Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3844139 A
Publication typeGrant
Publication date29 Oct 1974
Filing date24 Feb 1970
Priority date24 Feb 1969
Also published asDE2004194A1
Publication numberUS 3844139 A, US 3844139A, US-A-3844139, US3844139 A, US3844139A
InventorsDe Cerjat A, Millet C
Original AssigneeDubied & Cie Sa E
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Installation for the control of knitting machines
US 3844139 A
Abstract
An installation for the electronic control of knitting machines from a pattern to be reproduced comprises a memory for storing in the form of coded information a limited quantity of elements from the pattern, means for inscription of said elements into the memory and means for interrogation of the memory as a function of the characteristics of the knitting machine and of the pattern. Means are provided for decoding and switching-over coded information from the memory and for transformation of the decoded information into electrical signals for the control of the knitting machine. The memory and the transformation means are connected by two channels: a direct channel for direct transfer of the contents of the memory to said transformation means; and an indirect channel for transfer of several times the contents of the corresponding memory by means of an intermediary information carrier corresponding to several sub-divisions of the pattern, the number of elements of which is greater than the capacity of the memory.
Images(8)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent De Cerjat et al.

1 Oct. 29, 1974 1 INSTALLATION FOR THE CONTROL OF KNITTING MACHINES [75] Inventors: Aymon A. De Cerjat; Claude M.

Millet, both of Neuchatel, Switzerland [73] Assignee: Edouard Dubied & Cie SA. [22] Filed: Feb. 24, 1970 [21] Appl. No.: 13,581

[30] Foreign Application Priority Data Feb. 24, 1969 Switzerland 2737/69 July 22, 1969 Switzerland 11181/69 Aug. 20, 1969 Switzerland 12592/69 [52] US. Cl. 66/50 R, 235/151.l,340/172.5 [51] Int. Cl D041) 15/78 [58] Field of Search 66/1 R, 50 R, 50 A, 50 B, 66/25, 75, 154 A, 155; 340/172.5; 318/568, 578; 250/226; 235/151.1

[56] References Cited UNITED STATES PATENTS 3,035,426 5/1962 Macqueen 66/75 X 3,059,843 10/1962 Corbaz 66/1 R UX 3,219,806 11/1965 OBrien 340/1725 X 3,247,815 4/1966 Polevitky 340/1725 X 3,247,816 4/1966 Polevitky 250/226 UX 3,446,037 5/1969 Sutton 66/25 3,472,287 10/1969 Ribler 66/75 UX 3,529,298 9/1970 Lourie 1. 340/1725 3,530,440 9/1970 Osborne....,.,,.. 340/1725 3,555,852 1/1971 Stock et a1. 66/1 R 3,573,735 4/1971 Clark 340/1725 FOREIGN PATENTS OR APPLICATIONS Primary Examiner-Wm. Carter Reynolds Attorney, Agent, or Firm-Robert E. Burns; Emmanuel J. Lobato; Bruce L. Adams [57 ABSTRACT An installation for the electronic control of knitting machines from a pattern to be reproduced comprises a memory for storing in the form of coded information a limited quantity of elements from the pattern, means for inscription of said elements into the memory and means for interrogation of the memory as a function of the characteristics of the knitting machine and of the pattern. Means are provided for decoding and switching-over coded information from the memory and for transformation of the decoded information into electrical signals for the control of the knitting machine. The memory and the transformation means are connected by two channels: a direct channel for direct transfer of the contents of the memory to said transformation means; and an indirect channel for transfer of several times the contents of the corresponding memory by means of an intermediary information carrier corresponding to several sub-divisions of the pattern, the number of elements of which is greater than the capacity of the memory.

9 Claims, 12 Drawing Figures PROCfSS/NG UNIT K/VIfT/NE MACH/IVE zoo/c & POM/5k READER PATENTEDBETZE? w sum 1 or a 3.844.139

RE: om wG Q N Inventors AYMON DE CERJAT and CLAUDE MILLET Inventors lJij EDEN

iqaz B 1 c Fig.11b

PATENIEB [1H 2 9 I974 SHEET 7 0F 8 Inventors AYMON DE CERJA'I' CLAUDE m N P @QQQQWQ (and MILLET INSTALLATION FOR THE CONTROL OF KNITTING MACHINES The invention relates to installations for the electronic operation of knitting machines departing from patterns to be reproduced.

The process described in British Pat. No. l73,620 concerns the use of a computer for the processing of information taken from a pattern with a view to the establishment of an information carrier to operate selection members for a knitting machine. This process, being very rapid and consequently quite economical does not insure the secret of their creation to knitters who do not have their own computer, and makes them dependant on processing centres and is causing wasted t|me.

The invention has for its aim the provision of an installation for the electronic operation of a knitting machine allowing, either direct control of the electromagnetic selection members for the needles in the case where the pattern to be reproduced does not exceed certain limited dimensions or the construction of an intermediary information carrier used to actuate the said selection members.

Another object of the invention is to provide an installation which does not require an inordinant investment and whose possibilities, performance and consequently complexity are advantageously approximately proportional to the limited dimensions imposed.

According to the present invention, an installation for the electronic control of a knitting machine from a pattern to be reproduced, comprising a memory (such as 59) for storing, in the form of coded information, a limited number of elements from said pattern, means for the inscription of said elements in said memory, means for the interrogation of said memory as a function of the characteristics of said knitting machine and of said pattern, means for decoding and switching over coded information from said memory, and means for the transformation of the decoded information into electrical signals for the control of the machine, said memory and said transformation means being con nected by two channels, namely a direct channel for the direct transfer of the contents of said memory to said transformation means, and an indirect channel for the transfer of several times the different contents of the memory by means of an intermediary information carrier, corresponding to several subdivisions of a pattern which has a greater number of elements than the memory can store.

The accompanying drawings shown, by way of example, some embodiments of the installation according to the invention for a circular knitting machine with one cylinder.

FIG. 1 is a schematic diagram of the installation as a whole.

FIG. 2 shows a small pattern surface in relation to the installation FIG. 3 shows another pattern surface in relation to the installation.

FIG. 4 shows a large pattern surface in relation to the installation.

FIG. 5 is a schematic representation of an information carrier.

FIG. 6 shows a pattern area in relation to a schematic representation of a knitting machine.

FIG. 7 shows a part of the means for interrogating the memory.

FIG. 8 shows another part of the means for interrogating the memory.

FIG. 9 shows another variant of the part shown in FIG. 7.

FIG. I0 shows another variant of the part shown in FIG. 8.

FIG. lIa shows a part of the sequence control.

FIG. Ilb shows another part of the sequence control.

FIG. I2 shows a detail of the second embodiment.

In FIG. I, the pattern 1 of rectangular shape (square" being included in the term rectangular") is read and transmitted to a processing device 4, by means on punched cards or tapes, electrical impulses, manual display by means of a key board 2 optionally combined with a tape perforator 2a manipulated by an operator, or a direct reading unit 3. The latter is equipped with photoelectric cells and advancing automatisms according to the coordinates x and y. Such devices are known and described in the French Pat. No. 1,303,877 and 1,544,7l8.

A particularly advantageous variation of the inscription means 2' is described at the end of the section dealing with FIG. I2.

After passing through the processing unit 4, the coded data is transmitted to a recorder 5. The latter records on an information carrier 6. This can be a photographic film, magnetic or punched tape, etc. In the example, a photographic film is chosen. The film 6 is developed in a developing apparatus 7 and, at the right moment, inserted into a reader 8. The said reader forms part of the knitting machine 10 with the set of logic and power devices 9, hereafter called the power stage" 9, to which it transfers the information from the information carrier 6 in order to control the electromagnetic selection members II hereinafter called selection members II. In the latter, the distance, counted in needles, between any two neighbouring selection members is equal to or a multiple of the distance between the two closest spaced neighbouring selection members, the distance being used as a base and called the equidistance The knitting machine is directly controlled when the quantity of information drawn from the elements contained in the pattern I does not exceed the capacity of the memory (described later) included in the processing device 4. In order to do this, the processed information is transmitted from the processing device 4 direct to the power stage 9. Therefore, the installation of an information carrier 6 is not necessary.

