3.535.429 V1970 Uchiyama.... 84/11 3.532.530 6/l97l Aduchi 1 84/L22 X |76| Inventor: Yoshiro Suzuki, No. 7-l5 l-chome 1619,4614 ll/I97l Evans 84/L24 X Shirakuwu. Koto-ku. Tokyo. Japan 3.624583 I H1971 Nakadu 1 84/].24 X 3.634.584 11/1971 Ohno 1 84/].24 X Wed: May 1974 1626350 12/1971 Suzuki et 111. 84/010v 7 '7 N 3.651.242 3/1972 EVUHS 1 1 84/].ll 3.715.444 2/1973 Peurlman 8411.01 3.754,495 8/1973 Honegger 84/].0! X [30! Foreign Application Priority Data 3.767.833 10/1973 Noble et al. 8411.0! MW m hm 483846.; 3.797.357 3/1974 Thomas et .11. 84/423 1521 vs. Cl. 84/l.0l: 84/D1G. 7; 84/010. 17-. Tomsky 20 1 209 5 340/337; 340/3 5 Assistant E.\'umilwrstanley J. Witkowski 84/423 [51] Int. Cl.= GIOC 3/12; GIOH 5/02 57 ABSTRACT l58| Field of Search 84/1.()l. L04. l.U6-l.08, 1 I
H I I 74 DIG 7 DIG 4 D10. 15 Invention re .i tes to a musica instrument operlq b n uted by keys wh1ch In turn actuate change-over switches for selecting a predetermined one of a series 7 "00/1 l 5 340/337 365 R of sound generators. The switches are provided by a composite structure constituted of aligned panels Rererences cued which carry the switch contact, the movable arms of UNITED STATES PATENTS which are operated by the keys. 3.006.288 lO/l9bl White 84/l.()l 3.040.612 6/1962 Dorf 114/1014 X 2 Clams 11 Drawing Flgms 3.222.447 l2/l965 Cookerly ct nl. 84/LU8 X 9 he; 9 9 H a 9 O O O a, 11 c r 11' d we 172 11 In: 9 ll SHEET PATENTED AUG 5 I975 SHEET PATENTED AUG 51975 ELECTRICALLY OPERATED MUSICAL INSTRUMENT Woodwind instruments such as a saxophone, a flute, a clarinet and the like utilize a reed mouthpiece for producing sound with pitch variations as a function of breath-release pressure within the mouthpiece, a hollow tube resonating the produced tones and a plurality of depressable keys actuating valves which modify the effective tube length to produce frequency variations whereby in turn to produce musical notes as a function of the keys depressed by the player. The distance between the mouthpiece and valve is generally several times the wave length of each musical scale. The characteristic of each musical note is determined by the size, shape and the material of which the tube is made. Since the tube design is substantially uniform for woodwind instruments, the fingering is substantially the same for each woodwind instrument.
Various improvements have been made in devices for use as musical instruments intended to emit sounds similar to the conventional woodwind instruments referred to. Thus, recent electrically operated instruments, such as an electone and the like, are provided with a sound generation circuit for producing sound with a predetermined wavelength, the frequency and amplitude control being obtained by analyzing specific soundwaves to be produced, these instruments including switch and amplification circuits.
Musical sounds with known instruments are made by depressing multiple keyboards in parallel arrangement, keys in one keyboard being actuated independently of other keyboards to actuate corresponding switches in relevant circuits for producing the musical tones desired. With such arrangement the sound source is initially connected to the generation circuit by selecting the keyboards which are disposed in a symmetrical relation and then the oscillating tone is connected to the amplification circuit to produce the desired musical sound. The foregoing arrangement, while effective for musical instruments of the keyboard type, is not readily adaptable to a musical instrument which is to operate as a woodwind instrument such as a saxophone and the like where one musical sound (note) is obtained by certain combinations of simultaneously depressed keys. Known keyboard-operated electric instruments heretofore used moreover produce timber variations by switching timber circuits, timber being changed by synthesizing different sound frequencies.
Considering the foregoing and the recently attained recognition of electrical musical instruments, an objective of my invention is to provide a novel electric instrument which includes switch groups and related circuits completed when keys on the instruments are operated with finger action similar to that used in depressing keys of conventional woodwind instruments. To achieve this objective, I provide an electrically operated musical instrument which includes groups of change-over switches ofa number corresponding to the number of keys which the conventional woodwind instrument has. My instrument also includes groups of sound generators for generating notes of predeter mined frequencies in a given scale, current paths being provided to the generators by selecting combinations of change-over switches governed by combinations of key depressions on the musical instrument to provide notes of predetermined frequency generated by the sound generators. The change-over switches have contacts a first group of which are provided on an external contact panel and the second group of which are provided on an internal contact panel, there being interposed between such external and internal panels an intermediate panel carrying movable contacts of the change-over switches. When the keys of the musical instrument are actuated, the movable contacts on the intermediate panel engage the contacts on the internal panel and when released engage the contacts on the external panel. The contacts on the interior and external panels are wired to provide current paths to the sound source generators which produce sounds determined by the finger operation of the keys on the instrument. The external and internal contact panels and the intermediate contact panel therebetween are accommodated in a casing of the musical instrument of the invention.
