US3887325A - Control method and apparatus for burners - Google Patents

Control method and apparatus for burners Download PDF

Info

Publication number
US3887325A
US3887325A US364826A US36482673A US3887325A US 3887325 A US3887325 A US 3887325A US 364826 A US364826 A US 364826A US 36482673 A US36482673 A US 36482673A US 3887325 A US3887325 A US 3887325A
Authority
US
United States
Prior art keywords
spark
flame
fuel
sensing
operating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US364826A
Inventor
John F Finger
Merle E Pochop
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sioux Steam Cleaner Corp
Original Assignee
Sioux Steam Cleaner Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sioux Steam Cleaner Corp filed Critical Sioux Steam Cleaner Corp
Priority to US364826A priority Critical patent/US3887325A/en
Priority to GB1233974A priority patent/GB1437698A/en
Application granted granted Critical
Publication of US3887325A publication Critical patent/US3887325A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2227/00Ignition or checking
    • F23N2227/36Spark ignition, e.g. by means of a high voltage

Definitions

  • ABSTRACT 52 11.5. C1 431/6; 126/351; 122/448 R; Control apparatus for burners having independent 431/66; 431/ 0; 431/63 spark and flame sensors which control turn-on in three 51 Int. Cl. F23n 5/20 p A Spark is Produced/in the first Phase, a low 58 Field 61 Search 431/6, 14, 61, 62, 63, flame in the second, and a high flame in the third- 431/66; 126/351, 374; 122/443 R Fuel for the low and high flame is supplied through independent lines and valving.
  • the control apparatus [56 Refer Ci d prevents the burner from being turned on unless certain Operating Conditions are present.
  • PATENTEDJUH 3 I975 SHEET 2 TO CONTROL TO CONTROL m CKTRY.
  • the invention pertains to burners such as those in hot washers used for deicing airplanes. more specifically to controls for such a burner.
  • the spark is initiated and the fuel is injected at the same time and a timer on the exhaust of the system waits a set period to sense the heat of combustion.
  • the dwell time permits quantities of unburned fuel to accumulate in the combustion chamber if ignition does not take place, therefore presenting a dangerous situation.
  • the flame is either off or high.
  • a burner that operates in two steps is relatively unsafe, especially when fuels like gasoline and jet fuel are being burned.
  • a spark is generated only if certain conditions exist in the burner system. These conditions involve a first temperature, water flow, and air pressure. After the spark is formed and sensed, a small amount of fuel is injected into the combustion chamber of the burner. The spark ignites the fuel which in burning forms a flame that is low. Ifthe low flame is sensed and a second temperature exists in the burner system, a large amount of fuel is injected into the combustion chamber. The low flame ignites the large amount of fuel, which in burning forms a flame that is high.
  • FIG. I is a schematic diagram of the control circuitry for the apparatus
  • FIG. 2 is a simplified diagram of the burner
  • FIG. 3 is a schematic diagram of indicator circuitry associated with the control apparatus.
  • FIG. 2 includes a burner with a combustion chamber 12.
  • a spark forming means or ignitor 14, low flame fueljet l6, and a high flame fuel jet 18 are mounted in the bottom ofchamber 12. Electrical energy is supplied to ignitor 14 by leads 20 and 22.
  • Fuel lines24 and 26 supply fuel to jets l6 and 18. The lower ends of lines 24 and 26 are connected to a tee fitting 28. Fuel from a fuel pump (not shown) supplies fuel to tee 28 by means of a line 30.
  • the flow of fuel in lines 24 and 26 is controlled by valves 32 and 34 which are opened and closed by solenoids 36 and 38.
  • a spark sensor 40 and a flame sensor 42 are mounted in the wall of chamber 12. Sensor 40 is sighted on the tip of ignitor I4 and sensor 42 is sighted on a low flame which is produced by jet 16. Although flame sensor 42 is sighted on the low flame produced by jet l6. it will also be incidentally sighted on a high flame which is produced by jet l8. Spark sensor 40 develops an output signal on lines 44 when a spark is detected and flame sensor 42 develops an output signal on lines 48 when a low flame or high flame from jet 16 or jet [8 respectively is detected.
  • a fluid to be heated such as water enters burner 10 through a pipe 52 and exits through a pipe 54.
  • Sensor 56 mounted in pipe 54 senses fluid flow. The flow must be within a predetermined operating range before burner 10 can be turned on.
  • Air blower 58 mounted on burner 10 supplies air for combustion to chamber 12.
  • a sensor 60 mounted on air blower 58 senses the combustion air pressure which must be within a predetermined operating range before burner 10 can be turned on.
  • FIG. I shows circuitry for controlling the operation of burner 10 and includes switches 70, 72 and 74 and ignition transformer 76. Switches 70, 72 and 74 control the application of electrical energy to the primary winding of transformer 76. When the primary winding is energized, the secondary winding provides energy to ignitor 14 through leads 20 and 22.
  • Source 78 provides 1 15 volts AC for the system and is returned to ground.
  • Switch is connected to the IIS VAC by a lead 82.
  • Switch 70 is closed if the fluid being heated is less than a first predetermined temperature (Temp. 1), e.g., 205F. Therefore if Temp. 1 is greater than about 205F., switch 70 is opened, shut ting the burner off.
  • the Temp. 1 signal is developed by a sensor ll mounted on burner It). With switch 70 closed, 115 VAC is applied to switch 72 by a lead 84.
  • Switch 72 is responsive to the output of sensor 56 which detects the flow of water in pipe 54.
  • switch 72 moves to its upper position and l 15 VAC is applied to switch 74 by a lead 86.
  • Switch 74 is responsive to the signal generated by sensor 60 which is indicative of the combustion chamber air pressure created by .air blower 58. If the air pressure is in the operating range. switch 74 is moved to the upper position and I I5 VAC is applied to the primary winding of ignition transformer 76 by a lead 88. In this way, ignition transformer 76 is energized only if certain operating conditions exist in burner 10. With the primary winding of transformer 76 energized, energy from the secondary is applied to ignitor 14 which establishes a spark.