The synchronisation of the knitting machine I0 and the reader 8, or the processing device 4 is actuated in a known way from the knitting machine 10. In FIGS. 2, 3 and 4, the rectangular area of pattern 1, to be reproduced by knitting, usually drawn on squared paper each square representing one stitch (called an element" of the pattern), contains data. In FIG. 2 this information is less than the capacity of the memory 59, in FIG. 3 equal and in FIG. 4 greater. It is understood that data" or information means the constituents of each stitch such as color, for example. The position of the said stitch within the pattern 1 is not considered, here as "data" or information. It is memorised without other means in its right place owing to the geomet rical shape of the memory 59 similar to the shape of the pattern I, for example, rectangular. Any other shape of memory can be considered as it is only necessary to store the data of pattern 1 in a specific order.

The memory 59 can be constituted by a cross bar programming system," by punched cards and an appropriate reader, by magnetic core memory or other usual devices in the field of information processing or machine operation.

An embodiment using a variable pattern dimension is shown in FIGS. 1, 7, 8, 9, 10, II and 12.

The aim is to provide an installation, as shown in FIG. 1, at a reasonable cost, which can process information transferred from patterns 1 of any width and height, with a view to building an information carrier 6 and, in the case of direct control of the knitting machine 10, the installation being able to process patterns containing less or as much data as the memory can store. It is understood that the number of stitches in the width of the pattern never exceeds the number of needles on the cylinder of the knitting machine.

The only (but not indispensable) limitation prescribed is that the distance, counted in needles. between any two neighboring selection members 11 is equal to or a multiple of the distance between the closest neighboring selection members 11 (considered as the basic distance and called the equidistance).

The installation as shown in FIG. 1 processes the patterns shown in FIGS. 2, 3 and 4. In the case of FIG. 4, the pattern is subdivided in parts, but these parts each contain less or as much information as the memory can store.

The processing device 4 is provided with core memories and binary counters. The latter count from one up to an indexed number which is determined by the specification of the knitting machine and the pattern to be processed. (Under indexing counter on the highest figure the said counter must reach is understood. this figure being displayed for each different case or once for all). Other components can be used.

The memory 59 must be interrogated with a view to sending out control data for each selection member 11 each time that the cylinder advances one needle. It is supposed that the pattern 1 is inscribed in a system with coordinates x and y of such a kind that each element of pattern 1 has one coordinate .t determining its location along the width of pattern I, and coordinate y determining its location according to the height. Each element is stored by the memory 59 in the form of coded information, the memory location is then characterised by the same coordinates x and y (called the x and y address). In order to be able to retrieve this data, the coordinates x and y must be determined. This determination is called the x calculation" and the "y calculatron."

FIG. 6a shows a pattern with a width X to be reproduced by knitting. FIG. 6b schematically shows the cylinder 40 of the knitting machine 10, some selection members 11 (II/l, ll/2 ll/38, ll/39), hereafter called OS, equally spaced round the machine. In reality, as there would only be 32 11 working, the distance between certain of the latter is a multiple of the said equidistance. The processing is based on the equidistance. obtained by the hypothesis of imaginary "OS" 11, and is greatly simplified thereby. For this imaginary OS," the data is processed as for the real "08 11.

Around cylinder 40 is a knitting tube 41 which is knitted at a given time. Pattern 1 is repeated m times, D B, through D D,,,. The latter, D,,. can be a partial pattern. At the said given moment, the start 42 corresponding to the first pattern D, is found between OS 1l/2 and 11/3. This start 42 corresponds to the first column of stitches in the pattern. The OS ll/l (obviously, with its knitting system) must, or must not, according to the colour, knit a stitch found on the line in FIG. 6a. In the same manner, the others OS 11/2 to lI/39 must knit or must not knit" a certain stitch found in the lines x through x not shown, each time that the cylinder 40 advances by one needle in the direction of the arrows 43. This determination is called calculation of x's".

The processing unit 4 is firstly described in relation to a direct control of the knitting machine 10.

The part of the processing unit 4 involved in the calculation ofxs is shown in FIG. 7. The impulse generator 24 emits impulses at the rate the cylinder 40 advances, the said impulses making a counter advance, indexed at 44. This figure corresponds to the equidistance between two 0811. When it arrives at 44, the counter 45 advances counter 46 by one position, counter 46 being indexed at 39. This figure corresponds to the number of needles on the cylinder divided by the equidistance, for example, l7l6/44 =39.

The two counters 4S and 46 continuously indicate the position counted in needles from the start 42 of the first pattern D in relation to the OS Il/l. They are at figure one" when the start 42 is at OS ll/ 1. Considering FIG. 6b, it is remarked that the start 42 firstly advances from OS Il/I to OS ll/Z, thus a distance of 44 needles, the counter 45 simultaneously advancing from I to 44. When the start 42 arrives at OS Il/2, the counter 45 is switched over to one and setting the counter 46 to two. Continuing to advance, the start 42 leaves OS 11/2 and counter 45 indicates the progression. At a given moment, it is on its position 32, for example, thus indicating that there are 32 needles from the start 42 up to OS l1/2, the needle located at the latter being included. The counter 46 situated on two, indicates that the start 42 is at OS 1l/2, or that it has passed OS ll/2, but that it has not yet arrived at OS 11/3.

The impulses emitted by the impulse generator 24 makes the counter 47 advance, the latter is indexed to the number of stitches in the width X of the pattern 1, as shown in FIG. 6a. It is at figure *one when the start 42 is on OS HM, and upon each impulse it indicates which abscissa x, of the pattern to be reproduced is found at OS 11/1.

An oscillator 50 emits impulses at a fixed frequency. which is at least 39 X 44 times greater than the maximum frequency of generator 24. In the example, 2 MHz has been chosen. The said impulses start a counter 51 working, forward or backwards, according to the order which it receives from the sequence command 52. A similar sequence control is shown in FIGS. 11a and 11b. This counter 51 is also indexed on the width X of the pattern. Each time after being set to zero by the sequence control 52, transfer module 53 transmits the position x, from counter 47 to counter 51. Counter 51, in counting the next 44 impulses from the oscillator 50 forward, i.e., in the direction x in FIG. 6a and in the opposite direction to the rotation of cylinder 40, as shown in FIG. 6b, determines the abscissa x corresponding to OS 11/39. By counting 44 more forward impulses counters 51 indicates x then, after 44 further impulses, it indicates .t 37 and so on down to 2:

Therefore, counter 55 controlling the transfer of the contents of counter 5l to memory 54 has to count from l to 44. The latter position triggers the transfer. Thus it counts forward in the direction +x, from .r, up to the end of the pattern D, and backwards in the -.t direction from x, to the beginning 42 of the first pattern D With reference to FIG. 612, it is observed that the counter 51 counts forward for the calculation of the .rs which are attributed to the OS ll located behind OS ll/l looking in the direction of rotation of cylinder 40, and that it counts backwards for the calculation of the x's which are attributable to the OS ll located in front of OS ll/l again looking in the direction of rotation of the cylinder 40, up to the limits of the mentioned patterns. The OS 11 located behind OS ll/l knits the revolution n-l and those which are found in front knit the revolution n of the pattern.

It is advantageous to proceed in this way which takes into account that the last pattern D can be a partial pattern, thus of lesser width than X and which renders supplementary counters, indexed to this partial width, unnecessary. The sequence control 52 controls the memorisation of x, through 2: in the memory 54, and the counting direction of counter 5]. In order that this may be carried out, it is controlled by counters 55 and 56 and the comparator 57. Counter 55 is indexed on 44 as counter 45 and counter 56 at 39, as counter 46. Counter 56 is switched over one position each time that the counter 55 makes one revolution. lt counts backwards at the rate of the impulses from the oscillator 50 (namely, the first count I, 44, 43 through 2, l, 44, 43 and so on, and the second l, 39, 38 through 2, l, 39 and so on). The counter 55 gives the order to memorise the position .1: and the counter 56 indicates to which OS 11 x is destined. Therefore, counter 55 controlling the transfer of the contents of counter 51 to memory 54 has to count from l to 44. The latter position triggers the transfer. The positions of counters S5, 56, and 45, 46 are continually transmitted to the comparator 57. When the positions of counters 55 and 56 correspond to those of counters 45 and 46, the comparator 57 transmits a signal to the sequence control 52. The latter puts the counters 55 and 56 to one, gives the transfer device the order to put the counter 5l on the position (.r,) of counter 47 and commands counters 51 and 56 to count in the opposite direction. The counter 56 counts 2, 3 and so on and the counter 51 counts x-l, x-Z, through I, X, X-l, X2, and so ,on.