A further objective of the invention is to provide an electrically operated musical instrument which enables production of desired musical tones with simple circuit arrangements.
Another objective of the invention is to provide an electrically operated musical instrument which is capable of producing appropriately controlled and delicate musical sounds.
A further objective of the present invention is to provide an electrically operated musical instrument which produces a desired musical sound without being burdened by the limitations of size or configuration as in the case of conventional woodwind instruments.
Other objects and advantages of the present invention will become apparent as the detailed description thereof proceeds.
For a fuller understanding of the present invention reference will now be had to the following detailed description thereof taken in conjunction with the accompanying drawings, wherein:
FIG. 1 is an entire circuit diagram of the musical instrument embodied according to the invention;
FIG. 2 is a circuit diagram for actuating a specific generator in accordance with the fingering;
FIG. 3 is a perspective view of the switch casing;
FIG. 4 is a cross sectional view of FIG. 3;
FIG. 5(A) is a front elevation of the external contact panel for the scale selection;
FIG. 5(B) is a front elevation of movable contact panel for the scale selection;
FIG. 5(C) is a wiring diagram of the internal contact panel for the scale selection provided with the wiring on the rear side thereof;
FIG. 6(A) is a front elevation of an external contact panel for selecting the octaves;
FIG. 6(8) is an elevation of the oscillation contact panel for selecting the octaves;
FIG. 6(C) is a wiring diagram of the internal contact panel for selecting the octaves and provided with the wiring on the rear side thereof; and
FIG. 7 is a graph showing the musical notes produced by group generators l to 20 and the keys which are depressed to select the sound generators.
FIG. 1 is a circuit diagram of the overall system constituting the musical instrument of the invention and includes keys A'Y' inclusive mounted in relation to one another on a casing (see FIG. 3) in a manner to correspond to the spacial relationship of the keys on a woodwind instrument, such, for example, as a saxophone. The system includes switch groups A-Y inclusive, each switch having a movable contact and fixed contacts and being operated by the correspondingly lettered key primed," as will be more fully disclosed hereinafter. The mechanical linking for example of key A with switch A, key B with switch B etc. has not been illustrated in FIG. I in the interest of clarity and to avoid confusion.
The system further includes sound wave generators divided into groups such as groups I, 2, 3, 20 as illustrated in FIG. I. The sound wave generators are furthermore divided into groups a, b, c, d, and e. It is to be understood that each of the sound generators in a given vertical column, i.e., group 1 emit the same note, for example, B but with octave differentials, the same applying to the group 2 sound generators which are also designed to emit the same note, for example, B, but with octave differences governed by keys V, W, X and Y and the corresponding switches V, W, X and Y the actuation of which determine which octave is se lected in groups a-e.
As will be seen from FIG. 1, group I, 2, 3 20 sound generators are vertically oriented and connected in parallel while group a, b, c, d, and e sound generators are horizontally oriented and also connected in parallel.
The notes adapted to be produced by the sound generators in groups 1 to 20 and the keys A to U which have to be operated to produce such notes is shown in FIG. 7.
Thus, keys A U respectively control the operational state of switches A to U and select as shown in FIGS. l and 7 the numbered groups of sound generators; i.e. group I, 2, 3, 20. Thus it will be appreciated that operating a key such for example as key B will operate switch B which in turn selects one of the numbered groups of sound generators (group I7) and that operating any one of octave keys V, W, X or Y will operate the corresponding switch V, W, X or Y with consequent selection of any one of groups a, b, c or d or group e if none of keys V to Y is operated. It will therefore be appreciated that by operating keys AU' and keys V-Y it is possible to select one or more sound generators by means of the circuitry shown in FIG. 1 which shows how the various switches are interconnected not only in relation to one another but also with the groups of sound generators.
More specifically, to exemplify the inventive concept, and having reference to FIGS. 1 and 7, if the note 8 (group 14 sound generators) is to be produced, the key E is actuated so that movable contact 35 of switch E is separated from contact 36 and brought into engagement with contact 37. In consequence, the following circuit will be established between amplifier 113 and one of the group 14 generators starting from amplifier 113, ignoring elements 116 and I17 for the time being, contacts 24, 25, 33, 34, 35, 37, 38, 39, 47, 48, 68, 69, 7 I, 72, 86 and 87, which latter contact as seen in FIG. 1 leads to the group 14 sound generators. Hence, on depression of key E group 14 sound generators will be selected. It will be equally clear that depressing one of keys V-Y' will through switch circuits V-Y select one of the group 14 sound generators in group a, b, c or d depending upon the octave key operated. Group e sound generators will be selected as previously indicated if none of the keys V'Y are oper ated. As will be seen from the circuit in FIG. 1, group d generator will be selected when only key Y is operated, group when only key W is operated and group a when only key V is operated.