  • the next control phase involves proving or sensing the spark and opening the valve to the low flame jet I6 if the spark is proved.
  • a spark of sufficient intensity is produced by igni tor 14
  • sensor 40 which develops an output signal on leads 44.
  • Leads 44 are connected to the winding of a spark relay 80.
  • Solenoid 36 opens valve 32 and jet 16 receives fuel through line 24.
  • the spark produced by ignitor I4 causes the fuel coming from jet 16 to be ignited and a low flame is formed. This completes the second control phase in which valve 32 is opened only after a spark is formed and detected.
  • valve 34 is opened, supplying fuel to the high flame jet 18 only after the low flame from jet 16 is detected.
  • a low flame is present it is detected by flame sensor 42 which develops an output signal on leads 48.
  • Leads 48 conduct the signal to a winding of relay 90.
  • relay 90 is energized and moves to its lower position and l [5 VAC is applied to a switch 92 by a lead 145.
  • Switch 92 is responsive to a second predetermined temperature (Temp. 2) of the fluid being heated in burner 10.
  • Temp. 2 may be about l95F. if the temperature of the fluid is greater than 195F., the third phase of control is not activated and the flame remains low.
  • Temp. 2 may be about l95F. if the temperature of the fluid is greater than 195F.
  • valve 34 opens valve 34 and jet 18 receives fuel through line 26.
  • the low flame ofjet 16 ignites the fuel issuing from jet 18 and a high flame is produced.
  • Valve 32 allows only a small amount of fuel to be supplied to jet 16, whereas valve 34 allows a large amount of fuel to be supplied to jet 18. This completes the third and last phase of the operating cycle.
  • the indicator circuitry shown in FIG. 3 includes a set of six relays 100105 and a set of six indicator lights 110-115.
  • a source 118 provides 24 volts DC for the indicator circuitry and is returned to ground.
  • the 24 VDC is connected to each of the relays 100-105 by a lead 120.
  • relay 90 When a flame is not being sensed and relay 90 is deenergized and moves to its upper position. 1 15 VAC is applied to the winding of relay 100 by a lead 142. This causes the 24 VDC being applied to light 115 by lead 138 to be removed, deenergizing light 115. An energized light 115 indicates that the flame is off, therefore a deenergized light 115 indicates that the flame is on.
  • switch 72 When there is insufficient fluid flow and switch 72 moves to its lower position. 1 15 VAC is applied to the winding of relay 103 by a lead 126 and it moves to its lower position. This causes 24 VDC to be applied to light 112 by a lead 134. Energization of light 112 indicates an insufficient fluid flow.
  • a method of operating a burner for heating a flowing fluid the burner having first and second operating temperatures associated therewith, and a combustion chamber for highly volatile explosive fuel requiring an operating combustion air pressure, the method including the following steps:
  • a failsafe burner control apparatus for controlling the supply and ignition of highly volatile and explosive fuel such as gasoline or jet fuel in a burner used within a larger system having a plurality of measurable operating quantities, comprising:
  • first sensing means for sensing a plurality of said operating quantities and for respectively providing a plurality of control signals indicative thereof;
  • control means responsive to said plurality of operating quantity control signals and operatively connected to said spark forming means for energizing said spark forming means only when each of said plurality of operating quantities is within a prede termined range;
  • a spark sensor mounted to directly visually sight the presence or absence of said spark for providing a sensed spark output signal in response thereto;
  • first fuel control means operatively connected to receive and responsive to said sensed spark output signal for providing a small amount of said volatile fuel for ignition by said spark. thereby forming a low flame
  • a flame sensor operatively independent of said spark sensor, connected to sense the presence or absence of said flame for providing a sensed flame output signal in response thereto;
  • second sensing means for sensing a single one of said plurality of operating quantities and for providing a single control signal indicative thereof
  • second fuel control means operatively connected to receive and responsive to said sensed flame output signal and said single operating quantity control signal for providing a large amount of said volatile fuel for ignition by said low flame, thereby forming a high flame.
  • Burner control apparatus for deicing systems of the type having a circulating fluid, a combustion chamber for burning highly explosive fuel and designed for operation at a combustion air pressure within a predetermined range, and being designed to operate with first and second temperatures of said fluid in predetermined ranges and with a flow rate within a predetermined range of said fluid, said burner control apparatus comprising:
  • ignition means mounted in said combustion chamber for forming a spark when energized, to ignite said fuel within the combustion chamber;
  • spark sensing means mounted to operatively sight said formed spark for sensing the presence or absence of said spark and for generating first and second spark control signals indicative thereof, said sensing means operative to generate said first spark control signal when the presence of said spark is sensed, and to generate said second spark control signal when the absence of said formed spark is sensed;
  • g. means operatively connected to receive said spark control signals for providing a small amount of said fuel to said combustion chamber for ignition by said spark upon receipt of said first spark control signal, thereby forming a flame that is low;
  • flame sensing means mounted to sight said flame and operatively independent of said spark sensing means, for sensing the presence or absence of said flame and for providing a flame control signal indicative thereof;
  • j. means connected to receive said flame control and said fourth control signals and operatively responsive thereto for providing a large amount of said fuel to said combustion chamber when said flame control and said fourth control signals respectively indicate the presence of said flame and the presence of said second operative temperature within its said predetermined range, thereby forming a flame that is high.