Between two impulses of generator 24, the part described must calculate 39 x (1,, x x and memorise them alternatively in the memory 54; a decoder 58 transforms them with a view to adapting them to the configuration of the memory 59.

The core code memory 59, (shown in FIG. 12) comprises known-type electronic reading and inscription devices, not shown. The minimal capacity is determined in the part of the example relating to the establishment of an information carrier 6. The memory 59 contains the data of the elements of pattern 1 in the form of coded information. Gradually, upon their establishment, the memorized and decoded 39x are used, conjointly with the corresponding 39y, as described hereafter (x,y,, x y .X y to interrogate the memory 59, namely, as addresses in order to read the corresponding data therein. This data is transmitted to a decoder 66 (66/1, 66/2 the configuration of which is a function to the number of colors of the pattern.

The decoded data is transmitted to a color permutater 67, allowing the preselection of colors. It con sists of a switch each position of which connects the four inputs 67/ l 67/2, 67/3 and 67/4 in a different preselected way to four outputs 67/5, 67/6, 67/7 and 67/8, By turning the switch to different positions, the output lines from decoders 66 can be connected in different sequences with the input lines of the memory 68. Thus the effective memory capacity is increased by a simple switching operation.

If permutation is not desired, the switch is on its position of direct line connection, connecting 67/ l to 67/5, and 67/2 to 67/6 and so on.

The decoded and possibly permutated data is temporarily memorised in the buffered memory 68. This memory 68, with a capacity of 36 bits, of which only 32 are used, for example, comprise 36 electronic memories (one per real OS ll), each having an input connected to the corresponding output of the decoder 69 of counter 56, a second input connected to the sequence control 52, a third input connected to one of the four outputs 67/5, 67/6, 67/7 and 67/8 of the dynamic color permutator 67 and outputs 6811 through 68/ 36 connected to the power stage 9. The first of these inputs switches the information which has arrived by the third input to the corresponding memory. The second input is used to synchronise the memorization.

The part of the processing unit 4 involved in the calculation of the ys, with regard to direct control of the knitting machine 10, will now be described. It should be recalled:

a. That the height Y of pattern I in H0. 6 can be any height. Thus, it is not necessary that the number of lines (=number of rows of stitches) is a multiple of the number of rows knitted per revolution of the cylinder 40.

b. That pattern 1 in the example is a four-color pattern. For this reason, the knitting systems are di vided into groups of four systems. Each system of a group knits one of the four colors.

c. That the machine works with 32 knitting systems, divided into eight groups of four systems (for the four colors). lt knits eight rows of stitches per revolution. Thirty-two knitting systems lead to a better stitch linkage than any similar number of systems, regardless of the control device.

Each group of four knitting systems knits one row of stitches corresponding to one line y ("to knit one line is understood as to complete one row of stitches") of pattern 1.

lt is understood that the imaginary OS 11 have no knitting system, they do not contribute to the knitting and cannot, thereby be included in any group. The real OS ll, of which at least one is attributed to each to a knitting system, are divided into four groups 70 of each time four OS 11, in a similar manner to the knitting system.

In FIG. 6a the following distribution is made:

Group 7U/l 2 3 4 5 6 0511/1 ll/S ll/9 (ll/i3) lI/lti ll/24 OSll/Z 1l/6 ll/lO ll/l4 [ll/l9) ll/ZS 0511/3 ll/7 ll/ll ll/lS (ll/2(1) (ll/26] 0511/4 ll/S ll/12 ll/lb ll/Zl ll/27 OS ll/l7 ll/22 ll/28 OS ll/23 OS ll/29 ll/33 ll/3U ll/34 l1/3l ll/35 ll/32 ll/36 [ll/37) [ll/38) (ll/39) Each group 70 knits a given line y of the pattern 1 during one revolution of the cylinder. During the preceding revolution, it knitted one line, located eight lines lower down leaving the lower and upper edges out of account. As start 42 of the first design D, arrives at the different OS 11 of a group 70, the latter are switched over onto their new line y it is thus necessary to determine the said line y(y,,y,, y through y,,) for each group 70 of the four OS 11. This determination is called the y calculation.

The part of the processing device 4, involved in the y calculation is shown in FIG. 8.

The counters 45 and 46, described in connection with the .r calculation continually indicate the position of start 42 of the first pattern D Each time the two counters 45 and 46 are at their position one, the start 42 is found at a well determined place in relation to the machine, in the example it is at OS ll/l. Being both on one, they cause connection of an AND circuit 71. The latter opens AND circuit 73 which allows impulses to be passed from the oscillator 50. These impulses arrive on an AND circuit 74, which becomes conducting for them, given that the second input 75/l is powered by the sequence control 75. A similar sequence control is shown in FIGS. 11a and 11b. The said impulses arrive at counter 76, indexed at a figure corresponding to the number of rows of stitches that the machine knits per revolution of the cylinder 40, in the example, it is indexed at 8. The counter 76 advances at the rate of the impulses which arrive, from one up to eight and again to one. Having arrived on one, it gives the signal to the sequence control 75 which blocks the AND circuit 74 by the line 75/l. Thereby eight impulses from oscillator pass through the said AND circuit 74. These eight impulses make the counter 77 count eight positions forward. The counter 77 is indexed to the height Y of the pattern 1 to be reproduced, this height being counted in lines (and in rows of stitches). The new position of counter 77, held throughout the revolution of the cylinder 40 is transferred by means of the transfer module 78 to the counter 79 indexed on Y and from the latter to the memory 80 so that it is memorised.

Counter 77, in progressing eight positions has calculated the new y, for the first stitch of the new revolution to be knitted by OS ll/l. This first stitch is thus found eight lines higher on the pattern 1 than the last stitch of the previous revolution. The OS 11/2/3/4 of the first group then knits" another eight lines lower than the line knitted by OS ll/l; the group two seven lines lower; group three six lines lower; and so on', and group eight one line lower, thus y =y l, y, =y 2 y- =y 7, and y, of the OS ll/2/3/4 =y of the OS 11/l 8.

In this special case where start 42 has not reached OS 11/2 it is thus sufficient for counter 70 to count backwards one position each time from the new y in order to find y, y,. In order to do this, decoder 69, which has as many outputs as there are real OS 11, emits a signal on the output corresponding to the position of its counter 56. It should be noted that the arrangement of the outputs corresponds to the arrangement of the real OS 11 on the knitting machine. If, for example, the OS 11/37, 38 and 39 are imaginary, it is necessary that outputs 37, 38, and 39 of decoder 69 corresponding to positions 37, 38, and 39 of counter 56 are left out.

The (real) outputs are connected to an OR circuit 81. Each time counter 55 is on two (there is a risk that position one will only give an imperfect signal), it unblocks the AND circuit 82 in such a way that the signal coming from decoder 69 arrives at counter 88. The latter is indexed at the corresponding figure to the number of real OS 11 connected together in each group, four in the example. Each time that the counters 55 and 56 are at their position one, counter 83 is switched over to its position four. For each signal arriving, it advances one position. When it changes from four to one (or the inverse), it transmits the signal to the sequence control 75, from which a corresponding signal causes the counter 79 to return one position, so that in this way the latter has calculated the y This position is stored in the memory 80. After another group of four signals emitted by the decoder 69, the counter 83 emits a new signal which again returns the counters 79 by one position, corresponding to y, and so on down to y of OS 11/2. OS 11/3 and OS 11/4.

The y calculation for any position whatsoever from the start 42 is made by steps, similar to the steps of the x calculation, namely that the device determines the y,,, y in counting in one direction from OS 11/1 up to the end of the last pattern D,,, and the y y in counting in the other direction, from the OS 11/1 up to the start 42 of the first pattern. The y, is memorised frist and next the y through y are memorized in their turn.

The OS 11 of the second group /2 knits" a row of stitches situated on a line above that knitted" by the OS 11 of the first group 70/l; thus y, y l,y y, 2, and so on until 05 11 reaches, or has just passed the start 42.

It is recalled that the comparator 57 emits one signal each time that the counters 55 and 56 have reached the same position as the counters 45 and 46. This signal is transmitted to the sequence control 52 (of the x's) and from there to the sequence control (of the y's). The

latter makes the counters 83 and 79 count in the reverse direction, ater having put the first at four and the second at the position of counter 77.

