US3858796A - Container for use in treatment of liquid - Google Patents

Container for use in treatment of liquid Download PDF

Info

Publication number
US3858796A
US3858796A US306218A US30621872A US3858796A US 3858796 A US3858796 A US 3858796A US 306218 A US306218 A US 306218A US 30621872 A US30621872 A US 30621872A US 3858796 A US3858796 A US 3858796A
Authority
US
United States
Prior art keywords
conduit
liquid
compartment
container
walls
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US306218A
Inventor
Hans Peter Olof Unger
Eric J H Westberg
Stephan L Schwartz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from SE03309/71A external-priority patent/SE354582B/xx
Priority claimed from SE03310/71A external-priority patent/SE354581B/xx
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3858796A publication Critical patent/US3858796A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B5/00Other centrifuges
    • B04B5/04Radial chamber apparatus for separating predominantly liquid mixtures, e.g. butyrometers
    • B04B5/0407Radial chamber apparatus for separating predominantly liquid mixtures, e.g. butyrometers for liquids contained in receptacles
    • B04B5/0428Radial chamber apparatus for separating predominantly liquid mixtures, e.g. butyrometers for liquids contained in receptacles with flexible receptacles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B5/00Other centrifuges
    • B04B5/04Radial chamber apparatus for separating predominantly liquid mixtures, e.g. butyrometers
    • B04B5/0442Radial chamber apparatus for separating predominantly liquid mixtures, e.g. butyrometers with means for adding or withdrawing liquid substances during the centrifugation, e.g. continuous centrifugation
    • B04B2005/045Radial chamber apparatus for separating predominantly liquid mixtures, e.g. butyrometers with means for adding or withdrawing liquid substances during the centrifugation, e.g. continuous centrifugation having annular separation channels