The intention of the foregoing description is to pro- 5 vide a general understanding of the invention. The following disclosure more specifically describes the invention with respect to the accompanying drawing. Suffice it to say that the invention is not restricted to fixed relationships between the octave keys and keys A to U for selecting a predetermined sound generator and therefore for producing a given note. FIG. 7 clearly shows, for example, that group 15 generators may be selected by either operating key G alone or keys E and Q simultaneously.
FIGS. 1 and 7 jointly considered illustrate the various notes (B, B, C, D etc.) that can be produced upon depressing one or more of the keys A to U with actuation of corresponding switches A to U, to select one or more of the sound generators l to 20. Thus, group 1 sound generators will be selected for producing note B by operating keys E, G, H, L, M, N, O and U; group 2 sound generators 2a, 2b, 2c, will be selected for generating note B by operating keys E, G, H, K, M, N, O and U; group 3 sound generators will be selected for generating note C by operating keys E, G, H, M, N, O and U; group 4 sound generators will be selected for generating note D by operating keys E G, H, J, M, N, O and U; group 4 sound generators will be selected for generating note D by operating keys E, G, H, M, N and 0; group 6 sound generators will be selected for generating a note E by operating keys E G, H, M, N, 0 and T; group 7 sound generators will be selected for generating not E by operating keys E, G, H, M, and N; group 8 sound generators will be selected for generating note F by operating keys E, G, H and M; group 9 sound generators for generating note G by operating keys E, G, H, and N or E, G, H, N and S; goup 10 sound generators for generating note G by operating keys E, G and H; group II sound sound generators for generating note A by operating keys E, G, H and I; group 12 sound generators for generating note A by operating keys E and G; group 13 sound generators for generating note B by operating keys E, G, and R, or E and N or E and F; group 14 sound generators for generating note B by operating key E; group 15 sound generators for generating note C by operating key G, or E and Q; group 16 sound generators for generating note D by not operating any of keys A to U; group 17 sound generators for generating note D by operating key B; group 18 sound generators for generating note E by operating keys A and B; group 19 sound generators for generating note E by operating keys A, B, and P; and group 20 sound generators for generating note F by operating keys A, B, C and P or D.
As previously noted the generators generally are arranged in a horizontal grouping including elements a, b, c individual generators in the vertical and horizontal groups being connected in parallel with each other.
The generators 13a, I311; I411, 14b; and 15a, 15b are provided for dual key operation in the same octave stage for smooth finger key operation; also generators 16a, l6b; 17a, 17b; and 20a, 20b are provided to generate still one octave higher musical sound. The number of the generators included in the musical instrument is governed by purpose. The scale change-over switches A U, of a number equal to that of the keys of a saxophone, control circuit paths between amplifier 113 and the sound generators with which the switches are electrically connected by wiring means. By manually depressing the keys, in the manner of operating a saxophone, selected contacts of the switch are engaged by movable contacts thereof to establish current paths to a selected generator. The change-over switches A U are connected in series with each other and provide different current paths dictated by the contacts engaged by the movable contact of a given switch. As will be more fully described hereinafter each switch movable contact is either in engagement with one or another of the fixed contacts of the switch, engagement with one of the fixed contacts being effected in the nonoperated position of a key and with the other fixed contact on operation of the key.
The musical instrument is normally provided with 21 scale operation keys A U which govern the operational state of the change-over switches A U respectively. The change-over switch A is provided with the contacts 21, 22 and 23, the change-over switch B with a contact 24 functioning as an input terminal and contacts 25 and 26 and likewise the change-over switch U is provided with the contacts 98, 99 and 100. On non-operation of any of the keys A to U, the following contacts will be engaged. For switch A contacts 21 and 22; for switch B contacts 24 and 25; for switch C contacts 27 and 28; for switch D contacts 30 and 31 as well as 33 and 34; for switch E contacts 35 and 36; for switch F contacts 38 and 39; for switch G contacts 41 and 42, 44 and 45 as well as 47 and 48; for switch H contacts 50 and 51, for switch 1 contacts 53 and 54; for switch J contacts 56 and 57; for switch K contacts 59 and 60; for switch L contacts 62 and 63; for switch M contacts 65 and 66 as well as 68 and 