US3839743A - Method for maintaining the normal integrity of blood - Google Patents

Method for maintaining the normal integrity of blood Download PDF

Info

Publication number
US3839743A
US3839743A US40654773A US3839743A US 3839743 A US3839743 A US 3839743A US 40654773 A US40654773 A US 40654773A US 3839743 A US3839743 A US 3839743A
Authority
US
United States
Prior art keywords
method defined
group
fluoroalkyl
poly
polymeric material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
A Schwarcz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US40654773 priority Critical patent/US3839743A/en
Application granted granted Critical
Publication of US3839743A publication Critical patent/US3839743A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/0077Special surfaces of prostheses, e.g. for improving ingrowth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/80Preparations for artificial teeth, for filling teeth or for capping teeth
    • A61K6/884Preparations for artificial teeth, for filling teeth or for capping teeth comprising natural or synthetic resins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/80Preparations for artificial teeth, for filling teeth or for capping teeth
    • A61K6/884Preparations for artificial teeth, for filling teeth or for capping teeth comprising natural or synthetic resins
    • A61K6/887Compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L33/00Antithrombogenic treatment of surgical articles, e.g. sutures, catheters, prostheses, or of articles for the manipulation or conditioning of blood; Materials for such treatment
    • A61L33/06Use of macromolecular materials
    • A61L33/064Use of macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • A61L33/066Rubbers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/3154Of fluorinated addition polymer from unsaturated monomers

Definitions

  • This invention relates to biomedical articles that resist the clotting of human blood and generally that of warm blooded animals. It describes the structure of these-articles and the various modes of their manufacture.
  • One of such articles is a subdermal implant. Examples are subdermal prosthesis such as artificial blood vessels to correct atherosclerotic shrunken passage- 1 ways or to eliminate aneurisms in cardiac assist devices .and in artifical hearts and heart valves to replace or augment the function of the natural heart.
  • subdermal prosthetic devices of this invention include reinforced and non reinforced sheetings, rubbers to reconstruct fractures, coronary arteries, denture soft liners, denture base materials, sponge subdermal implant materials, mammary prosthesis, testicular prosthesis, atoplasty prosthesis, rhinoplasty implants, scleral buckler drains, catheters for intravenous administration of flu ids for withdrawal of serial blood samples, for percuta' neous flow-guided cardia catheterization, continuous monitoring of blood glucose, intestinal decompression tubes, various catheters and thoriac drains.
  • Other implanted articles of this invention include circulatory assist devices, tubes for blood transfusion, the implants of electrical devices and mechanical devices such as prosthetic valves and sutures.
  • Other biomedical articles of this invention include thromboresistant surgical instru- 'rnents, laboratory apparatus used for blood handling and blood handling and blood containers for storage.
  • My invention provides,thromboresistant biomedical articles useful in the fields of subdermal implants, surgical instruments, laboratory apparatus and blood containers. These articles are composed, at least on their surface, of an organic polymeric material having side chains of the formula C,,F ,C,,,l-l ,wherein n and m are integers, n ranging from 1 to 28 and the sum of n and m from 1 to 28, and an anionic group.
  • the biomedical articles of this invention are characterized by their thromboresistant surface.
  • the surface of the said articles are characterized by an organic polymeric material having fluoroalkyl side chains of the nF2nJ-l m 2m and m are integers, the range of )1 extending from 1 to 28 and the sum of n and in from 2 to 28.
  • Thenurnberof fluoroalkyl side chains relative to the number of main-chain-atoms in one recurring unit ranges from 1:2 to lzlQ preferably from 1:2 to 1:5.
  • the atoms that arch the main or linear direction of the polymer such as the carbon atoms in polyethylene and poly vinyl alcohol), are the only ones considered main-chain-atoms.
  • Linear fluoroalkyl side chains with values of the integer rt ranging from 8 to 28 are particularly effective ones to give the articles of this invention a high degree of thromboresistance.
  • a feature of the 'said organic polymeric materials of I this invention is thattheir thromboresistant character.
  • invcntion' have simultaneously low surface tension and negative zeta potential, properties thought necessary for thromboresistance according to certain theories.
  • the anionic groups can be either in their acidic form, their salt or their partially neutralized form.
  • Example of 3 simple anionic groups are carboxylate, sulfonate, sulfate, phosphate and phosphites.
  • Examples of the salt forming positive ions are sodium, potassium, lithium, ammonium, magnesium, tertiary amines such as N- methylmorpholine.
  • the ratio of the number of the said fluoroalkyl groups to the number of said anionic groups ranges from 0.511 to 50:1, preferably from 1:1 to 20:1. ln general, this ratio decreases as the ionic strength decreases.
  • the number, strength and degree of neutralization of said anionic groups should be limited in order to avoid solvation or excessive swelling of the fluorinated polymer by the blood.
  • the said fluoroalkyl side chain may be directly attached to the main chain of the organic polymer. It can also be attached by an intermediate divalent radical,
  • the anionic group may be directly attached to the main chain of the organic polymer or through an intermediate divalent radical.
  • Such radicals are exemplified by CH C H OC H (CH )s 2 2H43( 2)i5
  • Biomedical articles of this invention may be entirely composed of the said organic polymeric materialswith the fluoroalkyl side chains.
  • the particular mechanical and electrical properties required of the various biomedical articles, or the higher cost involved may require them to comprise a surface portion and a substrate portion.
  • the surface portion is composed of the said thromboresistant organic polymer.
  • the substrate portion may be any solid material that satisfies the properties required of the biomedical article.
  • substrate materials comprise plastics, rubbers, metals, glass, ceramics.
  • the useof a coating technic is particularly advantageous for making surgical instruments, laboratory apparatus, blood containers and heart valves.
  • plastic substrates are isotactic polyolefins, such as polypropylene, polystyrene, polyethylene, poly(4-methylpentane); polyesters such as poly(l,4- cyclohexylene terephthalate), poly(ethylene terephthalate); polyacrylates such as polymethylmethacrylate, polyco (ethylacrylate-acrylic acid); polyurethanes such as the ones prepared from a hydroxy.
  • isotactic polyolefins such as polypropylene, polystyrene, polyethylene, poly(4-methylpentane)
  • polyesters such as poly(l,4- cyclohexylene terephthalate), poly(ethylene terephthalate); polyacrylates such as polymethylmethacrylate, polyco (ethylacrylate-acrylic acid); polyurethanes such as the ones prepared from a hydroxy.
  • polystyrene resin terminated polyether or polyester and methylenebis (phenylisocyanate); polycarbonates such as poly(2,2- propanebis(4-phenyl carbonate); fluorinated polyole fins such as poly(tetrafluoroethylene); chlorinated polyolefins such as polyvinylchloride; proteins such as wool, casein; cellulose, cellulose derivatives such as cellulose acetate, cellulose acetate butyrate and other polysaccharides.
  • polycarbonates such as poly(2,2- propanebis(4-phenyl carbonate)
  • fluorinated polyole fins such as poly(tetrafluoroethylene); chlorinated polyolefins such as polyvinylchloride; proteins such as wool, casein; cellulose, cellulose derivatives such as cellulose acetate, cellulose acetate butyrate and other polysaccharides.
  • silicone rubbers such as poly(dimethylsiloxane poly(rnethylphenyl siloxane); hydrocarbon rubbers such as butyl rubber, ethylene-propylene rubber; nitrile rubbers such as polyco(butadieneacrylonitrile); fluorinated rubbers such as fluorinated ethylene-propylene rubber, fluorinated polyurethanes; urethane rubbers such as the ones prepared from hydroxy terminated polyethers or polyesters and methylenebis(- phenylisocyanate); polyether rubbers such as poly (propylene oxide) and chlorosulfonated rubbers such as chlorosulfonated ethylene-propylene rubber.
  • silicone rubbers such as poly(dimethylsiloxane poly(rnethylphenyl siloxane)
  • hydrocarbon rubbers such as butyl rubber, ethylene-propylene rubber
  • nitrile rubbers such as polyco(butadieneacrylonitrile
  • Metallic substrates include stainless steel, aluminum, alloys of chromium, nickel, cobalt and magnesium.
  • Examples of the said organic polymeric materials having linear fluoroalkyl side chains wherein the said integer n ranges between 8 and 28, the sum of n and m between 8 and 28 and the said polymer has no anionic groups attached to the main chain are:
  • organic polymeric materials having linear or branched fluoroalkyl side chains wherein the said integer n ranges between 1 and 28, the sum of n and m between 2 and 28 and the said anionic group is bonded to the main chain of the polymer are (the propertion of monomers in the copolymers are expressed in mole polyco( l l dihydropentadecafluorooctyl methacrylate 10% sodium acrylate) polyco (l,l,2,2,stetrahydrotrifluoropropyl acrylate 5% maleic acid) polyco( 1,1 ,2,2-tetrahydropentade cafluorononyl acrylate 30% methacrylic acid 15% sodium methacrylate) poly(carboxyethyl-l l ,2,2-tetrahydrotrifluoropropyl siloxane) polyco(methyl-3,3,3-trifluoropropyl siloxane 20% carboxyethyl-methyl siloxane) polymers of
  • condensation polymerization techniques of the monomers Another method consists of introducing an anigroup.
  • Such compounds are, for example, perfluorooctadecanoyl chloride and l ,l-dihydrotricosafluorodode- 1 cyl alcohol.
  • the polymer is then shaped into the desired biomedical articles, e.g. heart valves, blood vessel, tubings etc.
  • the shaping can be done by any conventional means, uch as extruding,'molding, casting. After proper sterilization, the biomedical article is ready for use.
  • An effective way to prepare a thromboresistant biomedical article of this invention is to react the polymeric material of this invention containing the said anionic group with a stochiometrically defective amount of a cationic type polymer, such as poly-2- vinylpyridine, poly(vinylbenzyldimethylamine), polyco(styrene-4-vinylpyrridine).