Abstract

Control apparatus for burners having independent spark and flame sensors which control turn-on in three phases. A spark is produced in the first phase, a low flame in the second, and a high flame in the third. Fuel for the low and high flame is supplied through independent lines and valving. The control apparatus prevents the burner from being turned on unless certain operating conditions are present.

Description

United States Patent Finger et a1. 1 1 June 3, 1975 [54] CONTROL METHOD AND APPARATUS 2,805,652 9/1957 Stout 122/448 R 2,879,358 3/1959 Hilgert 126/351 X FOR BURNERS 3,160,197 12/1964 Deziel et al 431/14 X [751 In entors: John mger; Merle oc op, 3,545,207 12/1970 Barber et al. 122/448 R x both of Beresford, S. Dak. 1607,117 9/1971 Shaw et a1 122/448 R X Assigneez Sioux S cam Cleaner p o 3.799.184 3/1974 Conlee 122/440 X R Beresford' Primary ExaminerCharles J. Myhre [22] Filed: May 29, 1973 Assistant Examiner-William C. Anderson [21] Appl. No: 364,826
[57] ABSTRACT 52 11.5. C1 431/6; 126/351; 122/448 R; Control apparatus for burners having independent 431/66; 431/ 0; 431/63 spark and flame sensors which control turn-on in three 51 Int. Cl. F23n 5/20 p A Spark is Produced/in the first Phase, a low 58 Field 61 Search 431/6, 14, 61, 62, 63, flame in the second, and a high flame in the third- 431/66; 126/351, 374; 122/443 R Fuel for the low and high flame is supplied through independent lines and valving. The control apparatus [56 Refer Ci d prevents the burner from being turned on unless certain Operating Conditions are present.
1,032,727 7/1912 Appler 431/14 X 3 Claims, 3 Drawing Figures TO CONTROL TO CONTROL CKTRY. CKTEY FEW-1'3 WATER t BURNER 1H l L2 11 I 56 twee AIR 1 COMBUSTION BLOWER CHAMBER 48 12 -LAME 1: 42d HSENS, IQ SPARK :t 52'; E SE H L 40 WATER F IN 1 2o L L To AIR E6 34] PROOF sw. s "as 22 U T0 FUEL wF-TF-mum I975 3.887.325 SHEET 1 f 88 Q9 gg 7 48 |4| I45 as 88 SPARK FLAME RELAY FROM FLAME sENs. IN BURNER RELAY 7 88 FROM SPARK SENS. IN BURNER /2O E 8 l T 82 a IISVAC. 22 All? TO SPARK FORMING MEANS IN BURNER TRANsE- 7o 82 1'51 15MB FROM BURNER 88 P72 2 E'E L E- tf: 6 FROM BURNER /88 3 A A B B -1 [l28 FROM BURNER /'92 I T E P-JENB LE Hi 43 T FROM BURNER :50
PATENTEDJUH 3 I975 SHEET 2 TO CONTROL TO CONTROL m CKTRY.
ll I13 TEMR T T WATER I BURNER Ii OUT Q l 58\ 56 T0 FLUID I FLOW Sw AIR h COMBUSTION ER CHAMBER 48 =LAME L J T .6 .4 25 SENS. l7:
SPARK & I SENS i l;l L 40 Tm; 26 PROOF SW. 32 V S 36 22 S V 24 FIG. 2
UMP
INDICATOR LAMPS |32 ng l 3 4 w m 3RD STAGE OFF 7 1ST STAGE OFF 24v. DC.
flu {D N0 WATER /l36 n3 I20 (fi4 NO AIR {f new. ON T NO FLAME use -|34 |24 l J) g o o J INDICATOR i RELAYS Q9 U M 62.5 i; Fig
CONTROL METHOD AND APPARATUS FOR BURNERS BACKGROUND OF THE INVENTION The invention pertains to burners such as those in hot washers used for deicing airplanes. more specifically to controls for such a burner.
In the prior art, the spark is initiated and the fuel is injected at the same time and a timer on the exhaust of the system waits a set period to sense the heat of combustion. The dwell time permits quantities of unburned fuel to accumulate in the combustion chamber if ignition does not take place, therefore presenting a dangerous situation. In these burners the flame is either off or high. A burner that operates in two steps is relatively unsafe, especially when fuels like gasoline and jet fuel are being burned.
SUMMARY OF THE INVENTION In the present invention a spark is generated only if certain conditions exist in the burner system. These conditions involve a first temperature, water flow, and air pressure. After the spark is formed and sensed, a small amount of fuel is injected into the combustion chamber of the burner. The spark ignites the fuel which in burning forms a flame that is low. Ifthe low flame is sensed and a second temperature exists in the burner system, a large amount of fuel is injected into the combustion chamber. The low flame ignites the large amount of fuel, which in burning forms a flame that is high.
It is an object of the invention to provide control apparatus for a burner wherein the burner is turned on in three phases. In the first phase a spark is generated, in the second phase a low flame is produced. and in the third phase a high flame is produced. It is another object of the invention to provide control circuitry for a burner such that the spark is not formed unless certain conditions exist in the burner system. Another object of the invention is to provide a burner system having separate fuel jets, fuel lines. valving, and control circuitry for producing the low and high flames. A further object of the invention is to provide control apparatus for a burner wherein separate spark and flame sensors are used for generating control signals.
Other objects, advantages and features of the invention will appear below.
DESCRIPTION OF THE DRAWINGS FIG. I is a schematic diagram of the control circuitry for the apparatus;
FIG. 2 is a simplified diagram of the burner; and
FIG. 3 is a schematic diagram of indicator circuitry associated with the control apparatus.
Detailed Description FIG. 2 includes a burner with a combustion chamber 12. A spark forming means or ignitor 14, low flame fueljet l6, and a high flame fuel jet 18 are mounted in the bottom ofchamber 12. Electrical energy is supplied to ignitor 14 by leads 20 and 22. Fuel lines24 and 26 supply fuel to jets l6 and 18. The lower ends of lines 24 and 26 are connected to a tee fitting 28. Fuel from a fuel pump (not shown) supplies fuel to tee 28 by means of a line 30. The flow of fuel in lines 24 and 26 is controlled by valves 32 and 34 which are opened and closed by solenoids 36 and 38.
A spark sensor 40 and a flame sensor 42 are mounted in the wall of chamber 12. Sensor 40 is sighted on the tip of ignitor I4 and sensor 42 is sighted on a low flame which is produced by jet 16. Although flame sensor 42 is sighted on the low flame produced by jet l6. it will also be incidentally sighted on a high flame which is produced by jet l8. Spark sensor 40 develops an output signal on lines 44 when a spark is detected and flame sensor 42 develops an output signal on lines 48 when a low flame or high flame from jet 16 or jet [8 respectively is detected.