69; for switch N contacts 71, and 72, 74 and 75 as well as 77 and 78; for switch 0 contacts 80 and 81; for switch P contacts 83 and 84; for switch Q contacts 86 and 87; for switch R contacts 89 and 90, for switch S contacts 200 and 201 as well as contacts 92 and 93; for switch T contacts 95 and 96; and for switch U contacts 98 and 99. Further, the switches are interconnected. Thus, switch A is connected to switch B by interconnecting the contacts 21 and 26, switch A to P by interconnecting contacts 23 and 83, switch B to D by interconnecting contacts 25 and 33. In like manner and for the same purpose the following contacts are interconnected; contacts 27 and contacts 30 and 43; contacts 34 and 35; contacts 36 and 41; contacts 37 and 38; contacts 39 and 47; contacts 40 and 44; contacts 46 and 51; contacts 48 and 68; contacts 49 and 89; contacts 50 and 90; contacts 52 and 53; contacts 54 and 65; contacts 56 and contacts 57 and 59; contacts 60 and 62; contacts 66 and 74; contacts 67 and 77; contacts 69 and 71; contacts 72 and 86; contacts 78 and 200; contacts 79 and 92; contacts 80 and 93; contacts 82 and 95 and between the contacts 96 and 98; contacts 94 and 202 and contacts 32 and 203. Furthermore, contact 64 is connected to the group 1 generators, contact 63 to the group 2 generators, contact 61 to the group 3 generators, contact 58 to the group 4 generators, contact 99 to the group 5 generators, contact 97 to the group 6 generators, contact 81 to the group 7 generators, contact 201 to the group 8 generators, contacts 76 and 94 to the group 9 generators, contact 75 to the group 10 generators, contact 55 to the group 11 generators, contact 51 to the group 12 generators, contacts 45, 70, 73 and 91 to the group 13 generators, contact 87 to the group 14 generators, contacts 31 and 88 to the group 15 generators, contact 42 to the group 16 generators, contact 22 to the group 17 generators, contact 84 to the group 18 generators, contact 28 to the group 19 generators and contacts 29 and 32 to the group 20 generators.
As hereinbefore described each of the current paths to the group 1 to group 12 generators for generating the different notes in a scale (see FIG. 7) is selected by operating the relevant key or keys in the same manner of operating the keys of a saxophone instrument. As will be seen from FIG. 7, the same note may be produced by operating different combination of keys which selectively control the circuit path between a selected sound generator and amplifier.
For example, the current path to group 14 or 15 sound generators is established respectively through switch E (for group 14) or G or E, Q, (for group 15) by operating keys E or G or E, Q respectively. Also it will be seen from FIG. 7 that to switch from sound generator 14 to sound generator 15 it is only necessary to depress the key Q in addition to key E which latter key selects the group 14 generators. In like fashion to switch from a group 8 generator to a group 7 generator it is only necessary to depress the additional key N as will be seen from the showing in FIG. 7.
Referring now to FIG. 2, FIGURES Figure illustrates the selection of, for example, group 4 generators which emit the note D. This note will be generated by depressing keys E, G, H, .I, M, N, O and U which selectively operate switches E, G, H, .l, M, N, O and U by closing contacts 35 and 36, contacts 47 and 49, contacts 50 and 52, contacts 56 and 58, contacts 65 and 67, contacts 77 and 79, contacts 80 and 82 and contacts 98 and 100. Accordingly, the group 4 generators will be selected via contacts 24-25-33-34-35-37-38-39-47-49-89-90-50-52-53-54- 65-67-77-79-92-93-80-82-95-96-98-100-56-58.
To mitigate against the possibility of producing undesired tones upon sequential operation of any of keys A to U, two current paths are provided for the group 9 generators, the group 15 generators and the group 20 generators while three current paths are provided for the group 13 generators. For example, to produce the notes F and G the keys E, G, H and M and E, G, H, N are sequentially operated. When it is desired to produce note G and an error in fingering the keys is made by for example fingering keys E, G, H and M (note F) instead of E, G, H and N (note G") the error can be corrected so that the note F will not be sounded by merely depressing key S (along with keys E, G, H and M; see FIG. 7). Likewise, multiple current paths are provided for the group 14 generators, the group 15 generators and for the group 20 generators.
The octave change-over switches V, W, X, and Y are operatively connected to the octave operation keys V, W, X and Y to provide current paths to the group a generators, the group b generators, the group c generators, the group d generators and the group e generators of the octave stage. The change-over switch V is provided with the contacts 101, 102 103, the change-over switch \V with the contacts 104, 105 and 106, the change-over switch X with the contacts 107, 108 and 109 and the change-over switch Y with the contacts 110, 111 and 112. When keys V Y are not depressed, the change-over contact I01 of switch V engages the contact 102, contact 104 of switch W engages the contact 105, contact 107 of switch X engages contact 108 and contact [I of switch Y engages contact lIl. Furthermore, contact 102 is connected to contact 104, contact 105 to contact 107 and contact 108 is connected to contact 110. Contact MI in turn is connected to the amplifier 113, contact 103 to the group a generators, contact 106 to the group b generators, contact 109 to the group c generators, contact I12 to the group d generators and contact 111 to the group e generators. On non-operations of the keys V'Y' a current path is provided for the group e generators.