  • a cationic type polymer such as poly-2- vinylpyridine, poly(vinylbenzyldimethylamine), polyco(styrene-4-vinylpyrridine).
  • Another way to prepare a thromboresistant biomedical article of this invention is to coat the potentially blood contacting surfaces of the shaped article made of a plastic, a rubber, a metal or glass with the said organic polymeric material having the fluoroalkyl side chains exemplified above.
  • Any of the conventional coating procedures can be used, such as coating from a'solution, emulsion, suspension followed by solvent evaporation, or a hot melt coating technique.
  • the bond between he substrate and the coating can be improved, if necessary, by conventional surface treatment techniques, such as corona discharge, flame treatment, irradiation, or priming with a polar polymeric substance.
  • a biomedical article of this invention can be prepared by the use of still another technique.
  • This technique consists of coating the shaped article, made of a plastic, a rubber, a metal or glass, with the monomers from which the said organic polymeric materials, having the fiuoroalkyl side chains, and examplified above, are prepared, and let the polymerization proceed on the surface. Similar coating and priming procedures can be used as the onesdescribed above.
  • the polymerization on the surface of the article can be carried out by conventional techniques used in the art of polymer synthesis and coatings, such as the use of catalysts,
  • Still another way to achieving the objectives of this invention is to graft an anionic group and the said pertluoroalkyl group C F ,C l-l onto the surface of a shaped biomedical article made of a plastic or a rubber.
  • Examples of such surface grafting reactions are as follows:
  • polymers having unbr'anched higher alkyl side chains can be fiuorinated with fluorine gas.
  • examples of such polymers are polyvinylstearate, polyco(vinylacetate-docosylmaleate sodium salt).
  • EXAMPLE 1 Ninety grams (0.1 moles) of 1,1- dihydrotritriacontafluoroheptadecyl acrylate and 1.14 grams (0.0l moles) of l-hexenoic acid are copolymerized by using 0.5% azobisisobutyronitrile asthe initia-' tor and toluene as the solvent medium. The reaction is carried out in crew cup vials at 75-80C. for 16 hours. The copolymer is then purified by adding methanol to the solution, filtered, redissolved in 1,2,2-trichlorotrifluoroethane, and this procedure is repeated three times. The solid polymer is then dried in a vacuum oven at 60C. for 64 hours. The intrinsic viscosity measured 'in hexafluorodimethyl benzene is 0.2.
  • a glass tube is then treated with a 5% 'trichloro trifluoroethylene solution of the copolymer by filling the tube, inverting it and allowing the excess liquid to drain out. Following evaporation of the solvent, the coated test tube is sterilized.
  • test tube Five (5) ml of freshly drawn whole blood from the lower vena cava of a rabbit as added and the test tube is periodically tipped to observe clot formation. No evidence of clot formation is observed for severalhours. A control test tube, not coated with a layer of the co polymer, is tested in an identical manner, and clotting occurs within 7 minutes.
  • EXAMPLE 2 A copolymer of octadecyl vinyl ether with 1- dodecenoic'acid sodium salt is used to coat, from a 5% toluene solution, a commercially available 'fluoropolymer heart valve previously submitted to electron radiation to obtain better adhesion. It is then fluorinated in the dark by exposure to 5% fluorine diluted with nitrogen at room temperature for 2.weeks. The coated heart valve is then sterilized and when implanted in an animal, such as a dog, the implant, in accordance with EXAMPLE 4 A silicone rubber having a fluoroalkyl side chain is .prepared by the following customary procedure.
  • Methyl trichlorosilane is reacted with -l,1,2,2,3,3,4,4- octahydropentadecafluorohexadecyl magnesium chloride, the dichloro product separated from the reactive mixture by vacuum distillation and followed by polymerization with the addition of water. It is then mixed with 2% dimethyltindilaurate catalyst, molded into a tube of 0.05 inch inside diameter and cured at 150C. for 48 hours under nitrogen.
  • the tubing is tested in vivo using a jugular vein of a dog.
  • the vein is exposed and severed in a standard surgical manner.
  • the tube, after sterilization, is formed into a loop and to each end of the vein is attached one end of the tubing. Circulation through the vein is resumed and blood now is passing through the tubing.
  • the implanted artifical vein in accordance with this invention, will not be found to be harmful to the life of the animal.
  • EXAMPLE 5 l-perfluorooctadecene,'88.l g (0.1 mol), is copolymerized with maleic anhydride, 9.6 g(0.l mole), using a technique similar to that described in Example 1. The copolymer is then boiled in an aqueous sodium hydroxide solution containing a small amount of a fluorinated anionic surfactant. This reaction yields the sodium salt of the maleic acid portion of the polymer. The polymer is then purified by a repeated solutionpreceipitation technique.
  • a cannula made of polypropylene is surface oxidized in a circulating air oven at 1 10 C. to obtain better adhesion. It is then coated with a 5% trichlorotrifluoroethylene solution of the polymer prepared in this example and the'solvent evaporated in an air iven at 60C. After sterilization, the cannula is used as conduit replacement in a heart-lung machine. After several months of use no evidence of thrombus formation on the cannula will be reported.
  • EXAMPLE 6 Poly(vinyl alcohol) of 120,000 molecular weight, g(1 mole), is sulfated with-sulfur trioxide dissolved in sulfuric acid to yield the sulfate ester. As deduced by titration with sodium hydroxide one out of every 10 hydroxyl groups is sulfated.
  • the polymer is further reacted with perfluorohexadecanoyl chloride in N- EXAMPLE 7
  • the fluorinated acid-amid is then precipitated in methanol, filtered, washed, and reacted with sodium hydroxide dissolved in alcohol. The polymer thus obtained.
  • the fluorinated copolymer is then molded in a hot press into a 0.05 in. inside diameter catheter having a wall thickness of 0.005 in. and sterilized.
  • a hot press into a 0.05 in. inside diameter catheter having a wall thickness of 0.005 in. and sterilized.
  • EXAMPLE 8 Vinyl perfluorodocosyl ether, 11.8 g (0.1 mole) is polymerized and purified using a technique similar to that described in Example 1. The intrinsic viscosity measured in trichlorotrifluoroethane is 0.2. A stainless steel tubing is coated with a 5% trichlorotrifluoroethylene solution of this polymer, and the solvent evaporated at 60C. in a vacuum oven. After sterilization the tubing is used as an arterialvenous bypass in a hemidialysis machine. No thrombus formation will be evident after usage of the machine for several months.
  • EXAMPLE 9 A cannula made of polyethylene is phosphorilated on the surface with phosphorous trichloride at 60C. in the presence of oxygen, and then boiled in aqueous sodium hydroxide. This procedure provides sodium phosphate groups at the surface. A subsequent grafting of perfluorotetradecene using an electron radiation techniques yields the desired surface, which is then cleaned with bis(trifluoromethyl) benzene and ethanol. After through sterilization, the cannula, when tested in a heart-lung machine, will yield comparable result to those obtained in Example 5.
  • EXAMPLE 10 101.6 grams (0.1 mole) of perfluorooctadecylperfluorovinyl ether and 16 grams (0.02 moles) of perfluoro-l-hexadecenoic acid are dissolved in bis(trifluoro)benzene and coated on a commercially available silicone rubber heart valve previously primed to obtain better adhesion. After'solvent evaporation, the coated heart valve is then irradiated with an electron beam of 5 MeV under argon to polymerize the coating. Following extraction of the residual monomers and sterilization, the heart valve, when evaluated as in Example 3, yields similar results.
  • Polyco(methacrylic acid-3,333,3,3'-hexafluoroisobutyl methacrylate) is prepared in emulsion at 65C for 6 hours with the following recipe, added in the order shown:
  • EXAMPLE 12 A thromboresistant artificial heart is molded from poly(methyl-3,3,3-trifluoropropyl siloxane) wherein about one fifth of the methyl groups is replaced with carboxyethyl groups.
  • This copolymer is prepared as follows; Methyldichlorosilane is reacted with acrylonitrile under reflux conditions (60l,15C) for about ten hours by using catalytic amounts of the following materials: cuprous chloride, tetramethylethylene diamine and triethylamine.
  • the reaction product which is cyanoethyl-methyldichlorosilane, is hydrolyzed in the presenggg fam' HCl solution under reflux conditions until complete diappearance of the-nitrile group.
  • the organic layer consists of poly(carboxyethylmethylsiloxane). This is equilibrated at 60100C, for 4-6 hours, with 20% by weight of 3,3,3-trifluoropropyl-methylsiloxane fluid commercially available from Dow Corning Co., Inc until constant viscosity is reached.
  • the product is then washed with aqueous sodium carbonate, water, separate from the aqueous layer, and stripped off from the low boilers by distillation.
  • a method-or maintaining the normal integrity of blood which comprises placing it in contact with a physiologically acceptable article at least the surface of which consists of an organic polymeric material having fluoroalkyl side chains of the formula C F C H wherein n and m are integers, n ranging 1 to 28, and the sum of n and m from 2 to 28, the number of said fluoroalkyl side chains relative to the number of main chain atoms in one recurring unit ranges from 1:2 to 1:10; and said polymeric material having another side group chemically bonded to the main chain, said side group being selected from the group consisting of Hydrogen, hologen, aryl, lower alkyl and anionic groups.
  • said physi- 5 ological acceptable article comprises a substrate portion and a surface coating. portion, said surface coating portion at least being of said polymeric material defined in claiml.
  • physiologically acceptable article is a laboratory apparatus used for handling blood.
  • the said substrate portion is selected from the group consisting of plastics, rubbers, metals, glass and ceramics.
  • organic polymeric material is selected from the group consisting of copolymers prepared from a fiuoroalkyl acrylate and acrylic acid, a fiuoroalkyl methacrylate and methacrylic acid and the mixtures of these monomers.
  • said organic polymeric material is selected from the group consisting of:

Abstract

Thromboresistant biomedical articles are provided which are useful in the fields of subdermal surgical implants, laboratory apparatus and blood containers. These articles have at least a thin surface coating of an organic polymeric material having fluoroalkyl side chains and simple anionic side groups.

Description

United States'Patent [191 3/36; 128/214 R, 214 D, 334 R, 348, 349 R, 350 R, 335.5, 303; 117/124 R, 138.8 A,
Schwarcz 1 Oct. 8, 1974 [54] METHOD FOR MAINTAINING THE [56] References Cited NORMAL INTEGRITY OF BLOOD UNITED STATES EN [76] Inventor: 'Andor Schwarcz, 2117 McClellan 3,633,578 l/l972 Roth,.... 3/1 X St., Schenectady, N Y, 12309 3,663,288 5/1972 Miller 117/138.8 A X 3,722,599 3/1973 Robertson 128/334'R [22] Filed: Oct. 15, 1973 [21,] Appl' 406,547 4 Primary Examiner-Richard A. Gaudet Related U.S.'Application Data 7 Assistant ExaminerRona1 d L. Frinks [63] Continuation-impart of Ser. No. 246,327, April 21,
I 1972, abandoned. ABSTRACT I 52 US. Cl 3/1, 3/1310. 1, 3/D1G. 2, Thromboresistam biomedical articles. are provided 3 3 3 3 23 214 R, 123 2 4 1), which are useful in the fields of sub'dermal surgical im- 128/348, 128/350 R, 117/124 E, plants, laboratory apparatus and b1ood containers. Y Y 1 17/1383 A These articles haveat least a thin surface coating of an 51 Int. Cl ..A61'f 1/ 24, A6lf 1/22, A61m 5/00 Organic polymeric material having fluoroalkyl side ["Sfi "FiFl'ibf SEiicHlI.'I.I.'..L..'. 3/"1, DIG 'I' DI G. 3, Chalns and Simple 9 slde F P 19 Claims, N0 Drawings METHOD FOR MAINTAI NING THE NORMAL INTEGRITY OF BLOOD This is a continuation-in-part of application Ser. No. 246,327, filed Apr. 21, 1972 and now abandoned.
BACKGROUND OF THE INVENTION 1. Field of the invention This invention relates to biomedical articles that resist the clotting of human blood and generally that of warm blooded animals. It describes the structure of these-articles and the various modes of their manufacture. One of such articles is a subdermal implant. Examples are subdermal prosthesis such as artificial blood vessels to correct atherosclerotic shrunken passage- 1 ways or to eliminate aneurisms in cardiac assist devices .and in artifical hearts and heart valves to replace or augment the function of the natural heart. Other subdermal prosthetic devices of this invention include reinforced and non reinforced sheetings, rubbers to reconstruct fractures, coronary arteries, denture soft liners, denture base materials, sponge subdermal implant materials, mammary prosthesis, testicular prosthesis, atoplasty prosthesis, rhinoplasty implants, scleral buckler drains, catheters for intravenous administration of flu ids for withdrawal of serial blood samples, for percuta' neous flow-guided cardia catheterization, continuous monitoring of blood glucose, intestinal decompression tubes, various catheters and thoriac drains. Other implanted articles of this invention include circulatory assist devices, tubes for blood transfusion, the implants of electrical devices and mechanical devices such as prosthetic valves and sutures. Other biomedical articles of this invention include thromboresistant surgical instru- 'rnents, laboratory apparatus used for blood handling and blood handling and blood containers for storage.
2. Description of the Prior Art One of the most striking property of blood is its tendency to undergo clotting, or thrombosis. This has been the major problem encountered in the use of subdennal prosthesis.
The detailed mechanisme of thrombosis is still not established. Its normal course involves a series of com-' plex reactions that, once initiated result in the formation of thrombosis. Two processes may occur:
1. The absorption of proteins leading to coagulation;
,thrombogenic and therefore require the use by the patient of anticoagulant drugs such as heparin and coumarin derivatives.
,Various organic polymers'havebeen coated recently with heparin. Although this material displays some degree of thromboresistance, the coating eventually washes away with the flow of blood and it is difficult to fabricate. i
There have been attempts to obtain thromboresistant biomedical articles from fluorinated polymers and sulfonated polymers. However, none of them are performing in a satisfactory manner. This is due, in the opinion of the author of the present invention, to the disposition, the length and the relative lengths of the various groups in the polymer.
SUMMARY OF THE INVENTION.
My invention provides,thromboresistant biomedical articles useful in the fields of subdermal implants, surgical instruments, laboratory apparatus and blood containers. These articles are composed, at least on their surface, of an organic polymeric material having side chains of the formula C,,F ,C,,,l-l ,wherein n and m are integers, n ranging from 1 to 28 and the sum of n and m from 1 to 28, and an anionic group.
DESCRIPTION or THE PREFERRED EMBODIMENT The biomedical articles of this invention are characterized by their thromboresistant surface. The surface of the said articles are characterized by an organic polymeric material having fluoroalkyl side chains of the nF2nJ-l m 2m and m are integers, the range of )1 extending from 1 to 28 and the sum of n and in from 2 to 28. Thenurnberof fluoroalkyl side chains relative to the number of main-chain-atoms in one recurring unit ranges from 1:2 to lzlQ preferably from 1:2 to 1:5.The atoms that arch the main or linear direction of the polymer such as the carbon atoms in polyethylene and poly vinyl alcohol), are the only ones considered main-chain-atoms. Linear fluoroalkyl side chains with values of the integer rt ranging from 8 to 28 are particularly effective ones to give the articles of this invention a high degree of thromboresistance.
The presence of another, generally shorter side chain, which is an anion or one comprising an anion, generally enhances the 'thromboresistivity of the polymer. However, its presence is required only in the cases wherein the said fluoroalkyl side chain is branched (non linear) and in cases wherein the value of the integer n ranges from 1 to 7. i
A feature of the 'said organic polymeric materials of I this invention is thattheir thromboresistant character.
invcntion'have simultaneously low surface tension and negative zeta potential, properties thought necessary for thromboresistance according to certain theories.
The invention is described hereinafter in. greater detail by reference to the examples which show preferred embodiments of the invention. It should be understood however that the examples hereinafter given are for the purposes of illustration only and that the invention in its broader aspects is not limited thereto.
Examples of the said tluorinated side chains are 3( 2)1 CF3(CF2)11(CH2)16 1 a 2)22 2 4 9( 2)10."- H2)2 a 1' The anionic groups can be either in their acidic form, their salt or their partially neutralized form. Example of 3 simple anionic groups are carboxylate, sulfonate, sulfate, phosphate and phosphites. Examples of the salt forming positive ions are sodium, potassium, lithium, ammonium, magnesium, tertiary amines such as N- methylmorpholine.
The ratio of the number of the said fluoroalkyl groups to the number of said anionic groups ranges from 0.511 to 50:1, preferably from 1:1 to 20:1. ln general, this ratio decreases as the ionic strength decreases. The number, strength and degree of neutralization of said anionic groups should be limited in order to avoid solvation or excessive swelling of the fluorinated polymer by the blood.
The said fluoroalkyl side chain may be directly attached to the main chain of the organic polymer. It can also be attached by an intermediate divalent radical,
such as --O, CO, SO, SO SO NH.-, CH O, COO-, NHCO, NH- COO, NHCONH-, POCH POC H SO NCH SO NC l-l Similarly, the anionic group may be directly attached to the main chain of the organic polymer or through an intermediate divalent radical. Such radicals are exemplified by CH C H OC H (CH )s 2 2H43( 2)i5 Biomedical articles of this invention may be entirely composed of the said organic polymeric materialswith the fluoroalkyl side chains. However, the particular mechanical and electrical properties required of the various biomedical articles, or the higher cost involved may require them to comprise a surface portion and a substrate portion. The surface portion is composed of the said thromboresistant organic polymer. The substrate portion may be any solid material that satisfies the properties required of the biomedical article. Thus, substrate materials comprise plastics, rubbers, metals, glass, ceramics. The useof a coating technic is particularly advantageous for making surgical instruments, laboratory apparatus, blood containers and heart valves.
Examples of plastic substrates are isotactic polyolefins, such as polypropylene, polystyrene, polyethylene, poly(4-methylpentane); polyesters such as poly(l,4- cyclohexylene terephthalate), poly(ethylene terephthalate); polyacrylates such as polymethylmethacrylate, polyco (ethylacrylate-acrylic acid); polyurethanes such as the ones prepared from a hydroxy. terminated polyether or polyester and methylenebis (phenylisocyanate); polycarbonates such as poly(2,2- propanebis(4-phenyl carbonate); fluorinated polyole fins such as poly(tetrafluoroethylene); chlorinated polyolefins such as polyvinylchloride; proteins such as wool, casein; cellulose, cellulose derivatives such as cellulose acetate, cellulose acetate butyrate and other polysaccharides. Examples of rubber substrates are silicone rubbers such as poly(dimethylsiloxane poly(rnethylphenyl siloxane); hydrocarbon rubbers such as butyl rubber, ethylene-propylene rubber; nitrile rubbers such as polyco(butadieneacrylonitrile); fluorinated rubbers such as fluorinated ethylene-propylene rubber, fluorinated polyurethanes; urethane rubbers such as the ones prepared from hydroxy terminated polyethers or polyesters and methylenebis(- phenylisocyanate); polyether rubbers such as poly (propylene oxide) and chlorosulfonated rubbers such as chlorosulfonated ethylene-propylene rubber.
Metallic substrates include stainless steel, aluminum, alloys of chromium, nickel, cobalt and magnesium.
Examples of the said organic polymeric materials having linear fluoroalkyl side chains wherein the said integer n ranges between 8 and 28, the sum of n and m between 8 and 28 and the said polymer has no anionic groups attached to the main chain are:
poly( l, l ,2,2- tetrahydropentadecafluorononyl acrylate) poly( l ,ldihydropentacosafluorotridecyl acrylate) poly( l,1dihydropentatetracontafluorotricosyl methacrylate) poly( 1,1 ,2,2-tetrahydrononacosafluorohexadecyl vinyl ehter) poly (vinylperfluorooctadecane) poly (perfluorol octadecene) poly(vinyl perfluorostearate) poly(N-l l dihydropentatriacontafluorooctadecyl hexamethylene urea) I poly(methyll ,l ,2,2-tetrahydrotritriacontafluorooctadecyl siloxane) poly [di( l,l,2,Z-tetrahydrotricosafluorotridecyl) siloxane] I poly( N-l 1 dihydropentatriacontafluorooctadecyl hexamethylene adipamide).
Examples of said organic polymeric materials having linear or branched fluoroalkyl side chains wherein the said integer n ranges between 1 and 28, the sum of n and m between 2 and 28 and the said anionic group is bonded to the main chain of the polymer, are (the propertion of monomers in the copolymers are expressed in mole polyco( l l dihydropentadecafluorooctyl methacrylate 10% sodium acrylate) polyco (l,l,2,2,stetrahydrotrifluoropropyl acrylate 5% maleic acid) polyco( 1,1 ,2,2-tetrahydropentade cafluorononyl acrylate 30% methacrylic acid 15% sodium methacrylate) poly(carboxyethyl-l l ,2,2-tetrahydrotrifluoropropyl siloxane) polyco(methyl-3,3,3-trifluoropropyl siloxane 20% carboxyethyl-methyl siloxane) polymers of fluoroalkyl esters, amides and imides of maleic and fumaric acids The copolymers with ethylene, styrene, methylvinyl ether and vinyl acetate of fluoroalkyl esters, amides and imides of maleic and fumaric acids The copolymers with maleic, fumaric and acrylic acids and their anhydrides of fluoroalkyl esters, amides and imides of maleic and fumaric acids the l,1dihydronanafluoropentyl monoester of polyco (50% ethylene 23% maleic acid 23% potassium maleate) the l,l-dihydropentadecafluorooctyl monoamide of polyco methylvinyl ether 10% fumaric acid 10% sodium fumarate) polyco( vinyl l l dihydropentatriacontafluorooctadecyl carbamate 15% vinyl disodium phosphite) polyco (vinyl perfluoropropianate 10% acrylic acid) These compounds are all linear organic polymers having intrinsic viscosity values higher than 0.04, preferably higher than 0.07. They can, be prepared by conventional polymerization techniques such as the free radical and ionic addition polymerization techniques or heat, oxygen, moisture, radiation, peroxides etc.
condensation polymerization techniques of the monomers. Another method consists of introducing an anigroup. Such compounds are, for example, perfluorooctadecanoyl chloride and l ,l-dihydrotricosafluorodode- 1 cyl alcohol. These techniques are well documented in the art of polymer synthesis.
After preparation, the polymer is then shaped into the desired biomedical articles, e.g. heart valves, blood vessel, tubings etc. The shaping can be done by any conventional means, uch as extruding,'molding, casting. After proper sterilization, the biomedical article is ready for use.
An effective way to prepare a thromboresistant biomedical article of this invention is to react the polymeric material of this invention containing the said anionic group with a stochiometrically defective amount of a cationic type polymer, such as poly-2- vinylpyridine, poly(vinylbenzyldimethylamine), polyco(styrene-4-vinylpyrridine).
Another way to prepare a thromboresistant biomedical article of this invention is to coat the potentially blood contacting surfaces of the shaped article made of a plastic, a rubber, a metal or glass with the said organic polymeric material having the fluoroalkyl side chains exemplified above. Any of the conventional coating procedures can be used, such as coating from a'solution, emulsion, suspension followed by solvent evaporation, or a hot melt coating technique. The bond between he substrate and the coating can be improved, if necessary, by conventional surface treatment techniques, such as corona discharge, flame treatment, irradiation, or priming with a polar polymeric substance. These coating and priming procedures are well documented in the art of coating technology.