Definitions

  • references Cited UNITED STATES PATENTS Primary Examiner-George H. Krizmanich Attorney, Agent, or FirmLarson, Taylor and Hinds ABSTRACT ticularly blood such as centrifugal separation of blood into fractions of different densities and/or for washing blood cells suspended in a liquid, comprises walls of flexible sheet material'which define between them a closed compartment for holding a quantity of liquid and a conduit which communicates with the compartment.
  • the conduit is adapted to be acted on by a peristaltic pump for moving liquid through the conduit to or from the compartment or alternatively the conduit prevent liquid flow through the conduit.
  • This invention relates to a container for use in treatment of liquid particularly for use in a centrifuge for treating discrete quantities of a liquid by separating it into fractions of different densities and, where desired, by washing soild particles suspended in liquid.
  • the invention has particular application to the centrifugal treatment of blood and the present disclosure will be devoted primarily to this application. It should be understood, however, that the invention is applicable to the treatment of other liquids than blood.
  • liquid as used in this specification embraces not only true liquids but also other materials resembling liquids such as the semi-liquid mass of blood cells obtained from whole blood after separation of the plasma.
  • one container may initially hold a batch consisting of either a mixture of whole blood and a liquid preservative or a suspension of red blood cells in a liquid preservative and a second container may initially hold a quantity of a wash solution while a third container is initially empty.
  • the containers are interconnected through conduits and during the treatment plasma and/or preservative from the first container is passed into the empty third container and temporarily replaced by wash solution from the second container. After agitation of the contents of the first container the used wash solution and the material washed off from the blood cells is passed into the third container leaving the washed red cells in the first container.
  • collapsible closed containers for the blood, for separated fractions and for wash solution enables the treatment to be carried out under sterile conditions since the containers can be interconnected in a closed system to communicate with each other without their contents coming into contact with the ambient atmosphere or exterior surfaces.
  • the transfer of liquid between the containers has presented problems, however, since the transfer normally has to take place while the centrifuge rotor and the container system rotate at high speed.
  • a general object of the present invention is to provide an improved container construction permitting the transfer of liquid to be effected and controlled in a simple and reliable manner.
  • a more specific object in accordance with the foregoing general object is to provide a container for use in a a centrifuge in which the rotor supports a pump for displacing liquid to and from the container.
  • Another object is to provide a centrifuge which can be loaded with the containers and made ready for operation with a minimum of manual labor.
  • a container for use in a centrifuge in which the transfer of liquid is effected by a peristaltic pump has three circular walls of flexible sheet material which walls define between them two closed annular compartments for liquid.
  • the conduits are adapted to cooperate with the peristaltic pump when liquid is to be transferred to or from the liquid compartments, the peristaltic pump is caused to rotate slowly with respect to the container to displace liquid through the conduits.
  • the peristaltic pump member When the peristaltic pump member is stationary with respect to the the container, it compresses the conduits to block flow therethrough.
  • FIG. I is a view in vertical section ofthe rotor and associated parts of a centrifuge provided with a container constructed in accordance with the invention
  • FIG. 2 is an enlarged view corresponding to the central portion of FIG. 1;
  • FIG. 3 is an exploded partly cut away perspective view of the container assembly in the centrifuge shown in FIGS. land 2;
  • FIG. 4 is a plan view of the central portion of the twocompartment container shown in the lower portion of FIG. 3.
  • the centrifuge diagrammatically illustrated in FIG. 1 has a frame supporting a centrifuge rotor 11 for rotation about a vertical axis at high speed, e.g., 3,000
  • Rotor lll includes a bowl 13 having a depending hollow journal member 14 mounted in a ball bearing 15 in frame 10.
  • the rotor bowl and most other elements of the rotor are circular in plan view.
  • Rotor bowl 13 houses a container assembly thedetails of which are best seen in FIG. 3. It includes a lower two-compartment container 16 supported on the bottom wall of bowl l3 and an upper single-compartment container 17 supported on top of container 16. Both containers are generally disk shaped and concentric with the rotorbowl. They are both closed, disregarding openings for the introduction and removal of liquid, and made of a thin and flexible sheet material so as to be collapsible.
  • the sheet material may be, for example, a laminate of polyethylene and polyester having a total thickness of about 0.1 millimeter.
  • Lower container 16 is made of three circular sheets l8, 19, 20 disposed one on the other and sealingly joined along their peripheries by a continuous heat seal 21 and at their central portion by another circular heat seal 22.
  • Lower and central sheets 18, 19 define between them a compartment 23 which initially holds wash solution and central and upper sheets 19, 20 define between them a compartment 24 which is initially empty.
  • heat seals 25 (marked by closely spaced dash lines in FIG. 4) joining sheets I8, 19 define a collapsible conduit 26 through which wash solution in compartment 23 can flow to a short connecting tube 27 secured to upper sheet 20 around an opening 28 in the latter via an opening 311 in sheet 19 (see also FIG. 2).
  • Similar heat seals 29 (marked by closely spaced full lines in FIG. 2) joining sheets 19, 20 define another collapsible conduit 30 through which liquid can flow from connecting tube 27 to compartment 24.
  • Portions of conduits 26, 30 extend along two concentric circles and cooperate with a pump 32 described in more detail hereinafter. This pump is operable to produce the liquid flow and to block the conduits when flow is not desired.
  • Heat seal 22 prevents liquid in the two compartments from entering the central container portion except through the conduits.
  • Upper container 17 initially holds a quantity of blood cells suspended in a liquid preservative. It consists of two sheets 33, 34 which are joined by a heat seal 35 at their peripheries and a heat seal 36 at their central portions so that they define between them an annular compartment. A connecting tube 37 communicates with this compartment through a conduit 38 defined by heat seals. An opening 39 in the central portion permits tube 37 to be connected with tube 37 of container 16.
  • Conduits 26 and 30 as well as conduit 38 have a strong natural tendency to close themselves. Thus, in order that they may permit the liquid in the containers to pass through them, the liquid must be subjected to a substantial pressure. Therefore, no special precautions are necessary to prevent unwanted flow through the conduits during manual handling of the containers.
  • a filler ring 40 and a backing plate 41 are disposed between containers 16 and 17.
  • Connecting tube 27 extends through an opening in the backing plate and is connected to connecting tube 37.
  • Rotor 11 includes a cover assembly with a rigid cover plate 42 which has an internally screw-threaded boss 43 and holds an annular body 44 made of soft rubber mixed with lead granules so as to have higher specific gravity than the liquids in the containers.
  • a clamping mechanism having an externally screw-threaded sleeve 45 screwed into boss 43 and a number of circumferentially distributed wedges 46 connected to the sleeve through rods 47 cooperates with cover plate 42 and bowl 13 to hold down the cover assembly against the containers.
  • a photoelectric detector 48 mounted in sleeve 45 signals the presence of red blood cells in connecting tube 37.
  • Pump 32 referred to above is of the well-known peristaltic type which has a plurality of rollers moved in a circular path to progressively collapse a resilient conduit so as to displace liquid in the conduit. It has two concentric and independently movable circular groups of rollers, each comprising three rollers spaced apart 120.
  • the outer group of rollers 49 are rotatably mounted on an outer rotor member 50 secured to a hollow shaft 51 which is concentric with rotor 11. These rollers cooperate with conduit 26.
  • the inner group of rollers 52 are rotatably mounted on an inner rotor member 53 secured to a shaft 54 extending coaxially through shaft 51. These rollers cooperate with conduit 30.
  • rollers 49 and 52 engage conduits 26 and 30 through a flexible diaphragm 55 to lo-' cally compress and close these conduits against backing plate 41.
  • Rotor members 50 and 53 normally are stationary with respect to the rotating centrifuge rotor and the containers but when desired they can be slowly rotated with respect to the centrifuge rotor during rotation of the latter.
  • Positive rotational movement of rotor member 50 is derived from journal member 14 of rotor bowl 13 by means of a gear 56 engaging a gear on the journal member and another gear 57 engaging a gear on hollow shaft 51.
  • Gears 56 and 57 are mounted for rotation about a common axis but normally there is no driving connection between them.
  • a magnetic clutch 58 can be actuated to cause these gears to rotate in unison so as to bring about slow rotation of rotor member 50 with respect to container 16 (clockwise as seen from above in FIGS. 1, 2 and in FIG. 4).
  • positive rotational movement of rotor member 53 is derived from journal member 14 through gears 59, 60 and a clutch 61.
  • Rotor 11 is assumed to be stationary but assembled as shown in FIG. 1, although compartment 24 of container 16 is empty so that sheets 19 and 20 engage each other face to face under the influence of pressure from rubber body 44.
  • the peripheral portions of the containers are clamped between the bottom of bowl 13 and filler ring 40 and between the latter and rubber body 44.
  • the central portions of the containers are clamped between the rollers of pump 32 and the lower end of boss 43 of cover plate 42.
  • the rubber body in conjunction with the shape of the parts ensure that unwanted air pockets adjacent the containers are virtually eliminated.
  • Rotor 11 is then caused to rotate with clutches 58, 61 disengaged so that pump rotor members 50, 53 rotate in unison with the centrifuge rotor owing to the friction between these rotor members and diaphragm and other parts of the centrifuge rotor.
  • the heavy soft rubber of body 44 is forced outwardly to apply an external pressure to containers 16, 17. Owing to the arrangement and shape of the parts, this pressure forces the liquid in the containers inwardly and causes conduits 26, 30 to assume the expanded form shown in FIG. 2.
  • the rollers of the rotor members are stationary with respect to the rotor and the containers and compress the conduits, no liquid is permitted to pass through the latter.
  • the centrifugal field which may be of the order of 1,000 g, causes the formation of fractions of different densities in container 17, that is, the red blood cells accumulate in the radially outer portion of container 17 while the lighter preservative liquid is collected in the radially inner portion.
  • Clutch 61 is then engaged to cause inner rotor member 53 to rotate anticlockwise (FIG. 4) with respect to the centrifuge rotor and the containers so that the preservative liquid is pumped from container 17 into compartment 24 of container 16 through conduit 38, connecting tubes 37, 27 and conduit 30. Since outer rotor member 50 is still stationary with respect to the centrifuge rotor and the containers, the preservative liquid is prevented from flowing through conduit 26.
  • clutch 61 is again disengaged and clutch 58 engaged so that outer rotor member 50 is caused to rotate to pump wash solution from compartment 23 into container 17 through conduit 26. tubes 27, 37 and conduit 38 while inner rotor member 53 is held stationary to prevent flow through conduit 30.
  • clutch 58 is disengaged so that both conduits 26, 30 are closed whereupon rotor 11 is rapidly braked (by means not shown) to low speed to agitate the contents of container 17 and thoroughly mix the wash solution and blood cells.
  • the wash solution is then separated from the blood cells and transferred to compartment 24 of container 16 in the same manner as has been described for the preservative liquid.
  • the washing step described above is repeated as many times as necessary and when the treatment is completed, container 17 contains a concentrate of washed blood cells while container 16 contains liquid preservative and used wash solution in compartment 24.
  • Compartment 23 may be empty or contain a residue of wash solution.
  • a container for use in treatment of liquid, particularly in centrifugal separation of liquid into fractions of different densities comprising walls of flexible sheet material, the walls defining between them a closed annular compartment for holding a discrete quantity of liquid, said walls further defining a central area located radially inwardly of the inner edge of the compartment, said central area being fixed with respect to the compartment, the walls forming said central area further defining a collapsible conduit through which liquid may be conveyed into or out of the container compartment, said conduit being integrally connected with central area and hence also with the container walls so as to be fixed relative to the walls, one end of the conduit connected to the interior of the compartment, the conduit extending from said one end within the central area to a further open end also within the central area for communication with a further fluid transporting means the fixed section of the conduit thus being disposed and arranged to serve as the liquid conveying member of peristaltic pump.
  • a container as set forth in claim 1 in which a connecting tube is attached to one of the walls and commu nicates with the conduit.
  • the central and lower walls defining between them a second generally annular compartment and a second conduit communicating at one end thereof with the second compartment and at the other end with the connecting tube, portions of the first and second conduits extending along portions of respective ones oftwo concentric circles andbeing adapted to cooperate with respective ones of two concentric rotors of a peristaltic 'pump to pass liquid into and out of the compartments.
  • a container for use in treatment of liquid, particularly in centrifugal separation of liquid into fractions of different densities comprising walls of flexible sheet material, the walls defining between them a closed compartment for holding a discrete quantity of liquid and a collapsible conduit through which liquid may be conveyed into or out of the container compartment, at least a section of the conduit being integrally connected with the container wall so as to be fixed relative to the walls and such that the fixed section of the conduit is disposed and arranged to serve as the liquid conveying member of a peristaltic pump, said walls being generally circular and including an upper wall, a cen tral wall and a lower wall, the upper and central walls defining between them a first generally annular compartment and a first conduit communicating at one end thereof with the first compartment and at the other end thereof with a connecting tube secured to the upper wall, the central and lower walls defining between them a second generally annular compartment and a second conduit communicating at one end thereof with the second compartment and at the other end with the connecting tube, portions of the first and second conduit

Abstract

A container for use in batch treatment of a liquid, particularly blood, such as centrifugal separation of blood into fractions of different densities and/or for washing blood cells suspended in a liquid, comprises walls of flexible sheet material which define between them a closed compartment for holding a quantity of liquid and a conduit which communicates with the compartment. The conduit is adapted to be acted on by a peristaltic pump for moving liquid through the conduit to or from the compartment or alternatively the conduit prevent liquid flow through the conduit.