FIG. 2, as indicated, illustrates the circuit in which the group 4 generators are operatively selected by the scale changeover switches E, G, H, .l, M, N, O and U to produce the tone D. If the octave group b is to be selected (generator 4b) the octave change-over switch is operated to produce a note at the octave level in the desired group b. At this time, current is supplied to the amplifier 113 through contacts 106-104-102-101.
The reference numeral 114 identifies a main switch, 115 a speaker, II6 an interrupting switch for producing a discontinuous sound when operating the musical instrument and 117 is a variable resistor for controlling the frequency of current supplied through the intermediary of switch 16 to the individual generators Ia, lb ,2a, 2b and 20a, 20b. 20c. The interrupting switch 116 and the variable resistor 117 are adapted to convert the mechanical motion into electrical signals. For example, there may be provided an independent mouthpiece (not shown) corresponding to the reed mouthpiece of the wind instrument which may be provided with an interrupting switch 16 operated by pressure of the user's breath and the variable resistor 117 may be made responsive to the upward and downward movements of the jaw of the player. Thereby the mechanical movement of the interrupting switch and resistor I17 will affect the current flow to the sound generators.
Since frequency variation may also result from variation in inductance as well as electrostatic capacitance, element 117 might be provided in form of a variable impedance rather than as a variable resistor.
As indicated, FIG. 2 illustrates the circuit for selecting the group 4 generators for producing the note D by depressing, as shown in FIG. 7, keys E, G, H, J', M, N, O' and U which respectively operate switches E, G, H, J, M, N, O and U. The FIG. 2 circuits form part of the circuitry shown in FIG. 1 and can be traced in FIG. 1 via contacts 24, 25, 33, 34, 35, 37, 38, 39, 47, 49,89, 90, 50,52, 53, 54, 65, 67, 77, 79, 92, 93, 80, 82, 95, 96, 98, I00, 56 and 58. In like manner FIG. 1 shows the required connections between change-over switches A to U and the group of sound generators 120 to enable selection of any other sound generator in the series I-20 by depressing the keys A to U singly, in combination, or not at all in accordance with the showing in FIG. 1. FIG. 1 also shows the required connections between the change-over octave switches V to Y and the group of sound generators a to e to enable selection of a predetermined sound generator in the series a to e by depressing keys V to Y respectively, singly, in combination or not at all. The circuit for selecting predetermined sound generators in groups 1 to 20 and in groups a to e via changeover switches are shown in FIG. 1. The circuits for each sound generator may be traced in the same manner as the circuit was traced for the group 4 generators. In each instance the circuit may be traced (ignoring elements 113, I16, 117 which are in the circuit path) starting with switch B by way of contact 25 if key B is not operated and by way of contact 26 if key B is operated. In any event it is to be understood that FIG. 1 shows the connections made by the movable contact of each switch with the fixed contacts thereof when the keys associated with said switches are not operated. Thus, in tracing a circuit for a sound generator the circuit will follow the path determined by the switch connections as shown in FIG. 1 for those keys which are not operated, it being understood that the path through the switch will be altered by movement of the movable arm of each switch into engagement with the opposed contact of that switch. Thus, referring to FIG. 7, if a group 17 generator is to be selected for producing the note D only key B is depressed. Accordingly, and now referring to FIG. I, the movable arm instead of engaging contact 25 (as it does when key B is not depressed) will now engage contact 26 which as seen in FIG. I is connected to contact 21 of switch A. Since the latter switch is not operated by its keys A' when the note D is to be produced, the movable arm of switch A engages contact 22 which, as seen in FIG. 1, is connected to the group 17 generators. The specific connections between the change-over switches and the sound generators has been omitted in FIG. 1 for reasons of clarity. It is to be understood however that the group of sound generators are connected to the switch contacts which are designated as leading to a specific one of the generators; i.e, contact 22 of switch A leads to group 17 sound generators, contact 28 of switch C leads to group 19 sound generators, contact 42 of switch G leads to group I6 sound generators etc.
FIGS. 3 to 6, illustrate a switch casing which accommodates the keys, switches, current paths and the generators. In the casing (see FIG. 5) there is provided an external contact panel I18 which carries the contacts of switches A to U engaged by the movable contacts during non-operation of keys A to U. An internal panel 119 carries contacts of switches A to U which are engaged by the movable contacts upon actuation of keys A to U' Between the external panel I18 and internal panel 119 is interposed an intermediate contact panel having resilient movable contacts which are normally in engagement with the contacts on panel 118 but moved therefrom when keys A to U are depressed to urge the resilient contact members instead into en gagement with the contacts on internal panel 119.