A fluid to be heated, such as water, enters burner 10 through a pipe 52 and exits through a pipe 54. Sensor 56 mounted in pipe 54 senses fluid flow. The flow must be within a predetermined operating range before burner 10 can be turned on.
Air blower 58 mounted on burner 10 supplies air for combustion to chamber 12. A sensor 60 mounted on air blower 58 senses the combustion air pressure which must be within a predetermined operating range before burner 10 can be turned on.
FIG. I shows circuitry for controlling the operation of burner 10 and includes switches 70, 72 and 74 and ignition transformer 76. Switches 70, 72 and 74 control the application of electrical energy to the primary winding of transformer 76. When the primary winding is energized, the secondary winding provides energy to ignitor 14 through leads 20 and 22.
Source 78 provides 1 15 volts AC for the system and is returned to ground. Switch is connected to the IIS VAC by a lead 82. Switch 70 is closed if the fluid being heated is less than a first predetermined temperature (Temp. 1), e.g., 205F. Therefore if Temp. 1 is greater than about 205F., switch 70 is opened, shut ting the burner off. The Temp. 1 signal is developed by a sensor ll mounted on burner It). With switch 70 closed, 115 VAC is applied to switch 72 by a lead 84. Switch 72 is responsive to the output of sensor 56 which detects the flow of water in pipe 54. If the flow is in the operating range, switch 72 moves to its upper position and l 15 VAC is applied to switch 74 by a lead 86. Switch 74 is responsive to the signal generated by sensor 60 which is indicative of the combustion chamber air pressure created by .air blower 58. If the air pressure is in the operating range. switch 74 is moved to the upper position and I I5 VAC is applied to the primary winding of ignition transformer 76 by a lead 88. In this way, ignition transformer 76 is energized only if certain operating conditions exist in burner 10. With the primary winding of transformer 76 energized, energy from the secondary is applied to ignitor 14 which establishes a spark.
After the spark is established, the next control phase involves proving or sensing the spark and opening the valve to the low flame jet I6 if the spark is proved. When a spark of sufficient intensity is produced by igni tor 14, it is detected by sensor 40 which develops an output signal on leads 44. Leads 44 are connected to the winding of a spark relay 80. When the spark is de tected relay 80 is energized and moves to its lower position and the 1 l5 VAC is applied to the primary winding of solenoid 36 by a lead 141. Solenoid 36 opens valve 32 and jet 16 receives fuel through line 24. The spark produced by ignitor I4 causes the fuel coming from jet 16 to be ignited and a low flame is formed. This completes the second control phase in which valve 32 is opened only after a spark is formed and detected.
In the third and last phase of control, valve 34 is opened, supplying fuel to the high flame jet 18 only after the low flame from jet 16 is detected. When a low flame is present it is detected by flame sensor 42 which develops an output signal on leads 48. Leads 48 conduct the signal to a winding of relay 90. When a low flame is detected, relay 90 is energized and moves to its lower position and l [5 VAC is applied to a switch 92 by a lead 145. Switch 92 is responsive to a second predetermined temperature (Temp. 2) of the fluid being heated in burner 10. For example, Temp. 2 may be about l95F. if the temperature of the fluid is greater than 195F., the third phase of control is not activated and the flame remains low. The Temp. 2 signal is developed by a sensor 13 mounted on burner 10. If the fluid is less than l95F., switch 92 is closed and l l5 VAC is applied to the primary winding of solenoid 38 by a lead 143. Solenoid 38 opens valve 34 and jet 18 receives fuel through line 26. The low flame ofjet 16 ignites the fuel issuing from jet 18 and a high flame is produced. Valve 32 allows only a small amount of fuel to be supplied to jet 16, whereas valve 34 allows a large amount of fuel to be supplied to jet 18. This completes the third and last phase of the operating cycle.
The indicator circuitry shown in FIG. 3 includes a set of six relays 100105 and a set of six indicator lights 110-115. A source 118 provides 24 volts DC for the indicator circuitry and is returned to ground. The 24 VDC is connected to each of the relays 100-105 by a lead 120.
When a spark is being sensed and relay 80 is energized and moves to its lower position, 1 VAC is applied to the winding of relay 101 by lead 141, moving the relay to its lower position. This causes 24 VDC to be applied to light 114 by a lead 140. Energization of light 114 indicates that ignition is on.
When a flame is not being sensed and relay 90 is deenergized and moves to its upper position. 1 15 VAC is applied to the winding of relay 100 by a lead 142. This causes the 24 VDC being applied to light 115 by lead 138 to be removed, deenergizing light 115. An energized light 115 indicates that the flame is off, therefore a deenergized light 115 indicates that the flame is on.
When there is insufficient combustion chamber air pressure and switch 74 is in its lower position. llS VAC is applied to the winding of relay 102 by a lead 128, moving the relay to its lower position. This causes the 24 VDC to be applied to light 113 by lead 136. Energization of light 113 indicates insufficient combustion chamber air pressure.
When there is insufficient fluid flow and switch 72 moves to its lower position. 1 15 VAC is applied to the winding of relay 103 by a lead 126 and it moves to its lower position. This causes 24 VDC to be applied to light 112 by a lead 134. Energization of light 112 indicates an insufficient fluid flow.
When Temp. 1 is less than about 205F. and switch 70 is closed. l l5 VAC is applied to the winding of relay 104 by a lead 122, moving the relay to its lower position. This causes the 24 VDC being applied to light 111 by lead 124 to be removed, deenergizing light 111. An energized light 111 indicates that the first phase of control is not taking place, therefore a deenergized light 111 indicates that the first phase is taking place.