The y through 32,, are successively transferred to the memory each time the counter 55 is switched to one. In this way each time that the cylinder 40 turns the distance separating two needles, 39 addresses y, through y, are successively stored with 39 x, through x It is evident that the four real addresses for any group are of the same value, with the exception of the group inside which start 42 in found, the eight times four real y addresses and the seven imaginary addresses will be hereinafter called y through y The described parts of the processing unit 4, involved in the x and y calculations belong to the means for interrogating the memory. They contain the counters. certain of which receive impulses provided by an oscillator S0. The latter must emit high frequency impulses; for the described machine a frequency of ZMHZ is used. The described installation is also envisaged for the simultaneous control of several knitting machines. ln the latter case, the frequency should be as many times greater as the number of machines coupled to the installation. It is well known that the utilisation of such high frequencies necessitates special and costly precautions for the protection of such installations against parasites and there always remains some uncertainty in the utilisation of such counters.

A particularly advantageous variation of the parts involved in the .t and y calculations is described below. The calculations are carried out by means of arithmetical operations and. thereby, said parts work with con siderably lower frequencies. The high frequency counters are also unnecessary.

FIGS. 9 and 10 show a second embodiment of parts of the processing unit 4. The latter comprises a magnetic core memory 59 with its peripherical modules connected to a set of devices 84 for decoding, switching, memorizations and, possibly permutation. The outputs 84/l to 84/36 are connected either to the power stage 9 in the case of direct control of the knitting machine 10 or to the recording machine 5.

The part of the processing unit 4 involved in the x calculation of the .rs, will now be described with reference to FIG. 9.

The impulse generator 24 emits impulses either at the rate that the cylinder 40 advances (direct control), or at that of the recording apparatus 5 (indirect control), the said impulses advancing a counter 85, indexed on 44. This figure corresponds to the equidistance. Counter 85 continually indicates the address x, of the necessary data to the selection member ll/n which is located ahead of the start of the first knitted pattern. Each time that a group of addresses x, must be calculated, i.e., before the selection ofa new group of needles, the sequence command 86 gives the order to transfer the number reached by counter 85. In order to do this, the NAND gate 87, connected to counter 85 each time by one input and connected by the other input to the sequence control 86, are made conductive by the latter. The figure reached is memorised in the memory 88. This is connected to an arithmetical operator 89. The arithmetical operator 89 of the full adder type is a combined circuit which automatically adds or subtracts the figure stored in the memory 88 with a figure stored in memory 90. (ln a combined circuit, the values of the variable output binaries are entirely and invariably determined by those of the variable input binaries.)

For each new pattern 1 to be processed, the total width X is counted in elements of the said pattern 1 on the binary coded decimal (BCD) preselector switch 91. The latter is connected to the transcoder 92 which converts the figure X (BCD) into the binary number X. If the NAND" gates 93 receive a transfer order from the sequence command 86, the figure is transferred to the memory 90, through the line connections 93/l through 93/8. The (BCD) preselector switch 94 is connected to lines 93/] 93/8 through a transcoder 95 and the NAND" gates 96 in as much as the latter receive transfer order from the sequence control 86. The preselector switches 91 and 94 are set manually. The greatest multiple of the width X which must be smaller or equul to the equidistance (in the example the latter is 44) is displayed on the pre-selection commutator 94: equidistance 2 m. X equidistance X where m l, 2, 3 through m. X is the displayed figure. For a design with the width X greater than the equidistance, 0 is displayed. The static circuit 97, wired in such a way that it emits the corresponding binary figure to the equidistance is connected to lines 93/1 through 93/8. via the NAND" gates 98 in as much as the latter receive a transfer order from the sequence control 86.

The orders relating to the operation to be executed by the arithmetical operator 89 either to add or subtract, are given from the sequence control 86 and stored in the operation memory 99. The result of the operation is stored in the intermediate memory 100. The memorized result is transferred again into the memory 88 through the NAND" gates 101 in as much as that the latter receive a transfer order from the se quence control 86. The memorized result is compared in the comparator 102 with the value of X, which is continually transferred to it through the connection lines 92/l through 92/8. The memory 100 is connected to the x decoder 58. From the latter, the result is transferred into the memory 59, when this receives the order to read from the sequence control 86. A second comparator 103 continually compared the figure contained in the transcoder 92 with the figure contained in the static circuit 97. The part of the processing unit 4 involved in the calculation of the X through 1: executes the following steps (it is assumed that the start of the first reproduced pattern is located between the second selection member 11/2 and the third 11/3 and that it progresses towards the latter) x calculation: (all the counters shown in FIG. 11a of the sequence command 86 are at zero).

a. Transfer of the contents of the counter into the memory 88, simultaneously the memory is set to zero. In order to carry out these operations. the sequence control 86 (hereinafter designated CS 86) gives an impulse on 86/l, 86/2 and 86/3.

b. Addition of the contents of the memory 88 to zero contents of memory 90. Transfer of the result from the arithmetical operator 89 into the memory 100. In order to carry out this operation, the CS 86 gives an impulse on 86/5 and 86/4.

0. Comparison of memorised result with X and comparison of X with 44. (The comparators 102, and 103, which are in combined systems, carry out this operation statically without an order being necessary).

If the result is greater than X and that X is less than 44 (signalled by the presence of a one" on l02/l and 103/1 there is a transfer of the number on the transcoder into the memory 90. In order to carry out this operation, the CS 86 gives an impulse on 86/6 and 86/3. (lf the result is less than X, then the result is equal to x Transfer of the contents of memory into memory 88. To carry out this gperation, the CS 86 gives an impulse on 86/8 and d. If the result is greater than X (signalled by 102/1 then the contents of memory 90 are subtracted from the contents of memory 88 and the new retult is transferred from arithmetical operator 89 to the memory 100. 1n order to carry out this operation. the CS 86 gives one impulse on 86/7 (l and 86/4.

. Transfer of the contents of memory 100 into memory 88. To carry out this operation. the CS 86 gives an impulse on 86/8 and 86/2 and, simultaneously. comparison of the said contents with X. lfthe value of the contents is greater than X (signalled by 102/1 X is transferred from the transcoder 92 to the memory 90; with impulses on 86/3 and 86/9. If the value of the content is less than X than it is equal to x If the value of the contents is greater than X (signalled by 102/1 then the contents of memory 90 are subtracted from the contents of memory 88 and the new result arithmetical operator 89 to the memory 100; with impulses on 86/7 and 86/4.

1f the value ofthe new contents is less than X. then it is equal to x g. After the determination of x the contents of the memory 100 is transferred to the memory 88, with impulses on 86/8 and 86/2. Simultaneously an impulse on 86/10 of memory 59 is made through a monostable 122 (FIG. lla) which calibrates the impulse according to specifications of memory 59. The reading cycle thus begins.

. After reading the coded information, the memory 59 emits an impulse on 59/1 and when the first counter 123 (FIG. 11a) of the CS 86 has arrived on its eight and therefore last position, corresponding to step It, a signal appears on the output 86/1 1 of CS 86, givin the order to memorise the decoded and possibly premutated information. into the memories 84. Simultaneously, the signal of the said last position appears at the output 86/ 1 2. triggering a second counter 125 (FIG. lla) in order to calculate x x 13,. The signal at the output 86/12 is routed to second counter 125 by the following path: Terminal A in H6. 11a is connected to the same line as terminal 86/12, and thus carries the same impulses. Terminal A is also input terminal to circuitry to FIG. 1112 having output terminals 8 and CL 125 which are input terminals to counter 125 of P16. llu.

Calculation of .n:

a transfer of the figure of the static circuit 97 to the memory 90 (impulses on 86/3 and 86/13). addition of the contents of memory 88 to the contents of memory 90. transfer of the result from the arithmetical operator 89 into memory 100. In order to carry out this operation, CS 86 gives an impulse on 86/5 and 86/4.

c as c and. in addition, if the result is greater than X (signalled by 102/1) and is greater than or equal to 44 (signalled by 103/2) there is transfer of the figure from transcoder 92 to memory 93 (impulses on 86/9 and 86/3. If the result is less than X. then the result is equal to .r,.

d as d.

e as e (ifthe value of the contents is less than X then the content is equal to x g as g (the value of the contents is equal to x,)

h after reading the coded information, the memory 59 emits an impulse on 59/1 and the said second counter 125. arriving in its eight position advancing a third counter 127 (FIG. 110) by one position.

The calculation of x x3 the calculation for x,.