Description

United States Patent Unger et al.
CONTAINER FOR USE IN TREATMENT OF LIQUID Inventors: Hans Peter Olof Unger,
Oregrundsgatan l, Lidingo; Eric J. H. Westberg, Rodstugevagen 14, Stockholm; Stephan L. Schwartz, Granitvagen l, Lidingo, all of Sweden Filed: Nov. 14, 1972 Appl, No.: 306,218
Related Us; Application Data Division of Ser. No. 233,538, March 10, 1972, Pat. No. 3,724,747.
Foreign Application Priority Data Mar. 15, 1971 Sweden 3309/71 Mar. 15, 1971- Sweden 3310/71 U.S. Cl. 233/27 Int. Cl B04b 7/12, B04b 15/06 Field of Search 233/20 R, 26, 27, 28, l R,
' A container for use in batch treatment of a liquid, par- Jan. 7, 1975 [56] References Cited UNITED STATES PATENTS Primary Examiner-George H. Krizmanich Attorney, Agent, or FirmLarson, Taylor and Hinds ABSTRACT ticularly blood, such as centrifugal separation of blood into fractions of different densities and/or for washing blood cells suspended in a liquid, comprises walls of flexible sheet material'which define between them a closed compartment for holding a quantity of liquid and a conduit which communicates with the compartment. The conduit is adapted to be acted on by a peristaltic pump for moving liquid through the conduit to or from the compartment or alternatively the conduit prevent liquid flow through the conduit.
6 Claims, 4 Drawing Figures PATENTED I 3,858,796
Illllll CONTAINER FOR USE IN TREATMENT OF LIQUID This application is a division of my copending application Ser. No. 233.538, filed Mar. 10, 1972, now US. Pat. No. 3,724,747.
This invention relates to a container for use in treatment of liquid particularly for use in a centrifuge for treating discrete quantities of a liquid by separating it into fractions of different densities and, where desired, by washing soild particles suspended in liquid. The invention has particular application to the centrifugal treatment of blood and the present disclosure will be devoted primarily to this application. It should be understood, however, that the invention is applicable to the treatment of other liquids than blood. It should also be noted that the term liquid as used in this specification embraces not only true liquids but also other materials resembling liquids such as the semi-liquid mass of blood cells obtained from whole blood after separation of the plasma.
It is known to treat discrete quantities of blood in a closed system of collapsible containers in a centrifuge rotor. Thus, one container may initially hold a batch consisting of either a mixture of whole blood and a liquid preservative or a suspension of red blood cells in a liquid preservative and a second container may initially hold a quantity of a wash solution while a third container is initially empty. The containers are interconnected through conduits and during the treatment plasma and/or preservative from the first container is passed into the empty third container and temporarily replaced by wash solution from the second container. After agitation of the contents of the first container the used wash solution and the material washed off from the blood cells is passed into the third container leaving the washed red cells in the first container.
The use of collapsible closed containers for the blood, for separated fractions and for wash solution enables the treatment to be carried out under sterile conditions since the containers can be interconnected in a closed system to communicate with each other without their contents coming into contact with the ambient atmosphere or exterior surfaces. The transfer of liquid between the containers has presented problems, however, since the transfer normally has to take place while the centrifuge rotor and the container system rotate at high speed.
A general object of the present invention is to provide an improved container construction permitting the transfer of liquid to be effected and controlled in a simple and reliable manner.
A more specific object in accordance with the foregoing general object is to provide a container for use in a a centrifuge in which the rotor supports a pump for displacing liquid to and from the container.
Another object is to provide a centrifuge which can be loaded with the containers and made ready for operation with a minimum of manual labor.
In one embodiment of the invention these and other objects are realized in a container for use in a centrifuge in which the transfer of liquid is effected by a peristaltic pump. The container has three circular walls of flexible sheet material which walls define between them two closed annular compartments for liquid. The walls in the central portion, inwardly of the liquid compartments, also define between them conduits communicating at one end with the liquid compartments. The conduits are adapted to cooperate with the peristaltic pump when liquid is to be transferred to or from the liquid compartments, the peristaltic pump is caused to rotate slowly with respect to the container to displace liquid through the conduits. When the peristaltic pump member is stationary with respect to the the container, it compresses the conduits to block flow therethrough.
The above and other objects and features of the invention will become apparent from the following detailed description taken in conjunction with the accompanying diagrammatic drawings.
FIG. I is a view in vertical section ofthe rotor and associated parts of a centrifuge provided with a container constructed in accordance with the invention;
FIG. 2 is an enlarged view corresponding to the central portion of FIG. 1;
FIG. 3 is an exploded partly cut away perspective view of the container assembly in the centrifuge shown in FIGS. land 2;
FIG. 4 is a plan view of the central portion of the twocompartment container shown in the lower portion of FIG. 3.
The centrifuge diagrammatically illustrated in FIG. 1 has a frame supporting a centrifuge rotor 11 for rotation about a vertical axis at high speed, e.g., 3,000
rpm, by means of a motor 12. Rotor lll includes a bowl 13 having a depending hollow journal member 14 mounted in a ball bearing 15 in frame 10. The rotor bowl and most other elements of the rotor are circular in plan view.
Rotor bowl 13 houses a container assembly thedetails of which are best seen in FIG. 3. It includes a lower two-compartment container 16 supported on the bottom wall of bowl l3 and an upper single-compartment container 17 supported on top of container 16. Both containers are generally disk shaped and concentric with the rotorbowl. They are both closed, disregarding openings for the introduction and removal of liquid, and made of a thin and flexible sheet material so as to be collapsible. The sheet material may be, for example, a laminate of polyethylene and polyester having a total thickness of about 0.1 millimeter.
Lower container 16 is made of three circular sheets l8, 19, 20 disposed one on the other and sealingly joined along their peripheries by a continuous heat seal 21 and at their central portion by another circular heat seal 22. Lower and central sheets 18, 19 define between them a compartment 23 which initially holds wash solution and central and upper sheets 19, 20 define between them a compartment 24 which is initially empty.
In the central portion of container 16, heat seals 25 (marked by closely spaced dash lines in FIG. 4) joining sheets I8, 19 define a collapsible conduit 26 through which wash solution in compartment 23 can flow to a short connecting tube 27 secured to upper sheet 20 around an opening 28 in the latter via an opening 311 in sheet 19 (see also FIG. 2). Similar heat seals 29 (marked by closely spaced full lines in FIG. 2) joining sheets 19, 20 define another collapsible conduit 30 through which liquid can flow from connecting tube 27 to compartment 24. Portions of conduits 26, 30 extend along two concentric circles and cooperate with a pump 32 described in more detail hereinafter. This pump is operable to produce the liquid flow and to block the conduits when flow is not desired. Heat seal 22 prevents liquid in the two compartments from entering the central container portion except through the conduits.
Upper container 17 initially holds a quantity of blood cells suspended in a liquid preservative. It consists of two sheets 33, 34 which are joined by a heat seal 35 at their peripheries and a heat seal 36 at their central portions so that they define between them an annular compartment. A connecting tube 37 communicates with this compartment through a conduit 38 defined by heat seals. An opening 39 in the central portion permits tube 37 to be connected with tube 37 of container 16.
Conduits 26 and 30 as well as conduit 38, owing to the characteristics of the material and the manner in which they have been produced, have a strong natural tendency to close themselves. Thus, in order that they may permit the liquid in the containers to pass through them, the liquid must be subjected to a substantial pressure. Therefore, no special precautions are necessary to prevent unwanted flow through the conduits during manual handling of the containers.
Referring again to FIG. 1, a filler ring 40 and a backing plate 41 are disposed between containers 16 and 17. Connecting tube 27 extends through an opening in the backing plate and is connected to connecting tube 37.