When Temp. 2 is less than about 195F. and switch 92 is closed. I l5 VAC is applied to the winding of relay 105 by a lead 130 and relay 105 moves to its lower position. This causes the 24 VDC being applied to light by lead 132 to be removed. deenergizing light 110. An energized light 110 indicates that the third phase of control is not taking place. therefore a deenergized light 110 indicates that the third phase is taking place.
A specific embodiment of the invention has been described. Modifications of this embodiment and other embodiments within the spirit and scope of the invention will occur to those skilled in the art, therefore the invention is to be limited only by the following claims.
What is claimed is:
1. A method of operating a burner for heating a flowing fluid, the burner having first and second operating temperatures associated therewith, and a combustion chamber for highly volatile explosive fuel requiring an operating combustion air pressure, the method including the following steps:
a. sensing the first operating temperature;
b. sensing the fluid flow;
c. sensing the air pressure;
d. forming a spark only if the sensed first operating temperature, fluid flow, and air pressure are within predetermined operating ranges;
e. directly visually sensing the spark;
1". providing a small amount of said volatile fuel to the combustion chamber only if the spark is visually sensed, the spark igniting the fuel, which in burning forms a flame that is low;
g. sensing the flame;
h. sensing the second operating temperature; and
i. providing a large amount of said volatile fuel to the combustion chamber only if the flame is sensed and the second operating temperature is within a predetermined operating range. the low flame igniting the large amount of fuel which in burning forms a flame that is high.
2. A failsafe burner control apparatus for controlling the supply and ignition of highly volatile and explosive fuel such as gasoline or jet fuel in a burner used within a larger system having a plurality of measurable operating quantities, comprising:
a. first sensing means for sensing a plurality of said operating quantities and for respectively providing a plurality of control signals indicative thereof;
b. means for forming a spark when energized;
c. control means responsive to said plurality of operating quantity control signals and operatively connected to said spark forming means for energizing said spark forming means only when each of said plurality of operating quantities is within a prede termined range;
d. a spark sensor mounted to directly visually sight the presence or absence of said spark for providing a sensed spark output signal in response thereto;
e. first fuel control means operatively connected to receive and responsive to said sensed spark output signal for providing a small amount of said volatile fuel for ignition by said spark. thereby forming a low flame;
f. a flame sensor. operatively independent of said spark sensor, connected to sense the presence or absence of said flame for providing a sensed flame output signal in response thereto;
g. second sensing means for sensing a single one of said plurality of operating quantities and for providing a single control signal indicative thereof; and
h. second fuel control means operatively connected to receive and responsive to said sensed flame output signal and said single operating quantity control signal for providing a large amount of said volatile fuel for ignition by said low flame, thereby forming a high flame.
3. Burner control apparatus for deicing systems, of the type having a circulating fluid, a combustion chamber for burning highly explosive fuel and designed for operation at a combustion air pressure within a predetermined range, and being designed to operate with first and second temperatures of said fluid in predetermined ranges and with a flow rate within a predetermined range of said fluid, said burner control apparatus comprising:
a. means for sensing said first operating temperature and for providing a first control signal indicative thereof;
b. means for sensing said fluid flow rate and for providing a second control signal indicative thereof; c. means for sensing said combustion chamber air pressure and for providing a third control signal indicative thereof;
d. ignition means mounted in said combustion chamber for forming a spark when energized, to ignite said fuel within the combustion chamber;
e. means responsive to said first, said second and said third control signals for energizing said ignition means only when said first, said second and said third control signals indicate that said first temperature, said fluid flow rate and said combustion air pressure are simultaneously within their respective said predetermined operating ranges;
f. spark sensing means mounted to operatively sight said formed spark for sensing the presence or absence of said spark and for generating first and second spark control signals indicative thereof, said sensing means operative to generate said first spark control signal when the presence of said spark is sensed, and to generate said second spark control signal when the absence of said formed spark is sensed;
g. means operatively connected to receive said spark control signals for providing a small amount of said fuel to said combustion chamber for ignition by said spark upon receipt of said first spark control signal, thereby forming a flame that is low;
h. flame sensing means mounted to sight said flame and operatively independent of said spark sensing means, for sensing the presence or absence of said flame and for providing a flame control signal indicative thereof;
i. means for sensing said second operative temperature and for providing a fourth control signal indicative thereof; and
j. means connected to receive said flame control and said fourth control signals and operatively responsive thereto for providing a large amount of said fuel to said combustion chamber when said flame control and said fourth control signals respectively indicate the presence of said flame and the presence of said second operative temperature within its said predetermined range, thereby forming a flame that is high.