Example:

The following assumptions are made: Counter 85 is at 17";

Pattern width X is 250'.

Equidistance is 44, i.e.. static circuit 97 is at 44.

Step e: Transfer from memory 100 to memory 88, thus memory 88 is at 31. Comparison with X (=250): Contents of memory 88 is less than X. thus X35 3 i Steps j: Same result as in step e, and start and g of reading cycle (step g).

Step h: effecting calculation of x Calculation of 2:

Same as for x, with memory 88 at 31 and memory 90 at 44; result: x 75. and so on.

In the foregoing example some steps are repetitive and therefore, in a sense useless. However. all steps disclosed are provided to meet all particular cases of pattern width etc. If they are not used, i.e., if they furnish the same result as a preceding step, it is more expedient to repeat a preceding step than to provide specific circuit means for suppressing a useless" step. Calculation of x Step 0': transfer from static circuit 97 at 44 to memory 90 at zero. thus memory 90 is at 44.

Step b: Memory 88 at 237 and memory 90 added: 237 44 281; transfer to memory 100, thus memory 100 is at 281.

Step c: Comparison of memory 100 (=28l) with X (=250): Contents of memory 100 is greater than X and greater than 44 (page 22) thus transfer from transcoder 92 at X 250 to memory 90. Memory 90 now is at 250. Transfer from memory 100 to memory 88 (according to step c, page 21). thus memory 88 is at 281.

Step (1': Memory 90 (=250) subtracted from memory 100 (=281 1. Transfer of new result 281-250 31 to memory 100 now at 31.

Step b: Memory 88 and memory 90 added: l7+44 61; transfer to memory 100, thus memory 100 is at 61.

Step c: Comparison of memory 100 (=61 with X 250): Contents of memory 100 is less than X. thus x, 61 Transfer from memory 100 to memory 88, thus memory 88 is at 61.

Steps d',: same result as in step c and start of e,j

and g reading cycle (step g).

Step It: effecting calculation of 1:

Calculation of 39 same as for x,; result: X 105 Calculation of x x x same as for x,; results: .r l49/x 193M 237 x takes place as for LII Steps d,e.: same result as in step c and start off and g reading cycle (step g). Step It: Triggering of second counter 125 to calculate X1. Calculation of x,

Step a: Transfer from static circuit 97 at 44 to memory 90 at zero, thus memory 90 is at 44.

The part of the processing unit 4 involved in the y calculation will now be described with reference to FIG. 10.

At each impulse of the impulse generator 24, the counter 85 advances one position. Each time that it ar rives at a one, it emits an impulse which advances counters 104 and 105. The first is indexed on the number of the selection members 11, both real and imaginary (39 in the example), the second on the number of selection members 11 which cooperate in the knitting of one same row of stitches (four in the example, for a piece of knitwear in four colors). The said impulse is also transmitted to counter 106, upon the condition that the counter 105 arrives on one. When it is on one" it activates the AND circuit 107. The counter 106, indexed on the height Y of pattern 1 counts forwards. It indicates the address y, of the data necessary to the selection member In which is found ahead of the start of the first knitted pattern D,. As it is taken that the start 42 of the first knitted pattern is located between the second selection member 11/2 and the third 1 H3 and that it progresses towards the latter, the counter 106, indicates v The figure y; of counter 106 is memorised in the memory 108.

For each new pattern 1 to be processed, the total height y, of pattern 1 is displayed on the preselection switch 109. This figure appears in binary on the output 1 /1 through 110/8 of the transcoder 110 and is transmitted into the memory 111 if the NAND gates 112 receive an order to transfer from the sequence control 86. The number of knited rows per revolution of the cylinder (eight in the example) is displayed on the preselector switch 113. The preselector switches 109 and 113 are set manually. This figure appears in binary form on the output of the transcoder 114 and it is transmitted into the memory 111 if the *NAND gates 115 receive an order to transfer from the sequence control 86. The arithmetical operator 116 adds or subtracts the figures stored in the memories 108 and 111, according to the order that is received from the sequence control 86 through the operations memory 117. The arithmetical operator 116, also known as full adder, is a combined circuit, in which the values of the variable output binaries are entirely and invariably determined by those of the input variable binaries. The result is transferred into the intermediate memory 118. The result is transferred into the counter 106 if the NAND gates 119 receive an order from the sequence control 86. The figure appearing on the counter 106 is compared in the comparator 120 with the figure Y, which is continually present through the connecting lines 110/1 through 110/8. The stored number in the memory 118 is decoded by the decoder 84 when the memory 59 receives the order to deliver the data. The AND gate 121 allows one simple impulse to pass through the counter 106 each time that the counter 105 arrives on its position one and the said counter 106 thus moves back one position.

The part of the processing unit 4 involved in the calculation of the y, through carries out the following steps:

The calculation of y (while the other part calculates x is as follows:

a. Comparison by comparator 120 of the contents of counter 106 with the value of Y of the transcoder 110. if the value of the contents is greater than Y (signalled on 120/1), there is an impulse from the CS 86 on 86/14, and it resets the counter 106 to one" (Clear") electrical zero).

b. Transfer of contents of counter 106 to the memory 108 (impulse on 86/15), and simultaneously set to zero in the memory 111 (impulse on 86/16).

c. Transfer of the result of the arithmetical operator 116 to the memory 118 and to the counter 106 (impulse on 86/17 86118, 86/19 and 86/20); the result is equal to y The calculation of 32,, while the other part calculates x, is as follows.

a Counting of one position backwards of the counters 104, to carry out this operation, the CS 86 gives one impulse on 86/21. Provided that the counter 105 arrives at "0ne, the impulse is also transmitted to the counter 106, which also goes back one position.

b Comparison of the contents of counter 106 with Y.

1f the value of the contents is greater than Y (signalled from 120/1), there is a transfer of Y from the transcoder on to the memory 111 (impulse on 86/16 and 86/22).

c' Comparison of contents of counter 106 with Y. 1f the contents is greater than Y (signal on /1 )1 the counter 106 is reset to one" (Clear) with an impulse on 86/14. Simultaneously there is transfer of counter 106 to the memory 108 (impulse on 86/ 15).

d As c. The result is equal to y,.

The calculation of y y y takes place as for the calculation of 3/, while the other part calculates the corresponding xs. After having calculated all the y, through y the counter 106 must be reset to the state that it had before the calculation, i.e., the number of rows per revolution must be added; in effect during the calculation. row by row of the revolution actually being knitted had been successively subtracted. (the counter 106 counting backwards). in order to do this, it is necessary:

a" To transfer the contents of transcoder 114 in to the memory 111 (impulses on 86/23 and 86/16).

b" As c (of y) c" If the value of the contents of counter 106 after transfer from memory 118 is greater than Y (signalled by 120/1 the said counter is reset to one" (Clear") impulses on 86/14. Order for reading coded information from memory 59 is transmitted from sequence control 86 to memory 59 over line 86/10.

The sequence control 86, shown in F165. 11a and 111;, comprises in FIG. 11a a first counter 123 with its decoder 124, involved in the control of steps a h, a second counter 125 with its decoder 126, involved in the control of a to h and a third counter 127 with its decoder with its decoder 128, involved in the control of steps a" to c". The binary counters 123 and 125 can be of the decade" type. The outputs one to eight are used for the control of the steps: the zero output is not connected, its respective position serving to cut out the counter. The counter 127 has as many output as there are real or imaginary selection members plus four outputs. The former serve the switching over the decoded information on the memories ofthc members 84 three of the latter to the control of steps a" to c" and the fourth to the resetting to zero of the said counter. An oscillator 133 advances the said counters one after the other. The sequence control 86 comprises, in addition, the AND gates (example: 134), the OR gates (example: 129), a NAND gate 130, the inputs 102/1, 103/1, 103/2 and 120/1 for the signals of the comparators 102, 103 and 120 on the outputs 86/] to 86/23 for the control impulses. The minimal frequency from oscillator 133 is given by the formula:

fuz N rz/60 (positions 123 positions 125 X (OS,,1)+4 positions of 127).

where N number of needles, for example, 1716. n number of cylinder revolutions, for example per minute OS, number of real and imaginary selection members, for example, 39. Therefore,

f, 1,716 a 20/60 9+9 x 38+4) =203 kHz FIG. 1117 shows the command for counters 123, 125 and 127. The command obeys the following formula:

C =B 128/39 C CL 125 128/42 C1. 125 =C CL 125 4 CL 123 B=L'A-B-128/39'CL123 CL 123 =B CL 123 CL 127 CL 3C 1211/42 (L 125 Wherein "CL 127, for example, represents the state of the input of the zero setting (Clear") of counter 127.