Rotor 11 includes a cover assembly with a rigid cover plate 42 which has an internally screw-threaded boss 43 and holds an annular body 44 made of soft rubber mixed with lead granules so as to have higher specific gravity than the liquids in the containers. A clamping mechanism having an externally screw-threaded sleeve 45 screwed into boss 43 and a number of circumferentially distributed wedges 46 connected to the sleeve through rods 47 cooperates with cover plate 42 and bowl 13 to hold down the cover assembly against the containers. A photoelectric detector 48 mounted in sleeve 45 signals the presence of red blood cells in connecting tube 37.
Pump 32 referred to above is of the well-known peristaltic type which has a plurality of rollers moved in a circular path to progressively collapse a resilient conduit so as to displace liquid in the conduit. It has two concentric and independently movable circular groups of rollers, each comprising three rollers spaced apart 120. The outer group of rollers 49 are rotatably mounted on an outer rotor member 50 secured to a hollow shaft 51 which is concentric with rotor 11. These rollers cooperate with conduit 26. The inner group of rollers 52 are rotatably mounted on an inner rotor member 53 secured to a shaft 54 extending coaxially through shaft 51. These rollers cooperate with conduit 30.
As best seen in FIG. 2, rollers 49 and 52 engage conduits 26 and 30 through a flexible diaphragm 55 to lo-' cally compress and close these conduits against backing plate 41.
Rotor members 50 and 53 normally are stationary with respect to the rotating centrifuge rotor and the containers but when desired they can be slowly rotated with respect to the centrifuge rotor during rotation of the latter. Positive rotational movement of rotor member 50 is derived from journal member 14 of rotor bowl 13 by means ofa gear 56 engaging a gear on the journal member and another gear 57 engaging a gear on hollow shaft 51. Gears 56 and 57 are mounted for rotation about a common axis but normally there is no driving connection between them. However, a magnetic clutch 58 can be actuated to cause these gears to rotate in unison so as to bring about slow rotation of rotor member 50 with respect to container 16 (clockwise as seen from above in FIGS. 1, 2 and in FIG. 4). Similarly, positive rotational movement of rotor member 53 (anticlockwise) is derived from journal member 14 through gears 59, 60 and a clutch 61.
The procedure for the treatment of the blood cells in container 17 will now be described. Rotor 11 is assumed to be stationary but assembled as shown in FIG. 1, although compartment 24 of container 16 is empty so that sheets 19 and 20 engage each other face to face under the influence of pressure from rubber body 44. Thus, the peripheral portions of the containers are clamped between the bottom of bowl 13 and filler ring 40 and between the latter and rubber body 44. The central portions of the containers are clamped between the rollers of pump 32 and the lower end of boss 43 of cover plate 42. The rubber body in conjunction with the shape of the parts ensure that unwanted air pockets adjacent the containers are virtually eliminated.
Rotor 11 is then caused to rotate with clutches 58, 61 disengaged so that pump rotor members 50, 53 rotate in unison with the centrifuge rotor owing to the friction between these rotor members and diaphragm and other parts of the centrifuge rotor. Under the influence of the centrifugal forces, the heavy soft rubber of body 44 is forced outwardly to apply an external pressure to containers 16, 17. Owing to the arrangement and shape of the parts, this pressure forces the liquid in the containers inwardly and causes conduits 26, 30 to assume the expanded form shown in FIG. 2. However, since the rollers of the rotor members are stationary with respect to the rotor and the containers and compress the conduits, no liquid is permitted to pass through the latter.
The centrifugal field, which may be of the order of 1,000 g, causes the formation of fractions of different densities in container 17, that is, the red blood cells accumulate in the radially outer portion of container 17 while the lighter preservative liquid is collected in the radially inner portion. Clutch 61 is then engaged to cause inner rotor member 53 to rotate anticlockwise (FIG. 4) with respect to the centrifuge rotor and the containers so that the preservative liquid is pumped from container 17 into compartment 24 of container 16 through conduit 38, connecting tubes 37, 27 and conduit 30. Since outer rotor member 50 is still stationary with respect to the centrifuge rotor and the containers, the preservative liquid is prevented from flowing through conduit 26.
When detector 48 signals the presence of red blood cells in tube 37, clutch 61 is again disengaged and clutch 58 engaged so that outer rotor member 50 is caused to rotate to pump wash solution from compartment 23 into container 17 through conduit 26. tubes 27, 37 and conduit 38 while inner rotor member 53 is held stationary to prevent flow through conduit 30. When a sufficient amount of wash solution has been transferred, clutch 58 is disengaged so that both conduits 26, 30 are closed whereupon rotor 11 is rapidly braked (by means not shown) to low speed to agitate the contents of container 17 and thoroughly mix the wash solution and blood cells.
The wash solution is then separated from the blood cells and transferred to compartment 24 of container 16 in the same manner as has been described for the preservative liquid. The washing step described above is repeated as many times as necessary and when the treatment is completed, container 17 contains a concentrate of washed blood cells while container 16 contains liquid preservative and used wash solution in compartment 24. Compartment 23 may be empty or contain a residue of wash solution.
It will be appreciated that the described twocompartment container with its integral conduits offer significant advantages from a manufacturing as well as from a handling point of view.
What is claimed is:
1. A container for use in treatment of liquid, particularly in centrifugal separation of liquid into fractions of different densities, comprising walls of flexible sheet material, the walls defining between them a closed annular compartment for holding a discrete quantity of liquid, said walls further defining a central area located radially inwardly of the inner edge of the compartment, said central area being fixed with respect to the compartment, the walls forming said central area further defining a collapsible conduit through which liquid may be conveyed into or out of the container compartment, said conduit being integrally connected with central area and hence also with the container walls so as to be fixed relative to the walls, one end of the conduit connected to the interior of the compartment, the conduit extending from said one end within the central area to a further open end also within the central area for communication with a further fluid transporting means the fixed section of the conduit thus being disposed and arranged to serve as the liquid conveying member of peristaltic pump.
2. A container as set forth in claim 1 in which the conduit is defined by heat seals joining the walls.
3. A container as set forth in claim 1 in which a connecting tube is attached to one of the walls and commu nicates with the conduit.
4. A container as set forth in claim 1 in which thewalls are generally circular and include an upper wall, a central wall and a lower wall, the upper and central walls defining between them a first generally annular 6 compartment and a first conduit communicating at one end thereof with the first compartment and at the other end with a connecting tube secured to the upper wall,
the central and lower walls defining between them a second generally annular compartment and a second conduit communicating at one end thereof with the second compartment and at the other end with the connecting tube, portions of the first and second conduits extending along portions of respective ones oftwo concentric circles andbeing adapted to cooperate with respective ones of two concentric rotors of a peristaltic 'pump to pass liquid into and out of the compartments.
5. A container as set forth in claim 1 in which the conduit extends along a portion of a circular path.
6. A container for use in treatment of liquid, particularly in centrifugal separation of liquid into fractions of different densities, comprising walls of flexible sheet material, the walls defining between them a closed compartment for holding a discrete quantity of liquid and a collapsible conduit through which liquid may be conveyed into or out of the container compartment, at least a section of the conduit being integrally connected with the container wall so as to be fixed relative to the walls and such that the fixed section of the conduit is disposed and arranged to serve as the liquid conveying member of a peristaltic pump, said walls being generally circular and including an upper wall, a cen tral wall and a lower wall, the upper and central walls defining between them a first generally annular compartment and a first conduit communicating at one end thereof with the first compartment and at the other end thereof with a connecting tube secured to the upper wall, the central and lower walls defining between them a second generally annular compartment and a second conduit communicating at one end thereof with the second compartment and at the other end with the connecting tube, portions of the first and second conduits extending along portions of respective ones of two concentric circles and being adapted to cooperate with respective ones of two concentric rotors of a peristaltic pump to pass liquid into and out of the compartments.