The manner in which the contacts on the different panels are connected by leads, or other wiring means, is illustrated in FIG. 5. Specifically, the contact panels 118, 119 and 120 are each wired at their rear sides. The contacts on panel 118 shown in FIG. 5A are adapted to be engaged on non-operation of the keys, and the contacts on panel 119 are adapted to be engaged on operation of the keys. The movable contacts mounted on a movable panel 120 as shown in FIG. 5B are adapted to be interposed between panels 118 and 119. The panels when assembled in superposed alignment provide the changeover switches A to U as shown in FIG. 1. Printed circuit panels are preferred for this purpose. An input terminal for each generator in the respective group may selectively be provided either in the external contact panel 118 or in the internal contact panel 119. However, for ease of wiring, it is preferred to provide the terminals on the internal contact panel 119. The operation of the movable contact shown in FIG. 58 serving to switch-over switches A to U may be effected as disclosed, by depression of keys A to U. The keys A to U are pivotally carried by the switch casing 121 which accommodates the external contact panel 118, the internal contact panel "9 and the movable contact panel 120 interposed therebetween, the keys A to U being arranged as to conform to the spatial positions of, for example, the keys of a saxaphone. Instead of arranging the keys A to U on casing 121 as shown in FIG. 4, it is possible to arrange the keys as a keyboard or for push-button type operation. A projecting element 122 attached to individual operating keys A to U is engaged with an upper side of the movable contact panel 120 to move the movable contacts carried thereby, on depression of keys A to U, from engagement with the contacts on the external contact panel 118 into engaging relation with the contacts on the internal contact panel 119 to thereby switch the current path. The movable contacts on the contact panel 120 return to normal position, wherein the contacts again engage the contacts on the external panel, upon releasing the keys, due to their resilience to re-establish the initial current path. A return spring 123 is mounted to the keys A to U for returning the same to their normal position upon release of finger pressure.
The scale operation keys D, G. M and N are intended to operatively actuate plural sets of contacts 30 and 33", 41 and 47'; 65' and 71, 74 and 77 each set being operated simultaneously.
FIG. 6 shows the external octave-selection contact panel 124, the internal octave panel 125 and the intermediate contact panel 126 carrying movable contacts which form switches V Y, shown in FIG. 1, for selecting group a to e generators. The external contact panel 124 is provided with contacts 101, 105', I08 and 111' which are normally engaged by the movable contacts in the nonactuated position of the keys. The internal contact panel 125 is provided with contacts 103', 106', 109' and 112' which are engaged by the movable contacts on operation of the keys. Between the external and internal contact panels 124 and 125 is disposed the movable contact panel 126 which is provided with movable contact 101, 104', 107 and These contacts are urged upon the depression of the octave operation keys V, W, X and Y from engagement with contacts on panel 124 and into engagement with the contacts on panel 125. The casing l2l is proportioned like a saxaphone and is provided with the operation keys A to U' related to one another to correspond to the location of saxaphone keys on a saxaphone instrument.
The foregoing embodiments have been described in form of a musical instrument which operates as a woodwind instrument and in which an independent sound generator system is incorporated into the groups of generators, notwithstanding that a separate system could as easily be employed. The sound generators may be designed with transistorized or integrated circuits.
While certain preferred embodiments of the invention have been illustrated by way of example in the drawings and particularly described, it will be understood that various modifications may be made in the apparatus and constructions and that the invention is no way limited to the embodiments shown.
I claim:
I. An electrically operated musical instrument including an electrical system comprising a plurality of keys having a normal and an actuated position, a plurality of electrically interconnected change-over switches operated by said keys, an amplifier, and sound generators electrically connected to said switches for selective connection to said amplifier as a function of switch position, the improvement being characterized in that said change-over switches are provided as an assembly comprising a first contact panel having a first plurality of fixed contacts, a second contact panel having a second plurality of fixed contacts and an intermediate contact panel in superposed alignment with said first and second panels and carrying movable contacts adapted to engage the contacts on the first panel in the normal position of the keys and adapted to engage the fixed contacts on the second panel on moving the keys to their actuated position.
2. An instrument according to claim 1, including a casing which carries said keys and houses said switches and said sound generators.