A biomedical article of this invention can be prepared by the use of still another technique. This technique consists of coating the shaped article, made of a plastic, a rubber, a metal or glass, with the monomers from which the said organic polymeric materials, having the fiuoroalkyl side chains, and examplified above, are prepared, and let the polymerization proceed on the surface. Similar coating and priming procedures can be used as the onesdescribed above. The polymerization on the surface of the article can be carried out by conventional techniques used in the art of polymer synthesis and coatings, such as the use of catalysts,
Still another way to achieving the objectives of this invention is to graft an anionic group and the said pertluoroalkyl group C F ,C l-l onto the surface of a shaped biomedical article made of a plastic or a rubber. Examples of such surface grafting reactions are as follows:
the grafting of perfluorooctadecanoyl chloride onto a shaped biomedical article made of poly(tet-' ramethylene urea), poly(tetramethylene hexamethylene dicarbamate), cellulose fibers, wool, silk, nylon;
the grafting of sulfuric acid and perfluorohexadecanoic acid onto the shaped article made of poly(vinylalcohol), cellulose, casein;
the grafting of 1,1 ,2,2-tetrahydroheptafluoropentanol, onto a preshaped article made of polyco(acrylic acid sodium acrylate);
the grafting of l,l-dihydropentacosafluorotridecyl' iodide onto a shaped article made of polyco(ethylene-monosodium maleate), and onto sodium cellulose sulfate;
- the radiation grafting of l,l,2,Z-tetrahydrotritriacontafluorooctadecyl vinylether to a shaped article made of poly(ethylene ter'ephtalate);
the grafting of l,l-dihydrohencosafluoroundecyl amine onto a shaped biomedical article made of polyethylene which has been previously sulfonated with concentrated sulfuric acid and the sulfonate groups partially neutralized with a buffer solution having a pH of 7.5.
There are still other meansto prepare the polymers of this invention. For example polymers having unbr'anched higher alkyl side chains can be fiuorinated with fluorine gas. Examples of such polymers are polyvinylstearate, polyco(vinylacetate-docosylmaleate sodium salt).
EXAMPLE 1 Ninety grams (0.1 moles) of 1,1- dihydrotritriacontafluoroheptadecyl acrylate and 1.14 grams (0.0l moles) of l-hexenoic acid are copolymerized by using 0.5% azobisisobutyronitrile asthe initia-' tor and toluene as the solvent medium. The reaction is carried out in crew cup vials at 75-80C. for 16 hours. The copolymer is then purified by adding methanol to the solution, filtered, redissolved in 1,2,2-trichlorotrifluoroethane, and this procedure is repeated three times. The solid polymer is then dried in a vacuum oven at 60C. for 64 hours. The intrinsic viscosity measured 'in hexafluorodimethyl benzene is 0.2.
A glass tube is then treated with a 5% 'trichloro trifluoroethylene solution of the copolymer by filling the tube, inverting it and allowing the excess liquid to drain out. Following evaporation of the solvent, the coated test tube is sterilized.
Five (5) ml of freshly drawn whole blood from the lower vena cava of a rabbit as added and the test tube is periodically tipped to observe clot formation. No evidence of clot formation is observed for severalhours. A control test tube, not coated with a layer of the co polymer, is tested in an identical manner, and clotting occurs within 7 minutes.
EXAMPLE 2 EXAMPLE 3 A copolymer of octadecyl vinyl ether with 1- dodecenoic'acid sodium salt is used to coat, from a 5% toluene solution, a commercially available 'fluoropolymer heart valve previously submitted to electron radiation to obtain better adhesion. It is then fluorinated in the dark by exposure to 5% fluorine diluted with nitrogen at room temperature for 2.weeks. The coated heart valve is then sterilized and when implanted in an animal, such as a dog, the implant, in accordance with EXAMPLE 4 A silicone rubber having a fluoroalkyl side chain is .prepared by the following customary procedure.
Methyl trichlorosilane is reacted with -l,1,2,2,3,3,4,4- octahydropentadecafluorohexadecyl magnesium chloride, the dichloro product separated from the reactive mixture by vacuum distillation and followed by polymerization with the addition of water. It is then mixed with 2% dimethyltindilaurate catalyst, molded into a tube of 0.05 inch inside diameter and cured at 150C. for 48 hours under nitrogen.
The tubing is tested in vivo using a jugular vein of a dog. The vein is exposed and severed in a standard surgical manner. The tube, after sterilization, is formed into a loop and to each end of the vein is attached one end of the tubing. Circulation through the vein is resumed and blood now is passing through the tubing.
The implanted artifical vein, in accordance with this invention, will not be found to be harmful to the life of the animal.
, EXAMPLE 5 l-perfluorooctadecene,'88.l g (0.1 mol), is copolymerized with maleic anhydride, 9.6 g(0.l mole), using a technique similar to that described in Example 1. The copolymer is then boiled in an aqueous sodium hydroxide solution containing a small amount of a fluorinated anionic surfactant. This reaction yields the sodium salt of the maleic acid portion of the polymer. The polymer is then purified by a repeated solutionpreceipitation technique.
A cannula made of polypropylene is surface oxidized in a circulating air oven at 1 10 C. to obtain better adhesion. It is then coated with a 5% trichlorotrifluoroethylene solution of the polymer prepared in this example and the'solvent evaporated in an air iven at 60C. After sterilization, the cannula is used as conduit replacement in a heart-lung machine. After several months of use no evidence of thrombus formation on the cannula will be reported.
EXAMPLE 6 Poly(vinyl alcohol) of 120,000 molecular weight, g(1 mole), is sulfated with-sulfur trioxide dissolved in sulfuric acid to yield the sulfate ester. As deduced by titration with sodium hydroxide one out of every 10 hydroxyl groups is sulfated. The polymer is further reacted with perfluorohexadecanoyl chloride in N- EXAMPLE 7 A 121' copolymer of methylvinylether maleic anhyclride, 15.6 g (0.1 mole) having an intrinsic viscosity of 2.5 in methylethyl ketone, is reacted in 500 ml of methylethyl ketone at the boil with l,l,2,2-tetrahydrohencosafluorododecyl amine, 66.3 g (0.1 mole). The fluorinated acid-amid is then precipitated in methanol, filtered, washed, and reacted with sodium hydroxide dissolved in alcohol. The polymer thus obtained. is polyco[methylvinyl ether-sodium salt of maleic acid mono( l l ,2,2-tetrahydrohencosafluorododecyl )amide], which is then purified by repeated solvationprecipitation.
The fluorinated copolymer is then molded in a hot press into a 0.05 in. inside diameter catheter having a wall thickness of 0.005 in. and sterilized. When surgically implanted in the jugular vein of a dog, similar results to those obtained in Example 4 will be reported.
EXAMPLE 8 Vinyl perfluorodocosyl ether, 11.8 g (0.1 mole) is polymerized and purified using a technique similar to that described in Example 1. The intrinsic viscosity measured in trichlorotrifluoroethane is 0.2. A stainless steel tubing is coated with a 5% trichlorotrifluoroethylene solution of this polymer, and the solvent evaporated at 60C. in a vacuum oven. After sterilization the tubing is used as an arterialvenous bypass in a hemidialysis machine. No thrombus formation will be evident after usage of the machine for several months.
EXAMPLE 9 A cannula made of polyethylene is phosphorilated on the surface with phosphorous trichloride at 60C. in the presence of oxygen, and then boiled in aqueous sodium hydroxide. This procedure provides sodium phosphate groups at the surface. A subsequent grafting of perfluorotetradecene using an electron radiation techniques yields the desired surface, which is then cleaned with bis(trifluoromethyl) benzene and ethanol. After through sterilization, the cannula, when tested in a heart-lung machine, will yield comparable result to those obtained in Example 5.
. EXAMPLE 10 101.6 grams (0.1 mole) of perfluorooctadecylperfluorovinyl ether and 16 grams (0.02 moles) of perfluoro-l-hexadecenoic acid are dissolved in bis(trifluoro)benzene and coated on a commercially available silicone rubber heart valve previously primed to obtain better adhesion. After'solvent evaporation, the coated heart valve is then irradiated with an electron beam of 5 MeV under argon to polymerize the coating. Following extraction of the residual monomers and sterilization, the heart valve, when evaluated as in Example 3, yields similar results.
It will be apparent that many widely different embodiments of this invention may be made without de parting from the spirit and scope thereof. Therefore, the invention is not intended to be limited except as indicated in the appended claims.
EXAMPLE. 11
Polyco(methacrylic acid-3,333,3,3'-hexafluoroisobutyl methacrylate) is prepared in emulsion at 65C for 6 hours with the following recipe, added in the order shown:
Parts Water 30.0 Trimethyloctodecylammonium bromide 1.0 Mcthacrylic'acid 2.0
- Contmued 3,3,3,3,3,3' hexafluoroisobutyl methacrylate 100 Acetone 1 5.0 Azodiisobutyramidine dihydrochloride 0.2
EXAMPLE 12 A thromboresistant artificial heart is molded from poly(methyl-3,3,3-trifluoropropyl siloxane) wherein about one fifth of the methyl groups is replaced with carboxyethyl groups. This copolymer is prepared as follows; Methyldichlorosilane is reacted with acrylonitrile under reflux conditions (60l,15C) for about ten hours by using catalytic amounts of the following materials: cuprous chloride, tetramethylethylene diamine and triethylamine. The reaction product, which is cyanoethyl-methyldichlorosilane, is hydrolyzed in the presenggg fam' HCl solution under reflux conditions until complete diappearance of the-nitrile group. After separation from theaqueous layer, the organic layer consists of poly(carboxyethylmethylsiloxane). This is equilibrated at 60100C, for 4-6 hours, with 20% by weight of 3,3,3-trifluoropropyl-methylsiloxane fluid commercially available from Dow Corning Co., Inc until constant viscosity is reached. The product is then washed with aqueous sodium carbonate, water, separate from the aqueous layer, and stripped off from the low boilers by distillation. It is then blended with 100 phr finely divided silica and 1 phr dicumyl peroxide, molded into a human heart and cured at 125C for 5 EXAMPLE l3 Acrylic acid, mole is copolymerized with. 80 mole of bis [2-(N-ethyl perfluorohexylsulfonamido) ethyl] itaconate, as in Example 1. After purification and coating on a test tube, the polymer passes the same test as the one described in Example '1.
Having thus described my invention and in what manner it may be manufactured and used, what I claim and desire to protect by Letters Patent is:
1.. A method-or maintaining the normal integrity of blood which comprises placing it in contact with a physiologically acceptable article at least the surface of which consists of an organic polymeric material having fluoroalkyl side chains of the formula C F C H wherein n and m are integers, n ranging 1 to 28, and the sum of n and m from 2 to 28, the number of said fluoroalkyl side chains relative to the number of main chain atoms in one recurring unit ranges from 1:2 to 1:10; and said polymeric material having another side group chemically bonded to the main chain, said side group being selected from the group consisting of Hydrogen, hologen, aryl, lower alkyl and anionic groups.
2. The method defined in'claim 1 wherein the said fiuoroalkyl side chains are linear, the said integers n and m range from 8 to 28 and the sum of n and m from 8 to 28.
3. The method definedin claim 1 wherein the said integer n ranges from 1 to 7, the sum of n and m from 2 to 28 and the said side group is an anionic group.
4. The method defined in claim 1 wherein said physi- 5 ological acceptable article comprises a substrate portion and a surface coating. portion, said surface coating portion at least being of said polymeric material defined in claiml.
5. The method defined in claim 1 wherein the said anionic group is a member selected from the group the said organic polymeric material by an intermediate divalent radical.
8. The method defined in claim 1 wherein the said anionic group is bonded to the said organic polymeric material by an intermediate divalent radical.
9. The method defined in claim 7 wherein the said intermediate divalent radical is a member selected from the group consisting of O, -'CO,v SO,
10. The method defined in claim 8 wherein the said intermediate divalent radical is a member selected from the group consisting of --CH C H *OCZHQ, 2)B' F2)15 'f z H z 11. The method defined in claim 1 wherein said physiologically acceptable article is a subdermal surgical implant.
12. The method defined in claim 1 wherein said physiologically acceptable article is a surgical instrument.
13. The method defined in claim 1 wherein said physiologically acceptable article is a laboratory apparatus used for handling blood.
14. The method defined in claim 1 wherein said physiologically acceptable article is a blood container.
15. The method defined in claim 4 wherein the said substrate portion is selected from the group consisting of plastics, rubbers, metals, glass and ceramics.
16. The method defined in claim l wherein said organic polymeric material is selected from the group consisting of copolymers prepared from a fiuoroalkyl acrylate and acrylic acid, a fiuoroalkyl methacrylate and methacrylic acid and the mixtures of these monomers.
17. The method defined in claim 16 wherein said polymeric acrylates are selected from the group consisting of:
poly(l,ldihydropentacosafluorotridecyl acrylate) poly( 1 l -dihydropentatetracontafluorotricosyl methacrylate) polyco( l l dihydropentadecafluorooctyl methacrylate 10% sodium acrylate) polyco(1,1,2,2-tetrahydrotrifluoropropyl acrylate 5% maleic acid) polyco( 1 l ,2,2tetrahydropentadecafluorononyl acrylate 30% methacrylic acid 15% sodium methacrylate) 12 19. The method defined in claim 1 wherein said organic polymeric material is selected from the group consisting of:
polymers of fluoroalkyl esters, amides and imides of maleic and fumaric acids, the copolymers with ethylene, styrene, methylvinyl ether and vinyl acetate of fluoroalkyl esters, amides and imides of maleic and fumaric acids, the copolymers with maleic, fumaric and acrylic acids and their anhydrides of fluoroalkyl esters,
amides and imides of maleic and fumaric acids.