Claims (6)

1. A container for use in treatment of liquid, particularly in centrifugal separation of liquid into fractions of different densities, comprising walls of flexible sheet material, the walls defining between them a closed annular compartment for holding a discrete quantity of liquid, said walls further defining a central area located radially inwardly of the inner edge of the compartment, said central area being fixed with respect to the compartment, the walls forming said central area further defining a collapsible conduit through which liquid may be conveyed into or out of the container compartment, said conduit being integrally connected with central area and hence also with the container walls so as to be fixed relative to the walls, one end of the conduit connected to the interior of the compartment, the conduit extending from said one end within the central area to a further open end also within the central area for communication with a further fluid transporting means the fixed section of the conduit thus being disposed and arranged to serve as the liquid conveying member of peristaltic pump.
2. A container as set forth in claim 1 in which the conduit is defined by heat seals joining the walls.
3. A container as set forth in claim 1 in which a connecting tube is attached to one of the walls and communicates with the conduit.
4. A container as set forth in claim 1 in which the walls are generally circular and include an upper wall, a central wall and a lower wall, the upper and central walls defining between them a first generally annular compartment and a first conduit communicating at one end thereof with the first compartment and at the other end with a connecting tube secured to the upper wall, the central and lower walls defining between them a second generally annular compartment and a second conduit communicating at one end thereof with the second compartment and at the other end with the connecting tube, portions of the first and second conduits extending along portions of respective ones of two concentric circles and being adapted to cooperate with respective ones of two concentric rotors of a peristaltic pump to pass liquid into and out of the compartments.
5. A container as set forth in claim 1 in which the conduit extends along a portion of a circular path.
6. A container for use in treatment of liquid, particularly in centrifugal separation of liquid into fractions of different densities, comprising walls of flexible sheet material, the walls defining between them a closed compartment for holding a discrete quantity of liquid and a collapsible conduit through which liquid may be conveyed into or out of the container compartment, at least a section of the conduit being integrally connected with the container wall so as to be fixed relative to the walls and such that the fixed section of the conduit is disposed and arranged to serve as the liquid conveying member of a peristaltic pump, said walls being generally circular and including an upper wall, a central wall and a lower wall, the upper and central walls defining between them a first generally annular compartment and a first conduit communicating at one end thereof with the first compartment and at the other end thereof with a connecting tube secured to the upper wall, the central and lower walls defining between them a second generally annular compartment and a second conduit communicating at one end thereof with the second compartment and at the other end with the connecting tube, portions of the first and second conduits extending along portions of respective ones of two concentric circles and being adapted to cooperate with respective ones of two concentric rotors of a peristaltic pump to pass liquid into and out of the compartments.
US306218A 1971-03-15 1972-11-14 Container for use in treatment of liquid Expired - Lifetime US3858796A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE03309/71A SE354582B (en) 1971-03-15 1971-03-15
SE03310/71A SE354581B (en) 1971-03-15 1971-03-15

Publications (1)

Publication Number Publication Date
US3858796A true US3858796A (en) 1975-01-07

Family

ID=26654433

Family Applications (2)

Application Number Title Priority Date Filing Date
US00233538A Expired - Lifetime US3724747A (en) 1971-03-15 1972-03-10 Centrifuge apparatus with means for moving material
US306218A Expired - Lifetime US3858796A (en) 1971-03-15 1972-11-14 Container for use in treatment of liquid

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US00233538A Expired - Lifetime US3724747A (en) 1971-03-15 1972-03-10 Centrifuge apparatus with means for moving material

Country Status (1)

Country Link
US (2) US3724747A (en)