Claims (3)

1. A method of operating a burner for heating a flowing fluid, the burner having first and second operating temperatures associated therewith, and a combustion chamber for highly volatile explosive fuel requiring an operating combustion air pressure, the method including the following steps: a. sensing the first operating temperature; b. sensing the fluid flow; c. sensing the air pressure; d. forming a spark only if the sensed first operating temperature, fluid flow, and air pressure are within predetermined operating ranges; e. directly visually sensing the spark; f. providing a small amount of said volatile fuel to the combustion chamber only if the spark is visually sensed, the spark igniting the fuel, which in burning forms a flame that is low; g. sensing the flame; h. sensing the second operating temperature; and i. providing a large amount of said volatile fuel to the combustion chamber only if the flame is sensed and the second operating temperature is within a predetermined operating range, the low flame igniting the large amount of fuel which in burning forms a flame that is high.
1. A method of operating a burner for heating a flowing fluid, the burner having first and second operating temperatures associated therewith, and a combustion chamber for highly volatile explosive fuel requiring an operating combustion air pressure, the method including the following steps: a. sensing the first operating temperature; b. sensing the fluid flow; c. sensing the air pressure; d. forming a spark only if the sensed first operating temperature, fluid flow, and air pressure are within predetermined operating ranges; e. directly visually sensing the spark; f. providing a small amount of said volatile fuel to the combustion chamber only if the spark is visually sensed, the spark igniting the fuel, which in burning forms a flame that is low; g. sensing the flame; h. sensing the second operating temperature; and i. providing a large amount of said volatile fuel to the combustion chamber only if the flame is sensed and the second operating temperature is within a predetermined operating range, the low flame igniting the large amount of fuel which in burning forms a flame that is high.
2. A failsafe burner control apparatus for controlling the supply and ignition of highly volatile and explosive fuel such as gasoline or jet fuel in a burner used within a larger system having a plurality of measurable operating quantities, comprising: a. first sensing means for sensing a plurality of said operating quantities and for respectively providing a plurality of control signals indicative thereof; b. means for forming a spark when energized; c. control means responsive to said plurality of operating quantity control signals and operatively connected to said spark forming means for energizing said spark forming means only when each of said plurality of operating quantities is within a predetermined range; d. a spark sensor mounted to directly visually sight the presence or absence of said spark for providing a sensed spark output signal in response thereto; e. first fuel control means operatively connected to receive and responsive to said sensed spark output signal for providing a small amount of said volatile fuel for ignition by said spark, thereby forming a low flame; f. a flame sensor, operatively independent of said spark sensor, connected to sense the presence or absence of said flame for providing a sensed flame output signal in response thereto; g. second sensing means for sensing a single one of said plurality of operating quantities and for providing a single control signal indicative thereof; and h. second fuel control means operatively connected to receive and responsive to said sensed flame output signal and said single operating quantity control signal for providing a large amount of said volatile fuel for ignition by said low flame, thereby forming a high flame.
US364826A 1973-05-29 1973-05-29 Control method and apparatus for burners Expired - Lifetime US3887325A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US364826A US3887325A (en) 1973-05-29 1973-05-29 Control method and apparatus for burners
GB1233974A GB1437698A (en) 1973-05-29 1974-03-20 Control apparatus for burners

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US364826A US3887325A (en) 1973-05-29 1973-05-29 Control method and apparatus for burners

Publications (1)

Publication Number Publication Date
US3887325A true US3887325A (en) 1975-06-03

Family

ID=23436260

Family Applications (1)

Application Number Title Priority Date Filing Date
US364826A Expired - Lifetime US3887325A (en) 1973-05-29 1973-05-29 Control method and apparatus for burners

Country Status (2)

Country Link
US (1) US3887325A (en)
GB (1) GB1437698A (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4033711A (en) * 1976-02-25 1977-07-05 Metrodata, Inc. Spark ignition gas flow control system
US4102330A (en) * 1976-05-12 1978-07-25 Hutchinson Donald D Liquid vat heating apparatus
US4135487A (en) * 1975-08-29 1979-01-23 Amana Refrigeration, Inc. Heat exchange control system
US4297987A (en) * 1979-05-11 1981-11-03 Amana Refrigeration, Inc. Heat exchange system
US4403942A (en) * 1980-11-18 1983-09-13 Carrier Corporation Self-checking safety switch control circuit
US4462342A (en) * 1982-02-08 1984-07-31 Welden David P Variable stage direct field boiler
US4550689A (en) * 1983-10-31 1985-11-05 Gerry Wolter Gas instantaneous water heater
US4699123A (en) * 1985-09-27 1987-10-13 The Schawbel Corporation Portable heating appliance
US4716885A (en) * 1985-09-27 1988-01-05 The Schawbel Corporation Dual input to single burner solder iron
US4733651A (en) * 1985-09-27 1988-03-29 The Schawbel Corporation Portable curling iron
US4747771A (en) * 1985-11-12 1988-05-31 British Gas Plc Operation of a pulse-fired burner
US4759343A (en) * 1985-09-27 1988-07-26 The Schawbel Corporation Portable curling iron
US4815441A (en) * 1985-09-27 1989-03-28 The Schawbel Corporation Portable heating appliance
US4819587A (en) * 1985-07-15 1989-04-11 Toto Ltd. Multiple-purpose instantaneous gas water heater
EP0333389A1 (en) * 1988-03-10 1989-09-20 Farleydene Limited Improvements in or relating to autoclaves
US4884555A (en) * 1988-11-21 1989-12-05 A. O. Smith Corporation Swirl combuster burner
US5305735A (en) * 1993-03-29 1994-04-26 Welden David P Direct fired hot water generator with more than one heat exchange zone
US5364262A (en) * 1993-01-22 1994-11-15 Phillips Douglas E Apparatus for the early detection and relief of unsafe conditions in a gaseous system
US5706191A (en) * 1995-01-19 1998-01-06 Gas Research Institute Appliance interface apparatus and automated residence management system
US6217312B1 (en) * 1999-04-29 2001-04-17 General Electric Company Ignition system for a gas appliance
US20060150925A1 (en) * 2005-01-12 2006-07-13 Aos Holding Company Water heater with pressurized combustion
US20060174846A1 (en) * 2005-02-07 2006-08-10 Kidd Larry D System and methods for controlling a water heater
US20070003892A1 (en) * 2005-03-17 2007-01-04 Chin-Ying Huang Single-stage gas valve
US20090101085A1 (en) * 2005-02-07 2009-04-23 Arensmeier Jeffrey N Systems and methods for controlling a water heater
US20100116227A1 (en) * 2005-02-07 2010-05-13 Vogel G Scott Systems and methods for controlling a water heater
US8177544B2 (en) 2010-04-09 2012-05-15 Honeywell International Inc. Selective lockout in a fuel-fired appliance
US8523560B2 (en) 2010-04-09 2013-09-03 Honeywell International Inc. Spark detection in a fuel fired appliance
US9296483B2 (en) 2011-07-05 2016-03-29 Bell Helicopter Textron Inc. Distributed ice protection control system
US9388984B2 (en) 2010-04-09 2016-07-12 Honeywell International Inc. Flame detection in a fuel fired appliance
US20160290639A1 (en) * 2013-11-08 2016-10-06 Clearsign Combustion Corporation Combustion system with flame location actuation
US9494320B2 (en) 2013-01-11 2016-11-15 Honeywell International Inc. Method and system for starting an intermittent flame-powered pilot combustion system
US10208954B2 (en) 2013-01-11 2019-02-19 Ademco Inc. Method and system for controlling an ignition sequence for an intermittent flame-powered pilot combustion system
US11236930B2 (en) 2018-05-01 2022-02-01 Ademco Inc. Method and system for controlling an intermittent pilot water heater system
US11543153B1 (en) 2010-03-19 2023-01-03 A. O. Smith Corporation Gas-fired appliance and control algorithm for same
US11656000B2 (en) 2019-08-14 2023-05-23 Ademco Inc. Burner control system
US11739982B2 (en) 2019-08-14 2023-08-29 Ademco Inc. Control system for an intermittent pilot water heater