Claims (19)

1. A METHOD OR MAINTAINING THE NORMAL INTEGRITY OF BLOOD WHICH COMPRISES PLACING IT IN CONTACT WITH A PHYSIOLOGICALLY ACCEPTABLE ARTICLE AT LEAST THE SURFACE OF WHICH CONSISTS OF AN ORGANIC POLYMERIC MATERIAL HAING FLUOROALKYL SIDE CHAINS OF THE FORMULA CNF2N+1CMH2M-, WHHEREIN N AND M ARE INTEGERS, N RANGING 1 TO 28, AND THE SUM OF N AND M FROM 2 TO 28, THE NUMBER OF SAID FLUOROALKYL SIDE CHAINS RELATIVE TO THE NUMBER OF MAIN CHAIN ATOMS IN ONE RECURRING UNIT RANGES FROM 1:2 TO 1:10, AND SAID POLYMERIC MATERIAL HAVING ANOTHER SIDE GROUP CHEMICALLY BONDED TO THE MAIN CHAIN, SAID SIDE GROUP BEING SELECTED FROM THE GROUP CONSISTING OF HYDROGEN, HALOGEN, ARYL, LOWER ALKYL AND ANIONIC GROUPS.
2. The method defined in claim 1 wherein the said fluoroalkyl side chains are linear, the said integers n and m range from 8 to 28 and the sum of n and m from 8 to 28.
3. The method defined in claim 1 wherein the said integer n ranges from 1 to 7, the sum of n and m from 2 to 28 and the said side group is an anionic group.
4. The method defined in claim 1 wherein said physiological acceptable article comprises a substrate portion and a surface coating portion, said surface coating portion at least being of said polymeric material defined in claim 1.
5. The method defined in claim 1 wherein the said anionic group is a member selected from the group consisting of the acid form of a carboxylate, sulfonate, sulfate, phosphate, phosphite and the salt forms of these groups.
6. The method defined in claim 1 wherein the ratio of the number of said fluoroalkyl side chains to the number of said anions is in the range of 1:1 to 20:1.
7. The method defined in laim 1 wherein the said fluoroalkyl side chain is bonded to the main chain of the said organic polymeric material by an intermediate divaLent radical.
8. The method defined in claim 1 wherein the said anionic group is bonded to the said organic polymeric material by an intermediate divalent radical.
9. The method defined in claim 7 wherein the said intermediate divalent radical is a member selected from the group consisting of -O-, -CO-, -SO-, -SO2-, -SO2NH-, -CH2O-, -COO-, -NHCO-, -NHCONH-, -POCH3-, -POC2H5-, -SO2NCH3-, -SO2NC2H5-.
10. The method defined in claim 8 wherein the said intermediate divalent radical is a member selected from the group consisting of -CH2-, -C2H4-, -OC2H4-, -(CH2)8-, -(CF2)15-, -SO2NHChd 2H4-.
11. The method defined in claim 1 wherein said physiologically acceptable article is a subdermal surgical implant.
12. The method defined in claim 1 wherein said physiologically acceptable article is a surgical instrument.
13. The method defined in claim 1 wherein said physiologically acceptable article is a laboratory apparatus used for handling blood.
14. The method defined in claim 1 wherein said physiologically acceptable article is a blood container.
15. The method defined in claim 4 wherein the said substrate portion is selected from the group consisting of plastics, rubbers, metals, glass and ceramics.
16. The method defined in claim 1 wherein said organic polymeric material is selected from the group consisting of copolymers prepared from a fluoroalkyl acrylate and acrylic acid, a fluoroalkyl methacrylate and methacrylic acid and the mixtures of these monomers.
17. The method defined in claim 16 wherein said polymeric acrylates are selected from the group consisting of: poly(1,1- dihydropentacosafluorotridecyl acrylate) poly(1,1-dihydropentatetracontafluorotricosyl methacrylate) polyco(1,1-dihydropentadecafluorooctyl methacrylate - 10% sodium acrylate) polyco(1,1,2,2-tetrahydrotrifluoropropyl acrylate - 5% maleic acid) polyco(1,1,2,2-tetrahydropentadecafluorononyl acrylate - 30% methacrylic acid - 15% sodium methacrylate)
18. The method defined in claim 1 wherein said organic polymeric material is selected from the group consisting of: poly(methyl-1,1,2,2-tetrahydrotriacontafluorooctadecyl siloxane) poly(di(1,1,2,2-tetrahydrotricosafluorotridecyl) siloxane). poly(carboxyethyl-1,1,2,2-tetrahydrotrifluoropropyl siloxane) and poly(methyl-3,3,3- trifluoropropyl siloxane) wherein a minor part of the methyl groups is replaced with carboxyethyl groups.
19. The method defined in claim 1 wherein said organic polymeric material is selected from the group consisting of: polymers of fluoroalkyl esters, amides and imides of maleic and fumaric acids, the copolymers with ethylene, styrene, methylvinyl ether and vinyl acetate of fluoroalkyl esters, amides and imides of maleic and fumaric acids, the copolymers with maleic, fumaric and acrylic acids and their anhydrides of fluoroalkyl esters, amides and imides of maleic and fumaric acids.
US40654773 1972-04-21 1973-10-15 Method for maintaining the normal integrity of blood Expired - Lifetime US3839743A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US40654773 US3839743A (en) 1972-04-21 1973-10-15 Method for maintaining the normal integrity of blood

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US24632772A 1972-04-21 1972-04-21
US40654773 US3839743A (en) 1972-04-21 1973-10-15 Method for maintaining the normal integrity of blood

Publications (1)

Publication Number Publication Date
US3839743A true US3839743A (en) 1974-10-08

Family

ID=26937895

Family Applications (1)

Application Number Title Priority Date Filing Date
US40654773 Expired - Lifetime US3839743A (en) 1972-04-21 1973-10-15 Method for maintaining the normal integrity of blood

Country Status (1)

Country Link
US (1) US3839743A (en)