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4330080A (en) * 1979-11-30 1982-05-18 Dr. Eduard Fresenius, Chemisch-Pharmazeutische Industrie Kg Apparatebau Kg Separator for an ultracentrifuge
US4386730A (en) * 1978-07-21 1983-06-07 International Business Machines Corporation Centrifuge assembly
US4405079A (en) * 1980-11-10 1983-09-20 Haemonetics Corporation Centrifugal displacer pump
WO1985002561A1 (en) * 1983-12-13 1985-06-20 Baxter Travenol Laboratories, Inc. Flexible disposable centrifuge system
WO1985002560A1 (en) * 1983-12-13 1985-06-20 Baxter Travenol Laboratories, Inc. Centrifuge with movable mandrel
FR2586565A1 (en) * 1985-09-03 1987-03-06 Fisons Ltd SYSTEM, DEVICE AND METHOD FOR BLOOD FRACTIONATION BY CENTRIFUGATION
US4692136A (en) * 1985-10-11 1987-09-08 Cardiovascular Systems Inc. Centrifuge
US4718888A (en) * 1986-03-10 1988-01-12 Cardiovascular Systems, Inc. Centrifuge bowl mount
US4795419A (en) * 1985-10-11 1989-01-03 Kardiothor, Inc. Centrifuge
US4934995A (en) * 1977-08-12 1990-06-19 Baxter International Inc. Blood component centrifuge having collapsible inner liner
US5006103A (en) * 1977-08-12 1991-04-09 Baxter International Inc. Disposable container for a centrifuge
US5217426A (en) * 1977-08-12 1993-06-08 Baxter International Inc. Combination disposable plastic blood receiving container and blood component centrifuge
US5217427A (en) * 1977-08-12 1993-06-08 Baxter International Inc. Centrifuge assembly
US5316666A (en) * 1987-01-30 1994-05-31 Baxter International Inc. Blood processing systems with improved data transfer between stationary and rotating elements
US5316667A (en) * 1989-05-26 1994-05-31 Baxter International Inc. Time based interface detection systems for blood processing apparatus
US5360542A (en) * 1991-12-23 1994-11-01 Baxter International Inc. Centrifuge with separable bowl and spool elements providing access to the separation chamber
US5362291A (en) * 1991-12-23 1994-11-08 Baxter International Inc. Centrifugal processing system with direct access drawer
US5370802A (en) * 1987-01-30 1994-12-06 Baxter International Inc. Enhanced yield platelet collection systems and methods
US5427695A (en) * 1993-07-26 1995-06-27 Baxter International Inc. Systems and methods for on line collecting and resuspending cellular-rich blood products like platelet concentrate
US5549834A (en) * 1991-12-23 1996-08-27 Baxter International Inc. Systems and methods for reducing the number of leukocytes in cellular products like platelets harvested for therapeutic purposes
US5571068A (en) * 1977-08-12 1996-11-05 Baxter International Inc. Centrifuge assembly
US5656163A (en) * 1987-01-30 1997-08-12 Baxter International Inc. Chamber for use in a rotating field to separate blood components
US5690835A (en) * 1991-12-23 1997-11-25 Baxter International Inc. Systems and methods for on line collection of cellular blood components that assure donor comfort
US5704889A (en) * 1995-04-14 1998-01-06 Cobe Laboratories, Inc. Spillover collection of sparse components such as mononuclear cells in a centrifuge apparatus
US5704888A (en) * 1995-04-14 1998-01-06 Cobe Laboratories, Inc. Intermittent collection of mononuclear cells in a centrifuge apparatus
US5723050A (en) * 1993-07-08 1998-03-03 Omega Medicinteknik Ab Bag set for use in centrifugal separation
US5792372A (en) * 1987-01-30 1998-08-11 Baxter International, Inc. Enhanced yield collection systems and methods for obtaining concentrated platelets from platelet-rich plasma
US6007725A (en) * 1991-12-23 1999-12-28 Baxter International Inc. Systems and methods for on line collection of cellular blood components that assure donor comfort
US20030173274A1 (en) * 2002-02-01 2003-09-18 Frank Corbin Blood component separation device, system, and method including filtration
US6656105B2 (en) 1999-05-31 2003-12-02 Gambro, Inc. Centrifuge for processing blood and blood components in ring-type blood processing bags
US6689042B2 (en) 1997-02-12 2004-02-10 Gambro, Inc. Centrifuge and container system for treatment of blood and blood components
US6740239B2 (en) 1999-10-26 2004-05-25 Gambro, Inc. Method and apparatus for processing blood and blood components
US20040104182A1 (en) * 2002-04-16 2004-06-03 Gambro, Inc. Methods and apparatuses for blood component separation
US20050045567A1 (en) * 2003-08-25 2005-03-03 Gambro, Inc. Apparatus and method for separating a volume of composite liquid into at least two components
US20070118063A1 (en) * 2005-10-05 2007-05-24 Gambro, Inc Method and Apparatus for Leukoreduction of Red Blood Cells
US20070203444A1 (en) * 2004-12-28 2007-08-30 Gambro Bct, Inc. Apparatus and Method for Separating a Volume of Whole Blood Into At Least Three Components
US20070209708A1 (en) * 2004-06-22 2007-09-13 Gambro, Inc. Bag Assembly for the Separation of a Composite Liquid and Method for Manufacturing it
US20070284320A1 (en) * 2006-06-07 2007-12-13 Gambro Bct, Inc. Apparatus and Method for Separating a Composite Liquid Into At Least Two Components
US20080053203A1 (en) * 2006-09-06 2008-03-06 Gambro Bct, Inc. Apparatus and Method for Separating A Composite Liquid Into At Least Two Components
US20080149564A1 (en) * 2006-12-20 2008-06-26 Gambro Bct, Inc. Apparatus and Method for Separating a Composite Liquid Into At Least Two Components
US20080220959A1 (en) * 2005-08-22 2008-09-11 Gambro Bct, Inc. Apparatus and Method for Separating A Composite Liquid Into At Least Two Components
US20080283473A1 (en) * 2007-05-14 2008-11-20 Gambro Bct, Inc. Apparatus and Method for Separating a Composite Liquid Into At Least Two Components
US20100026986A1 (en) * 2008-07-31 2010-02-04 Caridianbct, Inc. Method and Apparatus for Separating A Composite Liquid Into At Least Two Components And For Determining The Yield Of At Least One Component
US9028388B2 (en) 2010-06-07 2015-05-12 Terumo Bct, Inc. Multi-unit blood processor with volume prediction
US9079194B2 (en) 2010-07-19 2015-07-14 Terumo Bct, Inc. Centrifuge for processing blood and blood components

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1041445A (en) * 1973-04-09 1978-10-31 Sam Rose Method and apparatus for continuous mass in vitro suspension culture of cells
JPS50107565A (en) * 1974-01-29 1975-08-25
US4007871A (en) * 1975-11-13 1977-02-15 International Business Machines Corporation Centrifuge fluid container
US4010894A (en) * 1975-11-21 1977-03-08 International Business Machines Corporation Centrifuge fluid container
SE412528B (en) * 1978-07-25 1980-03-10 Separex Sa CENTRIFUGROTOR AND COLLABLE SEPARATION CONTAINER
DE3065899D1 (en) * 1979-09-22 1984-01-19 Hettich Andreas Fa Centrifuge with system of bloodbag for the separation of blood components
US4344560A (en) * 1979-11-02 1982-08-17 Asahi Kasei Kogyo Kabushiki Kaisha Container, apparatus and method for separating platelets
ATE106779T1 (en) * 1985-09-10 1994-06-15 Ver Nl Kanker Inst METHOD AND DEVICE FOR SEPARATION AND ISOLATION OF BLOOD OR BONE MARROW COMPONENTS.
US4940543A (en) * 1987-01-30 1990-07-10 Baxter International Inc. Plasma collection set
US4806252A (en) * 1987-01-30 1989-02-21 Baxter International Inc. Plasma collection set and method
US4767397A (en) * 1987-03-09 1988-08-30 Damon Corporation Apparatus for liquid separation
SE458342B (en) * 1987-07-06 1989-03-20 Alfa Laval Ab CENTRIFUGAL SEPARATOR INCLUDING A ROTOR WITH A SEPARATION CHAMBER CONSISTING OF TWO DEPARTMENTS
DE69508591T2 (en) * 1994-08-16 1999-11-18 Powell Biolog Machines Ltd CELL CULTURE APPARATUS
SE9701423D0 (en) * 1997-04-16 1997-04-16 Omega Medicinteknik Ab Container set and device for blood separation
US6835316B2 (en) * 2001-04-09 2004-12-28 Medtronic, Inc. Clam shell blood reservoir holder with index line
US6579219B2 (en) * 2001-04-09 2003-06-17 Medtronic, Inc. Centrifuge bag and methods of use
EP1414581A1 (en) * 2001-04-09 2004-05-06 Medtronic, Inc. Flexible centrifuge bag and methods of use
US6589153B2 (en) * 2001-09-24 2003-07-08 Medtronic, Inc. Blood centrifuge with exterior mounted, self-balancing collection chambers
US7033512B2 (en) * 2002-04-12 2006-04-25 Gambro, Inc Fluid separation devices, systems and/or methods using a centrifuge and roller pump
US6982038B2 (en) * 2002-06-14 2006-01-03 Medtronic, Inc. Centrifuge system utilizing disposable components and automated processing of blood to collect platelet rich plasma
US9248446B2 (en) 2013-02-18 2016-02-02 Terumo Bct, Inc. System for blood separation with a separation chamber having an internal gravity valve
ES2932094B2 (en) * 2021-06-22 2023-07-31 Pentia Dynamics S L Medical-veterinary device for the extraction and containment of biological material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3326458A (en) * 1965-05-28 1967-06-20 Harold T Meryman Container and process of storing blood
US3475128A (en) * 1966-04-08 1969-10-28 Bio Science Labor Fluid processing apparatus and methods
US3559880A (en) * 1968-10-03 1971-02-02 Green Cross Corp Apparatus for blood plasma separation
US3679128A (en) * 1969-08-11 1972-07-25 Aga Ab Centrifuge
US3708110A (en) * 1969-08-11 1973-01-02 Aga Ab Container for blood

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2136540A (en) * 1935-08-23 1938-11-15 Clarence A Brock Separating machine
US2661150A (en) * 1947-12-17 1953-12-01 Jr William G Abbott Centrifuge
US2718353A (en) * 1952-06-09 1955-09-20 William H Kelsey Continuous centrifuge