Claims (2)

1. An electrically operated musical instrument including an electrical system comprising a plurality of keys having a normal and an actuated position, a plurality of electrically interconnected change-over switches operated by said keys, an amplifier, and sound generators electrically connected to said switches for selective connection to said amplifier as a function of switch position, the improvement being characterized in that said change-over switches are provided as an assembly comprising a first contact panel having a first plurality of fixed contacts, a second contact panel having a second plurality of fixed contacts and an intermediate contact panel in superposed alignment with said first and second panels and carrying movable contacts adapted to engage the contacts on the first panel in the normal position of the keys and adapted to engage the fixed contacts on the second panel on moving the keys to their actuated position.
2. An instrument according to claim 1, including a casing which carries said keys and houses said switches and said sound generators.
US472688A 1973-05-24 1974-05-23 Electrically operated musical instrument Expired - Lifetime US3897708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US05/571,626 US4015092A (en) 1973-05-24 1975-04-25 Multiple switch assembly for electrically operated instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5846973A JPS5427134B2 (en) 1973-05-24 1973-05-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05/571,626 Division US4015092A (en) 1973-05-24 1975-04-25 Multiple switch assembly for electrically operated instrument

Publications (1)

Publication Number Publication Date
US3897708A true US3897708A (en) 1975-08-05

Family

ID=13085279

Family Applications (1)

Application Number Title Priority Date Filing Date
US472688A Expired - Lifetime US3897708A (en) 1973-05-24 1974-05-23 Electrically operated musical instrument

Country Status (3)

Country Link
US (1) US3897708A (en)
JP (1) JPS5427134B2 (en)
FR (1) FR2231066B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0322846A2 (en) * 1987-12-28 1989-07-05 Casio Computer Company Limited Electronic wind instrument with a pitch data delay function
US20070017346A1 (en) * 2005-07-25 2007-01-25 Yamaha Corporation Tone generator control apparatus and program for electronic wind instrument
US20070261540A1 (en) * 2006-03-28 2007-11-15 Bruce Gremo Flute controller driven dynamic synthesis system
US20120103173A1 (en) * 2009-03-31 2012-05-03 Da Fact Human-Machine Interface

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5654595Y2 (en) * 1975-10-20 1981-12-19
JPS6224311Y2 (en) * 1979-08-04 1987-06-20
JPH0633514Y2 (en) * 1986-09-12 1994-08-31 忠孫 樫本 Saxophone playing device

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3006288A (en) * 1952-09-16 1961-10-31 Brown Owen System for high-speed transport
US3040612A (en) * 1957-12-26 1962-06-26 Kinsman Mfg Company Inc Electrical musical instrument
US3222447A (en) * 1961-11-20 1965-12-07 Jack C Cookerly Multiple use of wave shaping circuits for tone production
US3429976A (en) * 1966-05-11 1969-02-25 Electro Voice Electrical woodwind musical instrument having electronically produced sounds for accompaniment
US3535429A (en) * 1968-01-18 1970-10-20 Nippon Musical Instruments Mfg Integrated circuit switching device for electronic musical instruments
US3582530A (en) * 1970-03-11 1971-06-01 Nippon Musical Instruments Mfg Electronic musical instrument producing percussion signals by additive mixing of component signals
US3619468A (en) * 1970-03-05 1971-11-09 Columbia Broadcasting Systems Stringed musical instrument with piezoelectric transducer providing gate control and music signals
US3624584A (en) * 1969-02-20 1971-11-30 Nippon Musical Instruments Mfg Variable resistance device for an electronic musical instrument
US3624583A (en) * 1969-02-20 1971-11-30 Nippon Musical Instruments Mfg Playing devices for electronic musical instruments
US3626350A (en) * 1969-02-20 1971-12-07 Nippon Musical Instruments Mfg Variable resistor device for electronic musical instruments capable of playing monophonic, chord and portamento performances with resilient contact strips
US3651242A (en) * 1970-06-15 1972-03-21 Columbia Broadcasting Syst Inc Octave jumper for musical instruments
US3715444A (en) * 1971-01-04 1973-02-06 Tonus Inc Switching system for keyboard
US3754495A (en) * 1970-10-27 1973-08-28 M Honegger Sounding note board for music instruction
US3767833A (en) * 1971-10-05 1973-10-23 Computone Inc Electronic musical instrument
US3797357A (en) * 1972-09-20 1974-03-19 Wurlitzer Co Electronic musical instrument mechanical construction

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2301184A (en) * 1941-01-23 1942-11-10 Leo F J Arnold Electrical clarinet
US2964986A (en) * 1956-05-10 1960-12-20 Baldwin Piano Co Push button chord derivation and apparatus
US3541912A (en) * 1968-07-24 1970-11-24 John C Radke Manual and chord button bank portablenecked body for an electric organ