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1032727A (en) * 1911-06-21 1912-07-16 Grafton W Appler Electric gas-igniter for hot-water-circulating systems.
US2805652A (en) * 1953-05-01 1957-09-10 Minor W Stout Water level responsive controls for combustion apparatus
US2879358A (en) * 1953-04-29 1959-03-24 Baso Inc Fluid fuel control apparatus
US3160197A (en) * 1964-12-08 Bummer safeguard control apparatus
US3545207A (en) * 1969-07-23 1970-12-08 Leeds & Northrup Co Boiler control system
US3607117A (en) * 1969-07-28 1971-09-21 Rust Engineering Co Black liquor recovery boiler combustion and safety control system
US3799184A (en) * 1972-05-16 1974-03-26 Slifer Mfg Co Inc Fluid flow detector and control for a hot water system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3160197A (en) * 1964-12-08 Bummer safeguard control apparatus
US1032727A (en) * 1911-06-21 1912-07-16 Grafton W Appler Electric gas-igniter for hot-water-circulating systems.
US2879358A (en) * 1953-04-29 1959-03-24 Baso Inc Fluid fuel control apparatus
US2805652A (en) * 1953-05-01 1957-09-10 Minor W Stout Water level responsive controls for combustion apparatus
US3545207A (en) * 1969-07-23 1970-12-08 Leeds & Northrup Co Boiler control system
US3607117A (en) * 1969-07-28 1971-09-21 Rust Engineering Co Black liquor recovery boiler combustion and safety control system
US3799184A (en) * 1972-05-16 1974-03-26 Slifer Mfg Co Inc Fluid flow detector and control for a hot water system