Cited By (122)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4008047A (en) * 1974-12-26 1977-02-15 North Star Research Institute Blood compatible polymers for blood oxygenation devices
US4178329A (en) * 1977-11-18 1979-12-11 Hoechst Aktiengesellschaft Plastics material having an improved blood tolerance
FR2438059A1 (en) * 1978-08-03 1980-04-30 Masuhara Hidekazu FLUORINATED POLYMER COATING SUBSTANCE FOR DENTAL PROSTHESIS BASE AND DENTAL PROSTHESIS BASED ON SUCH A COATING
DE2945138A1 (en) * 1978-11-08 1980-05-29 Peter John Fydelor BIOCOMPATIBLE MATERIAL AND ITS USE
US4219520A (en) * 1978-08-30 1980-08-26 Medical Evaluation Devices And Instruments Corp. Method of making thrombo-resistant non-thrombogenic objects formed from a uniform mixture of a particulate resin and colloidal graphite
FR2463785A1 (en) * 1979-08-17 1981-02-27 Asahi Glass Co Ltd NOVEL FLUOROUS ELASTOMERS CONTAINING FLUORINATED POLYMERIC SEGMENTS AND ORGANOPOLYSILOXANE SEGMENTS
EP0061312A1 (en) * 1981-03-19 1982-09-29 Board Of Regents, The University Of Texas System Alkyl-substituted polymers having enhanced albumin affinity
EP0073978A2 (en) * 1981-09-04 1983-03-16 Asahi Glass Company Ltd. Antithrombogenic materials
FR2513112A1 (en) * 1981-09-24 1983-03-25 Commissariat Energie Atomique IMPROVED JOINT POLYMERIC PROSTHESIS AND PROCESS FOR PREPARING THE SAME
US4484894A (en) * 1980-09-03 1984-11-27 Eiichi Masuhara Sheet for lining denture base
FR2566667A1 (en) * 1984-06-27 1986-01-03 Delcroix Jean Pierre Method of antithrombogenic treatment of catheters and catheters thus obtained.
US4622237A (en) * 1984-06-22 1986-11-11 Giulio Lori Method of flame activation of substrates
US4632842A (en) * 1985-06-20 1986-12-30 Atrium Medical Corporation Glow discharge process for producing implantable devices
US4656083A (en) * 1983-08-01 1987-04-07 Washington Research Foundation Plasma gas discharge treatment for improving the biocompatibility of biomaterials
US4687482A (en) * 1984-04-27 1987-08-18 Scripps Clinic And Research Foundation Vascular prosthesis
DE3709069A1 (en) * 1986-03-20 1987-10-01 Ohi Seisakusho Co Ltd WIRE FASTENING DEVICE FOR A WINDOW REGULATING DEVICE
US4718907A (en) * 1985-06-20 1988-01-12 Atrium Medical Corporation Vascular prosthesis having fluorinated coating with varying F/C ratio
WO1988006026A2 (en) * 1987-02-17 1988-08-25 Alberto Arpesani Internal prosthesis for the substitution of a part of the human body particularly in vascular surgery
US4994298A (en) * 1988-06-07 1991-02-19 Biogold Inc. Method of making a biocompatible prosthesis
US5034265A (en) * 1983-08-01 1991-07-23 Washington Research Foundation Plasma gas discharge treatment for improving the compatibility of biomaterials
US5356668A (en) * 1990-12-07 1994-10-18 Vascutek Limited Fluorinating polymer surfaces
US5383903A (en) * 1992-08-20 1995-01-24 United States Surgical Corporation Dimethylsiloxane-alkylene oxide copolymer coatings for filaments
US5637113A (en) * 1994-12-13 1997-06-10 Advanced Cardiovascular Systems, Inc. Polymer film for wrapping a stent structure
EP0873756A2 (en) * 1997-04-21 1998-10-28 HĂźls Aktiengesellschaft Antibacterial blood compatible modified surfaces
US5907017A (en) * 1997-01-31 1999-05-25 Cornell Research Foundation, Inc. Semifluorinated side chain-containing polymers
US6022344A (en) * 1997-12-04 2000-02-08 Npbi International B.V. Cryopreservation bag
US6060639A (en) * 1994-03-04 2000-05-09 Mentor Corporation Testicular prosthesis and method of manufacturing and filling
US6464723B1 (en) 1999-04-22 2002-10-15 Advanced Cardiovascular Systems, Inc. Radiopaque stents
US6527801B1 (en) 2000-04-13 2003-03-04 Advanced Cardiovascular Systems, Inc. Biodegradable drug delivery material for stent
US6585757B1 (en) 1999-09-15 2003-07-01 Advanced Cardiovascular Systems, Inc. Endovascular stent with radiopaque spine
US6602287B1 (en) 1999-12-08 2003-08-05 Advanced Cardiovascular Systems, Inc. Stent with anti-thrombogenic coating
US6605114B1 (en) 1997-04-24 2003-08-12 Advanced Cardiovascular Systems, Inc. Heparin delivery method
US20030171804A1 (en) * 1997-06-24 2003-09-11 Werner Krause Stents coated with fluoroalkyl groups
US6652579B1 (en) 2000-06-22 2003-11-25 Advanced Cardiovascular Systems, Inc. Radiopaque stent
US7105018B1 (en) 2002-12-30 2006-09-12 Advanced Cardiovascular Systems, Inc. Drug-eluting stent cover and method of use
US20060271170A1 (en) * 2005-05-31 2006-11-30 Gale David C Stent with flexible sections in high strain regions
US7144422B1 (en) 2002-11-13 2006-12-05 Advanced Cardiovascular Systems, Inc. Drug-eluting stent and methods of making the same
US7163715B1 (en) 2001-06-12 2007-01-16 Advanced Cardiovascular Systems, Inc. Spray processing of porous medical devices
US7186789B2 (en) 2003-06-11 2007-03-06 Advanced Cardiovascular Systems, Inc. Bioabsorbable, biobeneficial polyester polymers for use in drug eluting stent coatings
US7198675B2 (en) 2003-09-30 2007-04-03 Advanced Cardiovascular Systems Stent mandrel fixture and method for selectively coating surfaces of a stent
US7229471B2 (en) 2004-09-10 2007-06-12 Advanced Cardiovascular Systems, Inc. Compositions containing fast-leaching plasticizers for improved performance of medical devices
US7258891B2 (en) 2001-06-28 2007-08-21 Advanced Cardiovascular Systems, Inc. Stent mounting assembly and a method of using the same to coat a stent
US7285304B1 (en) 2003-06-25 2007-10-23 Advanced Cardiovascular Systems, Inc. Fluid treatment of a polymeric coating on an implantable medical device
US7291166B2 (en) 2005-05-18 2007-11-06 Advanced Cardiovascular Systems, Inc. Polymeric stent patterns
US7297159B2 (en) 2000-10-26 2007-11-20 Advanced Cardiovascular Systems, Inc. Selective coating of medical devices
US7297758B2 (en) 2005-08-02 2007-11-20 Advanced Cardiovascular Systems, Inc. Method for extending shelf-life of constructs of semi-crystallizable polymers
US20070282434A1 (en) * 2006-05-30 2007-12-06 Yunbing Wang Copolymer-bioceramic composite implantable medical devices
US7381048B2 (en) 2005-04-12 2008-06-03 Advanced Cardiovascular Systems, Inc. Stents with profiles for gripping a balloon catheter and molds for fabricating stents
US7435255B1 (en) 2002-11-13 2008-10-14 Advnaced Cardiovascular Systems, Inc. Drug-eluting stent and methods of making
US7476245B2 (en) 2005-08-16 2009-01-13 Advanced Cardiovascular Systems, Inc. Polymeric stent patterns
US7553377B1 (en) 2004-04-27 2009-06-30 Advanced Cardiovascular Systems, Inc. Apparatus and method for electrostatic coating of an abluminal stent surface
US7563324B1 (en) 2003-12-29 2009-07-21 Advanced Cardiovascular Systems Inc. System and method for coating an implantable medical device
US7622070B2 (en) 2005-06-20 2009-11-24 Advanced Cardiovascular Systems, Inc. Method of manufacturing an implantable polymeric medical device
US7632307B2 (en) 2004-12-16 2009-12-15 Advanced Cardiovascular Systems, Inc. Abluminal, multilayer coating constructs for drug-delivery stents
US7658880B2 (en) 2005-07-29 2010-02-09 Advanced Cardiovascular Systems, Inc. Polymeric stent polishing method and apparatus
US7699890B2 (en) 1997-04-15 2010-04-20 Advanced Cardiovascular Systems, Inc. Medicated porous metal prosthesis and a method of making the same
US7731890B2 (en) 2006-06-15 2010-06-08 Advanced Cardiovascular Systems, Inc. Methods of fabricating stents with enhanced fracture toughness
US7740791B2 (en) 2006-06-30 2010-06-22 Advanced Cardiovascular Systems, Inc. Method of fabricating a stent with features by blow molding
US7757543B2 (en) 2006-07-13 2010-07-20 Advanced Cardiovascular Systems, Inc. Radio frequency identification monitoring of stents
US7758881B2 (en) 2004-06-30 2010-07-20 Advanced Cardiovascular Systems, Inc. Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders with an implantable medical device
US7761968B2 (en) 2006-05-25 2010-07-27 Advanced Cardiovascular Systems, Inc. Method of crimping a polymeric stent
US7794495B2 (en) 2006-07-17 2010-09-14 Advanced Cardiovascular Systems, Inc. Controlled degradation of stents
US7794776B1 (en) 2006-06-29 2010-09-14 Abbott Cardiovascular Systems Inc. Modification of polymer stents with radiation