L for example, represents the state at the terminal L.

128/42, for example, represents the state at the terminal 128/42, etc.

This control is connected to the impulse generator 24. It contains the NAND gates, (for example, 13] the inverters (for example 132), the inputs H, A, 128/39. 128/42, and the outputs L, Cl 123, B, Cl 125, C, Cl 127. lnput terminal A in FIG. 11b is connected to corresponding terminal A in FIG. 110 so as to receive pulses from decoder 124, and input terminal H in FIG. 11b is connected to impulse generator 24.

FIG. 12 shows a memory 59, decoders 58 and 135, memories 54 and 80 for addresses x. through x and y, through y and peripheral hardware. The memories 54 and 80 are only foreseen for maintaining the last at and y (one of each) during a sufficient lapse of time for inscription or reading coded information from memory 59. Order for reading coded information from memory 59 is transmitted from sequence control 52 to memory 59 over line 52/1.

Memory 59 is of the magnetic core type. In the example, it is composed of eighteen superimposed layers, each layer of which contains 64 times 64 cores, each core being one bit." Each layer contains 64 inputs 58/1 through 58/64 and as many inputs 135/1 through 135/64 and one given bit is accessible through the inputs 58/n and 135/m. The superimposed inputs of the 18 layers are interconnected in such a way that 18 superimposed bits, forming one word" are accessible through two inputs S8/n and 135/m.

The usual patterns I are of three or four colors. In order to characterise one stitch xy, i.e., one element, it is necessary to designate its color by two coded date 2 bits) for example: white: first bit 0; second bit 0: blue; first bit 0 second bit 1 red: first bit 1, second bit 0: black; first bit 1 second bit 1 From the fact that two bits per stitch are necessary. one couple per element, nine couples of layers are available in order to memorise a pattern 1. This can be 64 X 64 x 9 36,864 stitches at the maximum.

Firstly, there will be described the inscription of a new pattern 1 onto the memory 59.

Each element is analysed and, according to the color detected, a signal is transmitted to the coder 136 by one of the four wires 2/1 through 2/4. The coder 136 transforms the signal into a coded data of two bits. The latter are transferred into the switching device 137. Simultaneously and in synchronization, the parts of the device attributed to the x and y calculations have calculated the corresponding addresses x and y. In order to do this, the keyboard 2 or the direct reader 3, as shown in FIG. 1, advance counter 51 FIG. 7 at the rate of the reading of the elements of one line of pattern 1 and the counter 79, FIG. 8 by one position per line. The decoders 58 and 135 determine the corresponding inputs 58/n and 135/m representing a fraction of the two addresses .r and y. The corresponding word (of nine couples of bits) is transferred from memory 59 into the switching component 137. The memories 54 and by their outputs 54/1 through 54/4 and 80/1 through 80/4 transmit the other fraction of the two addresses 1: and y to a member 138 for determining the position of the bits inside the words; this member thus determines in what couple of layers the said two bits must be memorized. The member is called the "determination component" 138. One of the nine outputs 138/1 through 138/9 transmits the address of the couple of layers to the switching member 137. As mentioned in connection with FIGS. 7 and 8 intelligence in memories 54 and 80 has originated during calculation of xs and ys, respectively. Members 137 and 138 may be realized together by two known normalized integrated circuit components designated Ser. No. 74150 N and available from Texas Instruments Inc. and other manufacturers of semiconductor devices.

The switching member 137 contains nine groups of two electronic memories each group being connected to a couple of layers. Before each transfer of one word from the memory 59, all the groups are put into their 0, 0 state. After the said transfer, they are in the states corresponding to the transferred word. The couple determined by the couple determination component 138 is reset to 0, 0 and the coded data coming from the coder 136 is memorized by the said group. This new word is re-transferred into memory 59 on the nine couples of cores, which are found at the intersection of the inputs 58/n and /m. The orders for transfer and setting to 0, 0 of the groups, etc. are emitted by the sequence control 52 (86).

The reading of the memory to achieve direct control of the knitting machine is described below.

Pattern 1 to be reproduced by knitting is memorised in the memory 59 in the form of coded data. Each time one needle passes in front of a given place in the knitting machine, for example in front of OS 11/1 32 data, foreseen for the 32 real OS 11 must output from the memory 59.

In order to do this, the means attributed to the .r and y calculations calculate 39 addresses x, y,, x y x y through x y which are successively decoded by the decoders 58 and 135. Each address such as x, and y, is divided into two fractions by means of electrical lines. The first fraction of the address arrives at memory 59 through the first part of memories 54 and 80, respectively, and decoders 58 and 135, respectively. The second fraction of the address arrives at couple determination component 138 through the second part of memories 54 and 80, respectively. For each first fraction of one address xy, one word comes out of the memory 59 and is transferred onto the switching member 137. According to the indications of the second fraction of the addresses x and y transmitted to the determination component for the layer couples 138, the switching device 137 chooses the couple of 2 bits attributed to said x and y. Component 138 decodes the second fraction of the address and transmits corresponding signals over two of nine lines 138/] through 138/9 to switching device 137. These signals control the transfer of information memorized in the corresponding couple of layers to decoder 66. The 2 bits are transferred through the lines 137/] and 137/2 to the decoder 66 as shown in FIG. 7. The configuration of decoder 66 represented in FIG. 7 as a plurality of decoder circuit 66/l, 66/2 is a function of the number of colors in the pattern. In a four color pattern, the coded information or 01" or 10 or "11" each designates one of the four colors. Decoder 66 has four outputs which are activated in response of the coded information. Thus each output corresponds to a color. Such decoding may be realized by use of known normalized integrated circuit components such as type Ser. No. 74156 N available from Texas Instruments Inc. or other manufacturers of semiconductor devices.

Five to eight colors need 3 bits for each stitch and for each element of pattern 1. Each word of 18 bits will contain coded knitting information for six stitches. It will be memorized in memory 59 in the same way as a word for four colors, that is to say that the first fraction of addresses is the same as for four colors. The second fraction of addresses will contain information for inscribing or reading 3 bits instead of 2. This information, after being decoded, will be transferred on three of nine lines I38/I through 138/9 to switching device 137. The coder 136 will comprise eight inputs, such as 2/1, and three outputs leading to switching device 137.

A pattern I in two colors requires only I bit per element and thereby a number of elements twice as great as for a pattern in three or four colors can be memorised. Similarly, a pattern I in five, six or more colors requires three (four, etc.) bits per element and thereby, only a proportionately reduced number of elements can be memorized.

With the aim of rationalising the inscription of data contained in the pattern I, it is advantageous to complete the keyboards 2 with a puncher-reader 2a for punched cards or tapes with a view to filling the memory 59 more quickly. These inscription means necessirate a design, on squared paper being a copy of the artists design," It is quite simple to undersrand that this copying represents a fastidious and costly effort,

especially if the design is to be used by direct reader 3, each square having to be uniformly coloured to diminish the number of reading errors. In addition the proposed means do not allow instantaneous verification to determine whether the work of the operator of keyboard 2 or of the direct reader is accomplished without mistakes.

A particularly advantageous inscription means 2' (FIG. 1) and which enables elimination of the aforementioned drawbacks, is described below.

The artists design 1 is read by an operator and transmitted to the processing unit 4 in the form of electrical impulses with the aid of the inscription means 2'. The inscription means 2' are composed of a command console 139, containing the display memory 140 with its usual inscription devices, reading devices etc. A display memory which may be used in the present inscription means 2' is described, for example, in US. Pat. No. 3,529,298 granted to .I. R. Lourie on Sept. l5, l970, and corresponding to French Pat. Specification No. l,576,l2l, published on July 25, I969, and to Swiss Pat. Specification No. 476,877, published on Sept. 30, 1969. Particular reference is made to column 6, lines 59 to and column l8, lines 9 to 44 in US. Pat. No. 3,529,298.