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3326458A (en) * 1965-05-28 1967-06-20 Harold T Meryman Container and process of storing blood
US3475128A (en) * 1966-04-08 1969-10-28 Bio Science Labor Fluid processing apparatus and methods
US3559880A (en) * 1968-10-03 1971-02-02 Green Cross Corp Apparatus for blood plasma separation
US3679128A (en) * 1969-08-11 1972-07-25 Aga Ab Centrifuge
US3708110A (en) * 1969-08-11 1973-01-02 Aga Ab Container for blood

Cited By (90)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5571068A (en) * 1977-08-12 1996-11-05 Baxter International Inc. Centrifuge assembly
US4934995A (en) * 1977-08-12 1990-06-19 Baxter International Inc. Blood component centrifuge having collapsible inner liner
US5759147A (en) * 1977-08-12 1998-06-02 Baxter International Inc. Blood separation chamber
US5217427A (en) * 1977-08-12 1993-06-08 Baxter International Inc. Centrifuge assembly
US5217426A (en) * 1977-08-12 1993-06-08 Baxter International Inc. Combination disposable plastic blood receiving container and blood component centrifuge
US5006103A (en) * 1977-08-12 1991-04-09 Baxter International Inc. Disposable container for a centrifuge
US4386730A (en) * 1978-07-21 1983-06-07 International Business Machines Corporation Centrifuge assembly
US4330080A (en) * 1979-11-30 1982-05-18 Dr. Eduard Fresenius, Chemisch-Pharmazeutische Industrie Kg Apparatebau Kg Separator for an ultracentrifuge
US4405079A (en) * 1980-11-10 1983-09-20 Haemonetics Corporation Centrifugal displacer pump
WO1985002561A1 (en) * 1983-12-13 1985-06-20 Baxter Travenol Laboratories, Inc. Flexible disposable centrifuge system
WO1985002560A1 (en) * 1983-12-13 1985-06-20 Baxter Travenol Laboratories, Inc. Centrifuge with movable mandrel
US4530691A (en) * 1983-12-13 1985-07-23 Baxter Travenol Laboratories, Inc. Centrifuge with movable mandrel
FR2586565A1 (en) * 1985-09-03 1987-03-06 Fisons Ltd SYSTEM, DEVICE AND METHOD FOR BLOOD FRACTIONATION BY CENTRIFUGATION
EP0214803A3 (en) * 1985-09-03 1988-01-07 FISONS plc Blood fractionation system, apparatus and pathway and method of processing blood
EP0214803A2 (en) * 1985-09-03 1987-03-18 FISONS plc Blood fractionation system, apparatus and pathway and method of processing blood
US4692136A (en) * 1985-10-11 1987-09-08 Cardiovascular Systems Inc. Centrifuge
US4795419A (en) * 1985-10-11 1989-01-03 Kardiothor, Inc. Centrifuge
US4718888A (en) * 1986-03-10 1988-01-12 Cardiovascular Systems, Inc. Centrifuge bowl mount
US5792372A (en) * 1987-01-30 1998-08-11 Baxter International, Inc. Enhanced yield collection systems and methods for obtaining concentrated platelets from platelet-rich plasma
US5316666A (en) * 1987-01-30 1994-05-31 Baxter International Inc. Blood processing systems with improved data transfer between stationary and rotating elements
US6899666B2 (en) 1987-01-30 2005-05-31 Baxter International Inc. Blood processing systems and methods
US5656163A (en) * 1987-01-30 1997-08-12 Baxter International Inc. Chamber for use in a rotating field to separate blood components
US5529691A (en) * 1987-01-30 1996-06-25 Baxter International Inc. Enhanced yield platelet collection systems and method
US20030102272A1 (en) * 1987-01-30 2003-06-05 Baxter International Inc. Blood processing systems and methods
US5370802A (en) * 1987-01-30 1994-12-06 Baxter International Inc. Enhanced yield platelet collection systems and methods
US6511411B1 (en) 1987-01-30 2003-01-28 Baxter International Inc. Compact enhanced yield blood processing systems
US6228017B1 (en) 1987-01-30 2001-05-08 Baxter International Inc. Compact enhanced yield blood processing systems
US5993370A (en) * 1987-01-30 1999-11-30 Baxter International Inc. Enhanced yield collection systems and methods for obtaining concentrated platelets from platelet-rich plasma
US5316667A (en) * 1989-05-26 1994-05-31 Baxter International Inc. Time based interface detection systems for blood processing apparatus
US6071421A (en) * 1991-12-23 2000-06-06 Baxter International Inc. Systems and methods for obtaining a platelet suspension having a reduced number of leukocytes
US5690835A (en) * 1991-12-23 1997-11-25 Baxter International Inc. Systems and methods for on line collection of cellular blood components that assure donor comfort
US5804079A (en) * 1991-12-23 1998-09-08 Baxter International Inc. Systems and methods for reducing the number of leukocytes in cellular products like platelets harvested for therapeutic purposes
US5549834A (en) * 1991-12-23 1996-08-27 Baxter International Inc. Systems and methods for reducing the number of leukocytes in cellular products like platelets harvested for therapeutic purposes
US5360542A (en) * 1991-12-23 1994-11-01 Baxter International Inc. Centrifuge with separable bowl and spool elements providing access to the separation chamber
US5362291A (en) * 1991-12-23 1994-11-08 Baxter International Inc. Centrifugal processing system with direct access drawer
US6007725A (en) * 1991-12-23 1999-12-28 Baxter International Inc. Systems and methods for on line collection of cellular blood components that assure donor comfort
US5723050A (en) * 1993-07-08 1998-03-03 Omega Medicinteknik Ab Bag set for use in centrifugal separation
US5427695A (en) * 1993-07-26 1995-06-27 Baxter International Inc. Systems and methods for on line collecting and resuspending cellular-rich blood products like platelet concentrate
US5704889A (en) * 1995-04-14 1998-01-06 Cobe Laboratories, Inc. Spillover collection of sparse components such as mononuclear cells in a centrifuge apparatus
US5879280A (en) * 1995-04-14 1999-03-09 Cobe Laboratories, Inc. Intermittent collection of mononuclear cells in a centrifuge apparatus
US5876321A (en) * 1995-04-14 1999-03-02 Cobe Laboratories, Inc. Control system for the spillover collection of sparse components such as mononuclear cells in a centrifuge apparatus
US5704888A (en) * 1995-04-14 1998-01-06 Cobe Laboratories, Inc. Intermittent collection of mononuclear cells in a centrifuge apparatus
US6689042B2 (en) 1997-02-12 2004-02-10 Gambro, Inc. Centrifuge and container system for treatment of blood and blood components
US20040147387A1 (en) * 1997-02-12 2004-07-29 Gambro, Inc. Centrifuge and container system for treatment of blood and blood components
US6835171B2 (en) 1997-02-12 2004-12-28 Gambro Inc Centrifuge and container system for treatment of blood and blood components
US7235041B2 (en) 1999-05-31 2007-06-26 Gambro Bct, Inc. Centrifuge for processing a blood product with a bag set having a processing bag
US6656105B2 (en) 1999-05-31 2003-12-02 Gambro, Inc. Centrifuge for processing blood and blood components in ring-type blood processing bags
US20060270542A1 (en) * 1999-05-31 2006-11-30 Gambro, Inc. Centrifuge for Processing Blood and Blood Components
US7097774B2 (en) 1999-05-31 2006-08-29 Gambro Inc Method for processing a blood product with a bag set having a multi-way connector
US6740239B2 (en) 1999-10-26 2004-05-25 Gambro, Inc. Method and apparatus for processing blood and blood components
US20030173274A1 (en) * 2002-02-01 2003-09-18 Frank Corbin Blood component separation device, system, and method including filtration
US20070084806A1 (en) * 2002-04-16 2007-04-19 Gambro, Inc. Methods and Apparatus for Blood Component Separation
US7166217B2 (en) 2002-04-16 2007-01-23 Gambro Inc Methods and apparatuses for blood component separation
US7708889B2 (en) 2002-04-16 2010-05-04 Caridianbct, Inc. Blood component processing system method
US20070084807A1 (en) * 2002-04-16 2007-04-19 Gambro, Inc. Methods and Apparatus for Blood Component Separation
US7497944B2 (en) 2002-04-16 2009-03-03 Caridianbct, Inc. Blood component processing system, apparatus, and method
US20040104182A1 (en) * 2002-04-16 2004-06-03 Gambro, Inc. Methods and apparatuses for blood component separation
US20080314822A1 (en) * 2002-04-16 2008-12-25 Gambro Bct, Inc. Apparatus for Blood Component Separation
US7648452B2 (en) 2002-04-16 2010-01-19 CardianBCT, Inc. Apparatus for blood component separation
US7279107B2 (en) 2002-04-16 2007-10-09 Gambro, Inc. Blood component processing system, apparatus, and method
US20090127206A1 (en) * 2002-04-16 2009-05-21 Caridianbct, Inc. Blood Component Processing System Method
US7413665B2 (en) 2002-04-16 2008-08-19 Gambro Bct, Inc. Methods and apparatus for blood component separation
US7396451B2 (en) 2002-04-16 2008-07-08 Gambo Bci, Inc. Methods and apparatus for blood component separation
US20050045567A1 (en) * 2003-08-25 2005-03-03 Gambro, Inc. Apparatus and method for separating a volume of composite liquid into at least two components
US20080093312A1 (en) * 2003-08-25 2008-04-24 Gambro Bct, Inc. Method for Separating A Volume of Composite Liquid Into At Least Two Components
US7347932B2 (en) 2003-08-25 2008-03-25 Gambro Bct, Inc. Apparatus and method for separating a volume of composite liquid into at least two components
US7648639B2 (en) 2003-08-25 2010-01-19 CaridianBCT, Inc Method for separating a volume of composite liquid into at least two components
US20070209708A1 (en) * 2004-06-22 2007-09-13 Gambro, Inc. Bag Assembly for the Separation of a Composite Liquid and Method for Manufacturing it
US7833185B2 (en) 2004-12-28 2010-11-16 Caridianbct, Inc. Apparatus for separating a volume of whole blood into at least three components
US20070203444A1 (en) * 2004-12-28 2007-08-30 Gambro Bct, Inc. Apparatus and Method for Separating a Volume of Whole Blood Into At Least Three Components
US8277406B2 (en) 2004-12-28 2012-10-02 Terumo Bct, Inc. Method for separating a volume of whole blood into at least three components
US7981019B2 (en) 2005-08-22 2011-07-19 Caridianbct, Inc. Apparatus and method for separating a composite liquid into at least two components
US20110077140A1 (en) * 2005-08-22 2011-03-31 Gambro Bct, Inc. Apparatus and Method for Separating A Composite Liquid Into At Least Two Components
US20080220959A1 (en) * 2005-08-22 2008-09-11 Gambro Bct, Inc. Apparatus and Method for Separating A Composite Liquid Into At Least Two Components
US8057377B2 (en) 2005-08-22 2011-11-15 CaridianBCT, Inc Apparatus and method for separating a composite liquid into at least two components
US20070118063A1 (en) * 2005-10-05 2007-05-24 Gambro, Inc Method and Apparatus for Leukoreduction of Red Blood Cells
US20070284320A1 (en) * 2006-06-07 2007-12-13 Gambro Bct, Inc. Apparatus and Method for Separating a Composite Liquid Into At Least Two Components
US20110028295A1 (en) * 2006-06-07 2011-02-03 Caridianbct, Inc. Apparatus for Separating a Composite Liquid Into At Least Two Components
US7819793B2 (en) 2006-06-07 2010-10-26 Caridianbct, Inc. Apparatus for separating a composite liquid into at least two components
US8173027B2 (en) 2006-09-06 2012-05-08 Terumo Bct, Inc. Method of separating a composite liquid into at least two components
US20080053203A1 (en) * 2006-09-06 2008-03-06 Gambro Bct, Inc. Apparatus and Method for Separating A Composite Liquid Into At Least Two Components
US8287742B2 (en) 2006-12-20 2012-10-16 Terumo Bct, Inc. Method for separating a composite liquid into at least two components
US20080149564A1 (en) * 2006-12-20 2008-06-26 Gambro Bct, Inc. Apparatus and Method for Separating a Composite Liquid Into At Least Two Components
US8236184B2 (en) 2007-05-14 2012-08-07 Terumo Bct, Inc. Method for separating a composite liquid into at least two components
US20080283473A1 (en) * 2007-05-14 2008-11-20 Gambro Bct, Inc. Apparatus and Method for Separating a Composite Liquid Into At Least Two Components
US8120760B2 (en) 2008-07-31 2012-02-21 Caridianbct, Inc. Method and apparatus for separating a composite liquid into at least two components and for determining the yield of at least one component
US20100026986A1 (en) * 2008-07-31 2010-02-04 Caridianbct, Inc. Method and Apparatus for Separating A Composite Liquid Into At Least Two Components And For Determining The Yield Of At Least One Component
US9028388B2 (en) 2010-06-07 2015-05-12 Terumo Bct, Inc. Multi-unit blood processor with volume prediction
US9849222B2 (en) 2010-06-07 2017-12-26 Terumo Bct, Inc. Multi-unit blood processor with volume prediction
US9079194B2 (en) 2010-07-19 2015-07-14 Terumo Bct, Inc. Centrifuge for processing blood and blood components