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4135487A (en) * 1975-08-29 1979-01-23 Amana Refrigeration, Inc. Heat exchange control system
US4033711A (en) * 1976-02-25 1977-07-05 Metrodata, Inc. Spark ignition gas flow control system
US4102330A (en) * 1976-05-12 1978-07-25 Hutchinson Donald D Liquid vat heating apparatus
US4297987A (en) * 1979-05-11 1981-11-03 Amana Refrigeration, Inc. Heat exchange system
US4403942A (en) * 1980-11-18 1983-09-13 Carrier Corporation Self-checking safety switch control circuit
US4462342A (en) * 1982-02-08 1984-07-31 Welden David P Variable stage direct field boiler
US4550689A (en) * 1983-10-31 1985-11-05 Gerry Wolter Gas instantaneous water heater
US4922861A (en) * 1985-07-15 1990-05-08 Toto Ltd. Multiple-purpose instantaneous gas water heater
US4819587A (en) * 1985-07-15 1989-04-11 Toto Ltd. Multiple-purpose instantaneous gas water heater
US4815441A (en) * 1985-09-27 1989-03-28 The Schawbel Corporation Portable heating appliance
US4699123A (en) * 1985-09-27 1987-10-13 The Schawbel Corporation Portable heating appliance
US4759343A (en) * 1985-09-27 1988-07-26 The Schawbel Corporation Portable curling iron
US4733651A (en) * 1985-09-27 1988-03-29 The Schawbel Corporation Portable curling iron
US4716885A (en) * 1985-09-27 1988-01-05 The Schawbel Corporation Dual input to single burner solder iron
US4747771A (en) * 1985-11-12 1988-05-31 British Gas Plc Operation of a pulse-fired burner
EP0333389A1 (en) * 1988-03-10 1989-09-20 Farleydene Limited Improvements in or relating to autoclaves
US4884555A (en) * 1988-11-21 1989-12-05 A. O. Smith Corporation Swirl combuster burner
US5364262A (en) * 1993-01-22 1994-11-15 Phillips Douglas E Apparatus for the early detection and relief of unsafe conditions in a gaseous system
US5305735A (en) * 1993-03-29 1994-04-26 Welden David P Direct fired hot water generator with more than one heat exchange zone
US5368474A (en) * 1993-03-29 1994-11-29 Welden; David P. Direct fired hot water generator with more than one heat exchange zone
US5706191A (en) * 1995-01-19 1998-01-06 Gas Research Institute Appliance interface apparatus and automated residence management system
US6217312B1 (en) * 1999-04-29 2001-04-17 General Electric Company Ignition system for a gas appliance
US20060150925A1 (en) * 2005-01-12 2006-07-13 Aos Holding Company Water heater with pressurized combustion
US7513221B2 (en) * 2005-01-12 2009-04-07 Aos Holding Company Water heater with pressurized combustion
US7290502B2 (en) * 2005-02-07 2007-11-06 Emerson Electric Co. System and methods for controlling a water heater
US8544423B2 (en) * 2005-02-07 2013-10-01 Emerson Electric Co. Systems and methods for controlling a water heater
US20060174846A1 (en) * 2005-02-07 2006-08-10 Kidd Larry D System and methods for controlling a water heater
US20090101085A1 (en) * 2005-02-07 2009-04-23 Arensmeier Jeffrey N Systems and methods for controlling a water heater
US20100116227A1 (en) * 2005-02-07 2010-05-13 Vogel G Scott Systems and methods for controlling a water heater
US8176881B2 (en) 2005-02-07 2012-05-15 Emerson Electric Co. Systems and methods for controlling a water heater
US9103550B2 (en) 2005-02-07 2015-08-11 Emerson Electric Co. Systems and methods for controlling a water heater
US20070003892A1 (en) * 2005-03-17 2007-01-04 Chin-Ying Huang Single-stage gas valve
US11543153B1 (en) 2010-03-19 2023-01-03 A. O. Smith Corporation Gas-fired appliance and control algorithm for same
US8523560B2 (en) 2010-04-09 2013-09-03 Honeywell International Inc. Spark detection in a fuel fired appliance
US8636502B2 (en) 2010-04-09 2014-01-28 Honeywell International Inc. Selective lockout in a fuel-fired appliance
US8177544B2 (en) 2010-04-09 2012-05-15 Honeywell International Inc. Selective lockout in a fuel-fired appliance
US9388984B2 (en) 2010-04-09 2016-07-12 Honeywell International Inc. Flame detection in a fuel fired appliance
US9296483B2 (en) 2011-07-05 2016-03-29 Bell Helicopter Textron Inc. Distributed ice protection control system
US11268695B2 (en) 2013-01-11 2022-03-08 Ademco Inc. Method and system for starting an intermittent flame-powered pilot combustion system
US9494320B2 (en) 2013-01-11 2016-11-15 Honeywell International Inc. Method and system for starting an intermittent flame-powered pilot combustion system
US11719436B2 (en) 2013-01-11 2023-08-08 Ademco Inc. Method and system for controlling an ignition sequence for an intermittent flame-powered pilot combustion system
US10208954B2 (en) 2013-01-11 2019-02-19 Ademco Inc. Method and system for controlling an ignition sequence for an intermittent flame-powered pilot combustion system
US10429068B2 (en) 2013-01-11 2019-10-01 Ademco Inc. Method and system for starting an intermittent flame-powered pilot combustion system
US20160290639A1 (en) * 2013-11-08 2016-10-06 Clearsign Combustion Corporation Combustion system with flame location actuation
US10240788B2 (en) 2013-11-08 2019-03-26 Clearsign Combustion Corporation Combustion system with flame location actuation
US10066835B2 (en) * 2013-11-08 2018-09-04 Clearsign Combustion Corporation Combustion system with flame location actuation
US11236930B2 (en) 2018-05-01 2022-02-01 Ademco Inc. Method and system for controlling an intermittent pilot water heater system
US11719467B2 (en) 2018-05-01 2023-08-08 Ademco Inc. Method and system for controlling an intermittent pilot water heater system
US11656000B2 (en) 2019-08-14 2023-05-23 Ademco Inc. Burner control system
US11739982B2 (en) 2019-08-14 2023-08-29 Ademco Inc. Control system for an intermittent pilot water heater

Also Published As

Publication number Publication date
GB1437698A (en) 1976-06-03

Similar Documents

Publication Publication Date Title
US3887325A (en) Control method and apparatus for burners
US6412447B1 (en) Fuel-fired water heater with flammable vapor sensor and associated induced flow tube
US3694137A (en) Sequentially fired single pilot multi-section gas burner and air supply structure
US3551083A (en) Fuel burner ignition
US4808107A (en) Pulse combustion system
US4162887A (en) Oil burner
US3756764A (en) Oil gasification burner
CA1182036A (en) Pulse burners
US5326025A (en) Warm up method for two stage furnace
NL8503058A (en) METHOD FOR IGNITING A BURNER AND A BURNER FOR CARRYING OUT THIS METHOD
EP0531072A1 (en) Improvements in or relating to flame safeguard devices
US6418882B1 (en) Power vented, fuel fired water heater with soft ignition system
CA2226697A1 (en) Roofing kettle control apparatus
US3155145A (en) Control circuit for gas burner
EP0107916A1 (en) Flame control system for heat exchanger
US3204685A (en) Burner ignition and control system
CA1182037A (en) Pulse burners
US3756221A (en) Control apparatus for gas burners
GB2292630A (en) Ignition system for gaseous fuel burner assemblies
US3196928A (en) Ignition system and control for fuel burner
GB1313602A (en) Gas fired fluid heater
GB1110376A (en) Improvements in or relating to combustion control systems
JPH0350413A (en) Control device for combustion apparatus
JPS5842756Y2 (en) Combustion control device for gas combustion equipment
KR930007451B1 (en) Operation detecting device for spark discharge type ignition device