The command console 139 further comprises a first keyboard 141 (with its electronic circuits) allowing any bits or couple of bits to be stored in the display memory 140, a second keyboard 142 (with its electronic circuits) allowing the contents of said couple of bits to be altered, and further keyboards 143 (with their electronic circuits) allowing the transfer of information contained in the display memory to the processing unit 4 and further allowing the display of the sizes of the patterns with the aid of means described below. Such keyboards for altering stored information are known and described, for example, in patent No. 3,529,298 referred to above, in column 13, lines 52 to 54 and also in column 7, lines 5 to 8. Function keys for selecting programs are also described in the patent referred to, see column 12, lines 34 to 37.

The display memory 140 of command console 139 is coupled to one unit of color display (display-unit") 147, the screen 148 of which is advantageously provided with a transparent fixed or removable grid for easy locating of each element of the pattern displayed.

In the apparatus described in US. Pat. No. 3,529,298, the memory is incorporated in the processing unit; however, it will be an easy matter for the expert in the art to arrange the same type of memory with display unit 147 as shown in FIG. 1. According to a leaflet published by ERA, Elektronische Rechenanlagen, Aachen, West Germany, such memory is incorporated in the type DIDS-400 Digital Information Display System manufactured by Cossor Electronics Limited, Harlow, Great Britain.

Display units of the kind shown in FIG. 1 are commercially available from several manufacturers. For example, the DlDS-400 Digital Information Display System referred to and published in May, 1967, is designed for displaying characters. Obviously that known system may be simplified for the purposes of the present invention by restricting the display to rectangular pattern elements, e.g. to rectangular dots similar to the letter 0". A typing letter may be attributed to each color of the artists design as, for example, the letter 4" for a red stitch, the letter b for a blue stitch, the letter for a white stitch and so on, for representing the artists design on screen 148. However, with a view to a more illustrative and vivid representation of the artists design on screen 148, it is preferred to use a color picture tube in the display unit 147. It is common art to use, install and operate such color picture tubes, see, for example, the book entitled PAL Farbferneshtechnik by lng. F. Mohring, published by C. F. Winterische Verlagsbuchhandlung, Prien/Chiemsee, West Germany, in particular pages 36 to 55.

The artists design 1 shown in the upper portion of FIG. 1 may be read by an operator by judiciously manipulating the keys of command console 139. ln that way, a luminous spot travels across screen 148, and for each element of the artists design, the operator may store the required information in the display memory 140 by depressing the respective keys of keyboard 141. In that manner, the artists design 1 is displayed on screen 148, and the respective information of the design is automatically stored in display memory 140. The connection between the artist's design 1 and the inscription means 2 shown in solid lines in FIG. 1, therefore, is fictive in that it does not represent an electrical connection but merely the operators mental and manual action. However, the artists design 1 may be read by a direct reader 3 which transmits the information of the artists design in the form of electrical pulses to the inscription means 2'. In FIG. 1, the respective connections are shown in hatched lines. A direct reader, which may be used conveniently, is described. for example, in the British Pat. Specification No. 1,001,433 published Aug. 18, 1965 granted to L. G. Simjian. The direct reader described comprises a scanning system including photoelectric sensing means and automatic drive means for moving the sensing means in the X- and Y- directions. During scanning, the information received is constantly transmitted to display memory 140 and displayed on screen 148. Thus, the artists design appears on the screen in accordance with the movement of the scanning system in the X- and Y-directions. Particular reference is made to FIG. 6 in the aforementioned British Pat. Specification and to the respective descriptive portion on page 3 from line 84 to line 1 l4 describing the storage of color responsive signals.

The inscription means 2' shown in FIG. 1 also comprises a perforator 145 allowing the recording of the contents of display memory 140 on a punched tape 144, and a reader 146 either for reading a punched tape 144 to store the information, which it contains, in display memory 140, or for transferring the information from a punched tape 144 directly to processing unit 4 in the form of electrical pulses as shown by hatched lines in FIG. 1. The solid lines between inscription means 2 and processing unit 4 represent the transfer of information in the form of electrical pulses from display memory 140 to processing unit 4. Dial buttons 149 for color composition with their circuits are also advantageously provided.

Several methods of employing these inscription means 2' are described hereafter:

a. The artists design" 1 is covered with a transpar ent squared paper. Each square limits one element of the pattern. The operator displays the dimensions of the pattern, successively reads the configurations (for example, color) of each element and consequently operates the keyboard 141. Each taped information is automatically memorized and appears on the screen 148. Once this work is finished, the data can advantageously be recorded on the punched tape 144, with a view to their subsequent preemployment. It is rational to mount the inscription means 2' on a trolley 150. At the given moment, it is wheeled towards a knitting machine, connected to the processing unit 4 and the contents of the display memory are transferred into memory 59.

b. The artists design 1 is read and transmitted into the displayed memory by the direct reader 3, after the display of its sizes. Given that such designs are not meticulously accurate, the design appearing on screen 148 shows errors that the operator detects by comparison with the artists design, so that this can be done in a rational manner, it is preferable for the artists design to be produced with transparent color on a transparent support and to provide screen 148 with a fixed or removable squared grid. The artists design is then placed on the screen and comparison can be quickly made. Each incorrect element is covered by means of the keyboard 142 which makes a guide mark and which switches over the bit or the couple of bits of the correct information, operated by the keyboard 141. Once the corrections are made, the procedure is as noted under c. A pattern previously recorded on punched tape 144 is read by the reader 146 and transferred into the memory 59 of the processing device 4.

ln exploiting all the possibilities inherent in the described systems, the knitter can make considerable economies. Thus, dial buttons 149 of the color composition allow combinations of pleasing colors to be found for any given design, without costly trials on the knitting machine. In addition, a memorised pattern can be readily altered if, during knitting, it is not considered to be as attractive as thought. In order to do this, the contents of memory 59 of the processing device are transferred into the display memory 140, corrections made and the corrected contents then put back into place. In addition, the screen can be filled by the automatic repetition of a small memorised pattern with a view to judging the effect on the whole.

In the case of isolated designs, surrounded by stitches of one color, background color," it is advantageous to displace this or these design(s) in relation to cylinders 40, in order to minimize knitting losses on the makeup of an article. In order to do this, two push buttons (not shown) are provided one operating the counter 45 and the other counter 46. By pushing the button connected to counter 45 n times (n being less than 44), the start 42 as well as the patterns D, through D,, are displaced of n stitches. By pressing m times on the button connected to counter 46, the start 42 displaced as well as the patterns D, through D, are displaced of m times 46 stitches.

By making certain alterations, the unit 4 can be utilised for the direct control of several knitting machines 10, knitting the same pattern 1 or different patterns. In the latter case, the total number of data of the said patterns 1 must not exceed the capacity of the memory 59. In addition, the number of machines controlled by this memory 59 is limited by the speed at which the said memory 59 is read.

The modifications are as follows, as shown in FIGS. 7 and 8:

a. Each knitting machine 10 must have its own set of counters 45 and 46, its own fixed memory 68, its own counters 47, 76, 77 and 83 (in order to allow the knitting of patterns 1 of different characteristics and sizes) and its own OR circuit 81 AND circuit 82.

b. Oscillator 50 must emit impulses of a frequency as many times greater as the number of simultaneously controlled/machines.

c. A logic switch gear (not shown) must be added for switching the oscillator 50 impulses successively over the different counters attributed to each knitting machine 10, and switching over the output data of the memory 59 successively to the different synchronised memories 68. Corresponding alternations can be foreseen in order to adapt the variant according to FIGS. 9, l and 11a. 11b for the com trol for several machines.

Operation of the processing unit 4 with a view to the building of an information carried (film) 6 for the indirect control of the knitting machine 10 will now be de scribed.

A pattern 1, as shown in FIG. 4, containing an amount of data which exceed the capacity of memory 59, as shown in HQ. 7, is subdivided into horizontal strips 151. The width of these strips is equal to the width of the pattern 1 and the height is at least one revolution of the machine (corresponding in the machine of the example to eight rows of stitches for one pattern l in four colors, and to twelve rows for a pattern 1 in three colors). According to a first method, the data on strip 151/] and 151/2 is firstly transferred into memory 59, next. after processing. from data strip 151/1 and from a part of strip 151/2 are recorded on the film 6; next the data on tape 151/3 is transferred into memory 59 to be memorised on the cores which previously contained data from strip 151/ l; and next. after processing, the data from tape 151/2 and from a part of strip 151/3 are recorded on the film 6. Data from strip 151/4 is then transferred into the memory 59 so it is then memorised on the cores which previously contained the data from hand 151/2 and so on. The two latter strips l5l/n 1 and lSl/m memorised are recorded after processing. one after the other. on film 6. Having arrived at the end 64 of the film, as shown in FIG. 5 it is rewound in such a way that the start 60 of the film is located on the recording member (not illustrated) of the recording machine 5 and the processed data remaining from the last revolution 151/n is recorded on the area 65 of film 6.

in order to transfer any strip 151 whatsoever to the memory, by means of keyboard 2 by means of its perforator reader 2a. or by means ofthe direct reader 3, only counters 47 and 51 are used for the x calculations and the counters 77 and 79 for the y calculation. The former are indexed on the width X of the pattern and the second on the number of rows representing two revolutions (16 in the example). The calculations and the memorisation are carried out according to the method described under the heading inscription of a new pattern 1 in the memory 59," except that the pattern 1 is replaced by the strip 51.