Also Published As

Publication number Publication date
US3724747A (en) 1973-04-03

Similar Documents

Publication Publication Date Title
US3858796A (en) Container for use in treatment of liquid
US3708110A (en) Container for blood
US4734089A (en) Centrifugal blood processing system
US4296882A (en) Centrifugal fluid processing device
US3096283A (en) Container for blood and machine for separating precipitates from liquid blood constituents
US4482342A (en) Blood processing system for cell washing
US4076169A (en) Centrifuge separation and washing device and method
US6261217B1 (en) Separation set having plate-like separation container with annular pinch valve for blood component preparation
US4059108A (en) Process for pheresis procedure and disposable pheresis bowl therefor
US4425112A (en) Flow-through centrifuge
US3674197A (en) Washing means for flexible bags in split enclosures
US3347454A (en) Method and apparatus for the centrifugal washing of particles in a closed system
US3679128A (en) Centrifuge
US4413771A (en) Method and apparatus for centrifugal separation
US4413772A (en) Apparatus for centrifugal separation
US2822126A (en) Continuous feed centrifuge
US4413773A (en) Method and apparatus for centrifugal separation
US3104225A (en) Continuous flow centrifuge rotor and liner element
JPS5844419B2 (en) centrifuge assembly
JPS62500011A (en) Closed type blood component separation device and separation method
JPH0160307B2 (en)
US4445883A (en) Deformable support for fluid processing centrifuge
WO1987006857A1 (en) Annular centrifuge
US1101548A (en) Centrifugal separating-machine.
US3647135A (en) Continuously operating centrifugal separator