US7823263B2 (en) 2006-07-11 2010-11-02 Abbott Cardiovascular Systems Inc. Method of removing stent islands from a stent
US7829008B2 (en) 2007-05-30 2010-11-09 Abbott Cardiovascular Systems Inc. Fabricating a stent from a blow molded tube
US7842737B2 (en) 2006-09-29 2010-11-30 Abbott Cardiovascular Systems Inc. Polymer blend-bioceramic composite implantable medical devices
US7867547B2 (en) 2005-12-19 2011-01-11 Advanced Cardiovascular Systems, Inc. Selectively coating luminal surfaces of stents
US7875283B2 (en) 2000-04-13 2011-01-25 Advanced Cardiovascular Systems, Inc. Biodegradable polymers for use with implantable medical devices
US7875233B2 (en) 2004-09-30 2011-01-25 Advanced Cardiovascular Systems, Inc. Method of fabricating a biaxially oriented implantable medical device
US7886419B2 (en) 2006-07-18 2011-02-15 Advanced Cardiovascular Systems, Inc. Stent crimping apparatus and method
US7901452B2 (en) 2007-06-27 2011-03-08 Abbott Cardiovascular Systems Inc. Method to fabricate a stent having selected morphology to reduce restenosis
US7923022B2 (en) 2006-09-13 2011-04-12 Advanced Cardiovascular Systems, Inc. Degradable polymeric implantable medical devices with continuous phase and discrete phase
US7951194B2 (en) 2006-05-26 2011-05-31 Abbott Cardiovascular Sysetms Inc. Bioabsorbable stent with radiopaque coating
US7951185B1 (en) 2006-01-06 2011-05-31 Advanced Cardiovascular Systems, Inc. Delivery of a stent at an elevated temperature
US7955381B1 (en) 2007-06-29 2011-06-07 Advanced Cardiovascular Systems, Inc. Polymer-bioceramic composite implantable medical device with different types of bioceramic particles
US7959940B2 (en) 2006-05-30 2011-06-14 Advanced Cardiovascular Systems, Inc. Polymer-bioceramic composite implantable medical devices
US7959857B2 (en) 2007-06-01 2011-06-14 Abbott Cardiovascular Systems Inc. Radiation sterilization of medical devices
US7964210B2 (en) 2006-03-31 2011-06-21 Abbott Cardiovascular Systems Inc. Degradable polymeric implantable medical devices with a continuous phase and discrete phase
US7971333B2 (en) 2006-05-30 2011-07-05 Advanced Cardiovascular Systems, Inc. Manufacturing process for polymetric stents
US7989018B2 (en) 2001-09-17 2011-08-02 Advanced Cardiovascular Systems, Inc. Fluid treatment of a polymeric coating on an implantable medical device
US7998404B2 (en) 2006-07-13 2011-08-16 Advanced Cardiovascular Systems, Inc. Reduced temperature sterilization of stents
US8003156B2 (en) 2006-05-04 2011-08-23 Advanced Cardiovascular Systems, Inc. Rotatable support elements for stents
US8017237B2 (en) 2006-06-23 2011-09-13 Abbott Cardiovascular Systems, Inc. Nanoshells on polymers
US8016879B2 (en) 2006-08-01 2011-09-13 Abbott Cardiovascular Systems Inc. Drug delivery after biodegradation of the stent scaffolding
US8034287B2 (en) 2006-06-01 2011-10-11 Abbott Cardiovascular Systems Inc. Radiation sterilization of medical devices
US8043553B1 (en) 2004-09-30 2011-10-25 Advanced Cardiovascular Systems, Inc. Controlled deformation of a polymer tube with a restraining surface in fabricating a medical article
US8048448B2 (en) 2006-06-15 2011-11-01 Abbott Cardiovascular Systems Inc. Nanoshells for drug delivery
US8048441B2 (en) 2007-06-25 2011-11-01 Abbott Cardiovascular Systems, Inc. Nanobead releasing medical devices
US8099849B2 (en) 2006-12-13 2012-01-24 Abbott Cardiovascular Systems Inc. Optimizing fracture toughness of polymeric stent
US8109994B2 (en) 2003-01-10 2012-02-07 Abbott Cardiovascular Systems, Inc. Biodegradable drug delivery material for stent
US8128688B2 (en) 2006-06-27 2012-03-06 Abbott Cardiovascular Systems Inc. Carbon coating on an implantable device
US8173062B1 (en) 2004-09-30 2012-05-08 Advanced Cardiovascular Systems, Inc. Controlled deformation of a polymer tube in fabricating a medical article
US8172897B2 (en) 1997-04-15 2012-05-08 Advanced Cardiovascular Systems, Inc. Polymer and metal composite implantable medical devices
US8202528B2 (en) 2007-06-05 2012-06-19 Abbott Cardiovascular Systems Inc. Implantable medical devices with elastomeric block copolymer coatings
US8241554B1 (en) 2004-06-29 2012-08-14 Advanced Cardiovascular Systems, Inc. Method of forming a stent pattern on a tube
US8262723B2 (en) 2007-04-09 2012-09-11 Abbott Cardiovascular Systems Inc. Implantable medical devices fabricated from polymer blends with star-block copolymers
US8293260B2 (en) 2007-06-05 2012-10-23 Abbott Cardiovascular Systems Inc. Elastomeric copolymer coatings containing poly (tetramethyl carbonate) for implantable medical devices
US8333000B2 (en) 2006-06-19 2012-12-18 Advanced Cardiovascular Systems, Inc. Methods for improving stent retention on a balloon catheter
US8343530B2 (en) 2006-05-30 2013-01-01 Abbott Cardiovascular Systems Inc. Polymer-and polymer blend-bioceramic composite implantable medical devices
US8425591B1 (en) 2007-06-11 2013-04-23 Abbott Cardiovascular Systems Inc. Methods of forming polymer-bioceramic composite medical devices with bioceramic particles
US8435550B2 (en) 2002-12-16 2013-05-07 Abbot Cardiovascular Systems Inc. Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders with an implantable medical device
US8470014B2 (en) 2004-08-25 2013-06-25 Advanced Cardiovascular Systems, Inc. Stent-catheter assembly with a releasable connection for stent retention
US8486135B2 (en) 2006-06-01 2013-07-16 Abbott Cardiovascular Systems Inc. Implantable medical devices fabricated from branched polymers
US8535372B1 (en) 2006-06-16 2013-09-17 Abbott Cardiovascular Systems Inc. Bioabsorbable stent with prohealing layer
US8568469B1 (en) 2004-06-28 2013-10-29 Advanced Cardiovascular Systems, Inc. Stent locking element and a method of securing a stent on a delivery system
US8603530B2 (en) 2006-06-14 2013-12-10 Abbott Cardiovascular Systems Inc. Nanoshell therapy
US8747878B2 (en) 2006-04-28 2014-06-10 Advanced Cardiovascular Systems, Inc. Method of fabricating an implantable medical device by controlling crystalline structure
US8747879B2 (en) 2006-04-28 2014-06-10 Advanced Cardiovascular Systems, Inc. Method of fabricating an implantable medical device to reduce chance of late inflammatory response
US8752267B2 (en) 2006-05-26 2014-06-17 Abbott Cardiovascular Systems Inc. Method of making stents with radiopaque markers
US8778256B1 (en) 2004-09-30 2014-07-15 Advanced Cardiovascular Systems, Inc. Deformation of a polymer tube in the fabrication of a medical article
US8846070B2 (en) 2004-03-29 2014-09-30 Advanced Cardiovascular Systems, Inc. Biologically degradable compositions for medical applications
US9072820B2 (en) 2006-06-26 2015-07-07 Advanced Cardiovascular Systems, Inc. Polymer composite stent with polymer particles
US9173733B1 (en) 2006-08-21 2015-11-03 Abbott Cardiovascular Systems Inc. Tracheobronchial implantable medical device and methods of use
US9198785B2 (en) 2010-01-30 2015-12-01 Abbott Cardiovascular Systems Inc. Crush recoverable polymer scaffolds
US9248034B2 (en) 2005-08-23 2016-02-02 Advanced Cardiovascular Systems, Inc. Controlled disintegrating implantable medical devices
US9295570B2 (en) 2001-09-19 2016-03-29 Abbott Laboratories Vascular Enterprises Limited Cold-molding process for loading a stent onto a stent delivery system
US9532888B2 (en) 2006-01-04 2017-01-03 Abbott Cardiovascular Systems Inc. Stents with radiopaque markers
US9827119B2 (en) 2010-01-30 2017-11-28 Abbott Cardiovascular Systems Inc. Polymer scaffolds having a low crossing profile
US9999527B2 (en) 2015-02-11 2018-06-19 Abbott Cardiovascular Systems Inc. Scaffolds having radiopaque markers
US10028851B2 (en) 1997-04-15 2018-07-24 Advanced Cardiovascular Systems, Inc. Coatings for controlling erosion of a substrate of an implantable medical device
US10307274B2 (en) 2011-07-29 2019-06-04 Abbott Cardiovascular Systems Inc. Methods for uniform crimping and deployment of a polymer scaffold
US10610387B2 (en) 2015-06-12 2020-04-07 Abbott Cardiovascular Systems Inc. Scaffolds having a radiopaque marker and methods for attaching a marker to a scaffold