The processing of data from the strip 151 with a view to recording on a film 6 is made in a similar way to the processing with a view to direct control, except that outputs 68/1 68/32 68/36) as shown in FIG. 7, are connected to the recording machine 5. as shown in FIG. 1 and that the impulse generator of a same type as the impulse generator 24 is an integral part of the said inscription machine.

The steps to be carried out are as follows:

Step 1. Transfer of strips 151/1 and 151/2 from pattern l to memory 59 of processing unit 4 over the inscription means 2; counter 79 runs over its positions from one up to 16.

Step 2: Resetting counter 79 to position one. thus stopping the transfer from pattern 1 to memory 59.

Step 3: Processing of informations from strip 151/1 and part of strip 151/2 and recording on film 6; counter 79 runs over its positions one to eight.

Step 4: Resetting counter 79 to one.

Step 5: Transfer of strip 151/3 into memory 59 (new information takes the place of that from strip 151/1); counter 79 runs over its positions one to eight.

Step 6: Processing and recording of information from strip 151/2 and part of strip 151/3; counter 79 runs over its positions nine to 16.

Step 7: Resetting counter 79 to nine.

Step 8: Transfer of strip 151/4 into memory 59. This information takes the place of that from strip 151/2; counter 79 runs over its positions nine to 16. and so on. The control circuits for the transfer and switching operations mentioned above are not shown.

When a pattern 1, with a number Y of lines which is not a multiple of the number of knitted rows per revolution (eight in the example), must be treated with a view to making a film 6, the said pattern 1 must be transferred and processed/recorded several times.

Advantageously, a counter (not shown) on the direct reading device 3, for example. is foreseen, as shown in FIG. 1, this counter being indexed on the smallest common multiple of Y and of the number of rows per revolution. lt advances one position each time that one line of pattern 1 is transferred and it halts the installation when it reaches the indexed position.

The minimal capacity of memory 59 satisfying this process is determined by the greatest width of the pattern (calculated in stitches) which is commercially valid multiplied by the greatest number of rows possi ble for two revolutions times two (2 bits necessary per stitch), for example, 570 stitches wide times 24 rows times 2 bits is equal to 27,360 hits. Memory 59. as described, is of a sufficiently large capacity; in fact, it has been calculated that it can store the coded data for 36,864 stitches.

Some adaptations are described hereafter which enable in memorising a pattern 1 of a certain area, knitting patterns (D,, D as shown in FIG. 6b) of an area several times greater. The said adaptations are possible without additional means or with the addition of inexpensive hardware. They allow the reproduction of patterns D D exceeding the capacity of memory 59 on one or several knitting machines 10, directly controlled, thus without the adjunction of an information carrier 6. Owing to these adaptations the designers work is made less difficult and the cost for the information carrier 6 is unnecessary.

The described forms of this installation allow, in memorising a basic pattern 1, to knit symmetrical patterns, composed of the said basic pattern 1, and symmetrical pattern in relation to vertical and/or horizon-

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3035426 *19 Aug 195722 May 1962Gordon Macqueen KennethKnitting processes and knitting machines
US3059843 *14 Feb 196123 Oct 1962Corbaz AndreApparatus for producing a programme for controlling a knitting machine
US3219806 *1 Aug 196223 Nov 1965Harris Intertype CorpTypesetting apparatus
US3247815 *6 Nov 196226 Apr 1966Image Designs IncSystems and methods for reproducing colored patterns in carpets and other manufactured articles
US3247816 *11 Jan 196326 Apr 1966Image Designs IncSystems and methods for reproducing color patterns in carpets and other manufactured articles
US3446037 *2 Mar 196627 May 1969Stibbe G & Co LtdPatterning system for knitting machines
US3472287 *31 Oct 196614 Oct 1969Morat FranzControl device for textile machines
US3529298 *23 Aug 196715 Sep 1970IbmGraphical design of textiles
US3530440 *26 Aug 196822 Sep 1970Hewlett Packard CoData processing system including controllable means for directly interconnecting the input and output units
US3555852 *12 Dec 196619 Jan 1971Morat Gmbh FranzMethod and apparatus for recording a program representing a sample pattern
US3573735 *8 Jun 19676 Apr 1971Purdy & Mcintosh Ed LtdProduction of justified coded tape for page printing
CH472527A * Title not available
FR1522413A * Title not available
FR1554718A * Title not available
FR1583356A * Title not available
GB1173620A * Title not available
GB1194731A * Title not available
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3940951 *27 Oct 19712 Mar 1976Hayes-Albion CorporationKnitting machine control
US3940953 *8 Jul 19742 Mar 1976ElitexSystem for centrally controlling a plurality of knitting machines
US3969912 *8 Jul 197420 Jul 1976Elitex, Zavody Textilniho Strojirenstvi Generalni ReditelstviPatterning memory for circular knitting machine
US3985002 *26 Mar 197512 Oct 1976Elitex, Zavody Textilniho Strojirenstvi Generalni ReditelstviMethod and apparatus for monitoring the operative position data of group controlled knitting machines
US4004135 *23 Oct 197418 Jan 1977Viable Systems, Inc.Jacquard card to magnetic tape archives storage and retrieval system
US4007607 *9 Oct 197515 Feb 1977Hayes-Albion CorporationMethod and apparatus for knitting patterned sliver high pile fabric
US4019349 *1 Nov 197426 Apr 1977Elitex, Zavody Textilniho Strojirenstvi Generalni ReditalstviMethod and apparatus for electronic control of multifeed circular knitting machines
US4031718 *12 Jun 197528 Jun 1977Macchine Tessili Circolari Matec S.P.A. Of RomaElectronic system for centrally controlling a plurality of knitting machines
US4114405 *6 Oct 197719 Sep 1978Empisal Knitmaster Luxembourg S.A.Control unit for a hand knitter
US4280424 *26 Dec 197828 Jul 1981Necchi S.P.A.Household type sewing machine having microprocessor control
US4311029 *12 Feb 198019 Jan 1982Universal Maschinenfabrik Dr. Rudolf Schieber Gmbh & Co. KgData entry device for a flatbed knitting machine with electronic control
US4332150 *30 May 19791 Jun 1982Sipra Patententwicklungs-Und Beteiligungsgesellschaft MbhSystem for controlling knitting or weaving machines for the production of randomly patterned fabric
US4346366 *21 Feb 198024 Aug 1982Kanebo LimitedSystem for generating and modifying designs for automatic knitting machinery and the like
US4556945 *1 Jun 19833 Dec 1985Fry Richard BMulti-harness loom control
US4788835 *4 Feb 19816 Dec 1988Universal MaschinenfabrikFlatbed knitting machine with electronic control
US4790149 *4 Feb 198113 Dec 1988Universal MaschinenfabrikFlatbed knitting machine with electronic control
US4807143 *6 Jul 198721 Feb 1989Asahi Kasei Kogyo Kabushiki KaishaSystem for forming design pattern data
US5046013 *23 Feb 19893 Sep 1991Murata Kikai Kabushiki KaishaQuality control system in a spinning mill
US6119050 *7 Aug 199812 Sep 2000Shima Seiki Manufacturing, Ltd.Binding-off method, bound knitted fabric, and cad apparatus therefor
US7400938 *6 Jul 200715 Jul 2008Ganzoni Management AgMethod for assigning states to stitches of a fabric
USRE32143 *6 Dec 198213 May 1986Necchi S.P.A.Household type sewing machine having microprocessor control
Classifications
U.S. Classification66/215, 700/84, 700/141, 66/242
International ClassificationD04B15/66
Cooperative ClassificationD04B15/66
European ClassificationD04B15/66