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3006288A (en) * 1952-09-16 1961-10-31 Brown Owen System for high-speed transport
US3040612A (en) * 1957-12-26 1962-06-26 Kinsman Mfg Company Inc Electrical musical instrument
US3222447A (en) * 1961-11-20 1965-12-07 Jack C Cookerly Multiple use of wave shaping circuits for tone production
US3429976A (en) * 1966-05-11 1969-02-25 Electro Voice Electrical woodwind musical instrument having electronically produced sounds for accompaniment
US3535429A (en) * 1968-01-18 1970-10-20 Nippon Musical Instruments Mfg Integrated circuit switching device for electronic musical instruments
US3626350A (en) * 1969-02-20 1971-12-07 Nippon Musical Instruments Mfg Variable resistor device for electronic musical instruments capable of playing monophonic, chord and portamento performances with resilient contact strips
US3624584A (en) * 1969-02-20 1971-11-30 Nippon Musical Instruments Mfg Variable resistance device for an electronic musical instrument
US3624583A (en) * 1969-02-20 1971-11-30 Nippon Musical Instruments Mfg Playing devices for electronic musical instruments
US3619468A (en) * 1970-03-05 1971-11-09 Columbia Broadcasting Systems Stringed musical instrument with piezoelectric transducer providing gate control and music signals
US3582530A (en) * 1970-03-11 1971-06-01 Nippon Musical Instruments Mfg Electronic musical instrument producing percussion signals by additive mixing of component signals
US3651242A (en) * 1970-06-15 1972-03-21 Columbia Broadcasting Syst Inc Octave jumper for musical instruments
US3754495A (en) * 1970-10-27 1973-08-28 M Honegger Sounding note board for music instruction
US3715444A (en) * 1971-01-04 1973-02-06 Tonus Inc Switching system for keyboard
US3767833A (en) * 1971-10-05 1973-10-23 Computone Inc Electronic musical instrument
US3797357A (en) * 1972-09-20 1974-03-19 Wurlitzer Co Electronic musical instrument mechanical construction

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0322846A2 (en) * 1987-12-28 1989-07-05 Casio Computer Company Limited Electronic wind instrument with a pitch data delay function
EP0322846A3 (en) * 1987-12-28 1990-02-14 Casio Computer Company Limited Electronic wind instrument with a pitch data delay function
US20070017346A1 (en) * 2005-07-25 2007-01-25 Yamaha Corporation Tone generator control apparatus and program for electronic wind instrument
US7470852B2 (en) * 2005-07-25 2008-12-30 Yamaha Corporation Tone generator control apparatus and program for electronic wind instrument
US20070261540A1 (en) * 2006-03-28 2007-11-15 Bruce Gremo Flute controller driven dynamic synthesis system
US7723605B2 (en) * 2006-03-28 2010-05-25 Bruce Gremo Flute controller driven dynamic synthesis system
US20120103173A1 (en) * 2009-03-31 2012-05-03 Da Fact Human-Machine Interface

Also Published As

Publication number Publication date
FR2231066A1 (en) 1974-12-20
FR2231066B1 (en) 1978-08-11
JPS5427134B2 (en) 1979-09-07
JPS5010116A (en) 1975-02-01

Similar Documents

Publication Publication Date Title
US4336734A (en) Digital high speed guitar synthesizer
US5045650A (en) Finger switch
US5398585A (en) Fingerboard for musical instrument
US5565641A (en) Relativistic electronic musical instrument
US5557057A (en) Electronic keyboard instrument
US20080271594A1 (en) Electronic Musical Instrument
US3897708A (en) Electrically operated musical instrument
US4196650A (en) Combined electronic-pneumatic musical instrument
US3681508A (en) Electronic organ
US3482028A (en) Guitar type keying system for other instruments
US3610804A (en) Combination of selector switch and expression control of electronic musical instrument
US4015092A (en) Multiple switch assembly for electrically operated instrument
US5744740A (en) Electronic musical instrument
US3954039A (en) Chord selection system for a musical instrument
US1853630A (en) Electric musical instrument
US2971421A (en) Musical instrument
US3104581A (en) Electrified accordion
US2845831A (en) Keyboard and switching mechanism for electrical musical instruments
JPS6426898A (en) Electronic musical instrument
US3422210A (en) Chord selecting device in electronic organs
US2475168A (en) Musical instrument
US3991646A (en) Arpeggio circuit for an electronic musical instrument
US2561615A (en) Typewriting machine attachment
US3240857A (en) Switching system for electrical organs
US3378624A (en) Electrical musical instrument with tremolo