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3633578A (en) * 1970-06-24 1972-01-11 American Cyanamid Co Method of maintaining the integrity of blood
US3663288A (en) * 1969-09-04 1972-05-16 American Cyanamid Co Physiologically acceptible elastomeric article
US3722599A (en) * 1967-12-01 1973-03-27 Minnesota Mining & Mfg Fluorocyanoacrylates

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3722599A (en) * 1967-12-01 1973-03-27 Minnesota Mining & Mfg Fluorocyanoacrylates
US3663288A (en) * 1969-09-04 1972-05-16 American Cyanamid Co Physiologically acceptible elastomeric article
US3633578A (en) * 1970-06-24 1972-01-11 American Cyanamid Co Method of maintaining the integrity of blood

Cited By (178)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4008047A (en) * 1974-12-26 1977-02-15 North Star Research Institute Blood compatible polymers for blood oxygenation devices
US4178329A (en) * 1977-11-18 1979-12-11 Hoechst Aktiengesellschaft Plastics material having an improved blood tolerance
FR2438059A1 (en) * 1978-08-03 1980-04-30 Masuhara Hidekazu FLUORINATED POLYMER COATING SUBSTANCE FOR DENTAL PROSTHESIS BASE AND DENTAL PROSTHESIS BASED ON SUCH A COATING
US4219520A (en) * 1978-08-30 1980-08-26 Medical Evaluation Devices And Instruments Corp. Method of making thrombo-resistant non-thrombogenic objects formed from a uniform mixture of a particulate resin and colloidal graphite
DE2945138A1 (en) * 1978-11-08 1980-05-29 Peter John Fydelor BIOCOMPATIBLE MATERIAL AND ITS USE
FR2463785A1 (en) * 1979-08-17 1981-02-27 Asahi Glass Co Ltd NOVEL FLUOROUS ELASTOMERS CONTAINING FLUORINATED POLYMERIC SEGMENTS AND ORGANOPOLYSILOXANE SEGMENTS
US4484894A (en) * 1980-09-03 1984-11-27 Eiichi Masuhara Sheet for lining denture base
EP0061312A1 (en) * 1981-03-19 1982-09-29 Board Of Regents, The University Of Texas System Alkyl-substituted polymers having enhanced albumin affinity
EP0073978A3 (en) * 1981-09-04 1983-09-28 Asahi Glass Company Ltd. Antithrombogenic materials
EP0073978A2 (en) * 1981-09-04 1983-03-16 Asahi Glass Company Ltd. Antithrombogenic materials
EP0076714A1 (en) * 1981-09-24 1983-04-13 COMMISSARIAT A L'ENERGIE ATOMIQUE Etablissement de Caractère Scientifique Technique et Industriel Polymeric bone joint prosthesis and method of preparing the same
FR2513112A1 (en) * 1981-09-24 1983-03-25 Commissariat Energie Atomique IMPROVED JOINT POLYMERIC PROSTHESIS AND PROCESS FOR PREPARING THE SAME
US4656083A (en) * 1983-08-01 1987-04-07 Washington Research Foundation Plasma gas discharge treatment for improving the biocompatibility of biomaterials
US5034265A (en) * 1983-08-01 1991-07-23 Washington Research Foundation Plasma gas discharge treatment for improving the compatibility of biomaterials
US4687482A (en) * 1984-04-27 1987-08-18 Scripps Clinic And Research Foundation Vascular prosthesis
US4622237A (en) * 1984-06-22 1986-11-11 Giulio Lori Method of flame activation of substrates
FR2566667A1 (en) * 1984-06-27 1986-01-03 Delcroix Jean Pierre Method of antithrombogenic treatment of catheters and catheters thus obtained.
US4632842A (en) * 1985-06-20 1986-12-30 Atrium Medical Corporation Glow discharge process for producing implantable devices
US4718907A (en) * 1985-06-20 1988-01-12 Atrium Medical Corporation Vascular prosthesis having fluorinated coating with varying F/C ratio
DE3709069A1 (en) * 1986-03-20 1987-10-01 Ohi Seisakusho Co Ltd WIRE FASTENING DEVICE FOR A WINDOW REGULATING DEVICE
WO1988006026A3 (en) * 1987-02-17 1988-10-06 Alberto Arpesani Internal prosthesis for the substitution of a part of the human body particularly in vascular surgery
WO1988006026A2 (en) * 1987-02-17 1988-08-25 Alberto Arpesani Internal prosthesis for the substitution of a part of the human body particularly in vascular surgery
US4994298A (en) * 1988-06-07 1991-02-19 Biogold Inc. Method of making a biocompatible prosthesis
US5356668A (en) * 1990-12-07 1994-10-18 Vascutek Limited Fluorinating polymer surfaces
US5383903A (en) * 1992-08-20 1995-01-24 United States Surgical Corporation Dimethylsiloxane-alkylene oxide copolymer coatings for filaments
US6060639A (en) * 1994-03-04 2000-05-09 Mentor Corporation Testicular prosthesis and method of manufacturing and filling
US5637113A (en) * 1994-12-13 1997-06-10 Advanced Cardiovascular Systems, Inc. Polymer film for wrapping a stent structure
US5700286A (en) * 1994-12-13 1997-12-23 Advanced Cardiovascular Systems, Inc. Polymer film for wrapping a stent structure
US6114467A (en) * 1997-01-31 2000-09-05 Cornell Research Foundation, Inc. Semifluorinated acid halides and fluorinated polymers produced therefrom
US5907017A (en) * 1997-01-31 1999-05-25 Cornell Research Foundation, Inc. Semifluorinated side chain-containing polymers
US7699890B2 (en) 1997-04-15 2010-04-20 Advanced Cardiovascular Systems, Inc. Medicated porous metal prosthesis and a method of making the same
US8172897B2 (en) 1997-04-15 2012-05-08 Advanced Cardiovascular Systems, Inc. Polymer and metal composite implantable medical devices
US8007529B2 (en) 1997-04-15 2011-08-30 Advanced Cardiovascular Systems, Inc. Medicated porous metal prosthesis
US20170021064A1 (en) * 1997-04-15 2017-01-26 Abbott Cardiovascular Systems Inc. Bioerodable metallic stent with biodegradable polymer coating
US10028851B2 (en) 1997-04-15 2018-07-24 Advanced Cardiovascular Systems, Inc. Coatings for controlling erosion of a substrate of an implantable medical device
EP0873756A3 (en) * 1997-04-21 2000-09-20 Degussa-HĂźls Aktiengesellschaft Antibacterial blood compatible modified surfaces
EP0873756A2 (en) * 1997-04-21 1998-10-28 HĂźls Aktiengesellschaft Antibacterial blood compatible modified surfaces
US6605114B1 (en) 1997-04-24 2003-08-12 Advanced Cardiovascular Systems, Inc. Heparin delivery method
US6776792B1 (en) 1997-04-24 2004-08-17 Advanced Cardiovascular Systems Inc. Coated endovascular stent
US7077860B2 (en) 1997-04-24 2006-07-18 Advanced Cardiovascular Systems, Inc. Method of reducing or eliminating thrombus formation
US20030171804A1 (en) * 1997-06-24 2003-09-11 Werner Krause Stents coated with fluoroalkyl groups
US6022344A (en) * 1997-12-04 2000-02-08 Npbi International B.V. Cryopreservation bag
US6464723B1 (en) 1999-04-22 2002-10-15 Advanced Cardiovascular Systems, Inc. Radiopaque stents
US6585757B1 (en) 1999-09-15 2003-07-01 Advanced Cardiovascular Systems, Inc. Endovascular stent with radiopaque spine
US6602287B1 (en) 1999-12-08 2003-08-05 Advanced Cardiovascular Systems, Inc. Stent with anti-thrombogenic coating
US7470283B2 (en) 2000-04-13 2008-12-30 Advanced Cardiovascular Systems, Inc. Biodegradable drug delivery material for stent
US7390333B2 (en) 2000-04-13 2008-06-24 Advanced Cardiovascular Systems, Inc. Biodegradable drug delivery material for stent
US8414642B2 (en) 2000-04-13 2013-04-09 Advanced Cardiovascular Systems, Inc. Biodegradable stent of a polyorthoester polymer or a polyanhydride polymer
US7875283B2 (en) 2000-04-13 2011-01-25 Advanced Cardiovascular Systems, Inc. Biodegradable polymers for use with implantable medical devices
US6527801B1 (en) 2000-04-13 2003-03-04 Advanced Cardiovascular Systems, Inc. Biodegradable drug delivery material for stent
US8585754B2 (en) 2000-04-13 2013-11-19 Abbott Cardiovascular Systems Inc. Stent formed of a Biodegradable material
US6652579B1 (en) 2000-06-22 2003-11-25 Advanced Cardiovascular Systems, Inc. Radiopaque stent
US7297159B2 (en) 2000-10-26 2007-11-20 Advanced Cardiovascular Systems, Inc. Selective coating of medical devices
US7163715B1 (en) 2001-06-12 2007-01-16 Advanced Cardiovascular Systems, Inc. Spray processing of porous medical devices
US7514122B2 (en) 2001-06-12 2009-04-07 Advanced Cardiovascular Systems, Inc. Method and apparatus for spray processing of porous medical devices
US7201940B1 (en) 2001-06-12 2007-04-10 Advanced Cardiovascular Systems, Inc. Method and apparatus for thermal spray processing of medical devices
US7258891B2 (en) 2001-06-28 2007-08-21 Advanced Cardiovascular Systems, Inc. Stent mounting assembly and a method of using the same to coat a stent
US7989018B2 (en) 2001-09-17 2011-08-02 Advanced Cardiovascular Systems, Inc. Fluid treatment of a polymeric coating on an implantable medical device
US9295570B2 (en) 2001-09-19 2016-03-29 Abbott Laboratories Vascular Enterprises Limited Cold-molding process for loading a stent onto a stent delivery system
US10166131B2 (en) 2001-09-19 2019-01-01 Abbott Laboratories Vascular Enterprises Limited Process for loading a stent onto a stent delivery system
US8128687B2 (en) 2002-11-13 2012-03-06 Advanced Cardiovascular Systems, Inc. Drug-eluting stent with filament strands
US7435255B1 (en) 2002-11-13 2008-10-14 Advnaced Cardiovascular Systems, Inc. Drug-eluting stent and methods of making
US20060287709A1 (en) * 2002-11-13 2006-12-21 Advanced Cardiovascular Systems, Inc. Drug-eluting stent and methods of making the same
US7144422B1 (en) 2002-11-13 2006-12-05 Advanced Cardiovascular Systems, Inc. Drug-eluting stent and methods of making the same
US8435550B2 (en) 2002-12-16 2013-05-07 Abbot Cardiovascular Systems Inc. Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders with an implantable medical device
US7416558B2 (en) 2002-12-30 2008-08-26 Advanced Cardiovascular Systems, Inc. Drug-eluting stent cover and method of use
US20060271165A1 (en) * 2002-12-30 2006-11-30 Yip Philip S Drug-eluting stent cover and method of use
US7413574B2 (en) 2002-12-30 2008-08-19 Advanced Cardiovascular Systems, Inc. Drug-eluting stent cover method of use
US7105018B1 (en) 2002-12-30 2006-09-12 Advanced Cardiovascular Systems, Inc. Drug-eluting stent cover and method of use
US20070073383A1 (en) * 2002-12-30 2007-03-29 Yip Philip S Drug-eluting stent cover and method of use
US8109994B2 (en) 2003-01-10 2012-02-07 Abbott Cardiovascular Systems, Inc. Biodegradable drug delivery material for stent
US7312299B2 (en) 2003-06-11 2007-12-25 Advanced Cardiovascular Systems, Inc. Bioabsorbabl, biobeneficial polyester polymers for stent coatings
US7301001B2 (en) 2003-06-11 2007-11-27 Advanced Cardiovascular Systems, Inc. Bioabsorbable, biobeneficial polyester polymers for stent coatings
US7186789B2 (en) 2003-06-11 2007-03-06 Advanced Cardiovascular Systems, Inc. Bioabsorbable, biobeneficial polyester polymers for use in drug eluting stent coatings
US7329366B1 (en) 2003-06-25 2008-02-12 Advanced Cardiovascular Systems Inc. Method of polishing implantable medical devices to lower thrombogenecity and increase mechanical stability
US7967998B2 (en) 2003-06-25 2011-06-28 Advanced Cardiocasvular Systems, Inc. Method of polishing implantable medical devices to lower thrombogenecity and increase mechanical stability
US7285304B1 (en) 2003-06-25 2007-10-23 Advanced Cardiovascular Systems, Inc. Fluid treatment of a polymeric coating on an implantable medical device
US7604700B2 (en) 2003-09-30 2009-10-20 Advanced Cardiovascular Systems, Inc. Stent mandrel fixture and method for selectively coating surfaces of a stent
US7198675B2 (en) 2003-09-30 2007-04-03 Advanced Cardiovascular Systems Stent mandrel fixture and method for selectively coating surfaces of a stent
US8197879B2 (en) 2003-09-30 2012-06-12 Advanced Cardiovascular Systems, Inc. Method for selectively coating surfaces of a stent
US7563324B1 (en) 2003-12-29 2009-07-21 Advanced Cardiovascular Systems Inc. System and method for coating an implantable medical device
US8846070B2 (en) 2004-03-29 2014-09-30 Advanced Cardiovascular Systems, Inc. Biologically degradable compositions for medical applications
US7553377B1 (en) 2004-04-27 2009-06-30 Advanced Cardiovascular Systems, Inc. Apparatus and method for electrostatic coating of an abluminal stent surface
US8568469B1 (en) 2004-06-28 2013-10-29 Advanced Cardiovascular Systems, Inc. Stent locking element and a method of securing a stent on a delivery system
US8241554B1 (en) 2004-06-29 2012-08-14 Advanced Cardiovascular Systems, Inc. Method of forming a stent pattern on a tube
US7758881B2 (en) 2004-06-30 2010-07-20 Advanced Cardiovascular Systems, Inc. Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders with an implantable medical device
US9283099B2 (en) 2004-08-25 2016-03-15 Advanced Cardiovascular Systems, Inc. Stent-catheter assembly with a releasable connection for stent retention
US8470014B2 (en) 2004-08-25 2013-06-25 Advanced Cardiovascular Systems, Inc. Stent-catheter assembly with a releasable connection for stent retention
US7662326B2 (en) 2004-09-10 2010-02-16 Advanced Cardiovascular Systems, Inc. Compositions containing fast-leaching plasticizers for improved performance of medical devices
US7229471B2 (en) 2004-09-10 2007-06-12 Advanced Cardiovascular Systems, Inc. Compositions containing fast-leaching plasticizers for improved performance of medical devices
US8173062B1 (en) 2004-09-30 2012-05-08 Advanced Cardiovascular Systems, Inc. Controlled deformation of a polymer tube in fabricating a medical article
US8778256B1 (en) 2004-09-30 2014-07-15 Advanced Cardiovascular Systems, Inc. Deformation of a polymer tube in the fabrication of a medical article
US8043553B1 (en) 2004-09-30 2011-10-25 Advanced Cardiovascular Systems, Inc. Controlled deformation of a polymer tube with a restraining surface in fabricating a medical article
US7875233B2 (en) 2004-09-30 2011-01-25 Advanced Cardiovascular Systems, Inc. Method of fabricating a biaxially oriented implantable medical device
US7632307B2 (en) 2004-12-16 2009-12-15 Advanced Cardiovascular Systems, Inc. Abluminal, multilayer coating constructs for drug-delivery stents
US7381048B2 (en) 2005-04-12 2008-06-03 Advanced Cardiovascular Systems, Inc. Stents with profiles for gripping a balloon catheter and molds for fabricating stents
US7708548B2 (en) 2005-04-12 2010-05-04 Advanced Cardiovascular Systems, Inc. Molds for fabricating stents with profiles for gripping a balloon catheter
US7291166B2 (en) 2005-05-18 2007-11-06 Advanced Cardiovascular Systems, Inc. Polymeric stent patterns
US20060271170A1 (en) * 2005-05-31 2006-11-30 Gale David C Stent with flexible sections in high strain regions
US7622070B2 (en) 2005-06-20 2009-11-24 Advanced Cardiovascular Systems, Inc. Method of manufacturing an implantable polymeric medical device
US7658880B2 (en) 2005-07-29 2010-02-09 Advanced Cardiovascular Systems, Inc. Polymeric stent polishing method and apparatus
US7297758B2 (en) 2005-08-02 2007-11-20 Advanced Cardiovascular Systems, Inc. Method for extending shelf-life of constructs of semi-crystallizable polymers
US7476245B2 (en) 2005-08-16 2009-01-13 Advanced Cardiovascular Systems, Inc. Polymeric stent patterns
US9248034B2 (en) 2005-08-23 2016-02-02 Advanced Cardiovascular Systems, Inc. Controlled disintegrating implantable medical devices
US7867547B2 (en) 2005-12-19 2011-01-11 Advanced Cardiovascular Systems, Inc. Selectively coating luminal surfaces of stents
US10070975B2 (en) 2006-01-04 2018-09-11 Abbott Cardiovascular Systems Inc. Stents with radiopaque markers
US9532888B2 (en) 2006-01-04 2017-01-03 Abbott Cardiovascular Systems Inc. Stents with radiopaque markers
US7951185B1 (en) 2006-01-06 2011-05-31 Advanced Cardiovascular Systems, Inc. Delivery of a stent at an elevated temperature
US7964210B2 (en) 2006-03-31 2011-06-21 Abbott Cardiovascular Systems Inc. Degradable polymeric implantable medical devices with a continuous phase and discrete phase
US8747879B2 (en) 2006-04-28 2014-06-10 Advanced Cardiovascular Systems, Inc. Method of fabricating an implantable medical device to reduce chance of late inflammatory response
US8747878B2 (en) 2006-04-28 2014-06-10 Advanced Cardiovascular Systems, Inc. Method of fabricating an implantable medical device by controlling crystalline structure
US8465789B2 (en) 2006-05-04 2013-06-18 Advanced Cardiovascular Systems, Inc. Rotatable support elements for stents
US8003156B2 (en) 2006-05-04 2011-08-23 Advanced Cardiovascular Systems, Inc. Rotatable support elements for stents
US8741379B2 (en) 2006-05-04 2014-06-03 Advanced Cardiovascular Systems, Inc. Rotatable support elements for stents
US8637110B2 (en) 2006-05-04 2014-01-28 Advanced Cardiovascular Systems, Inc. Rotatable support elements for stents
US8596215B2 (en) 2006-05-04 2013-12-03 Advanced Cardiovascular Systems, Inc. Rotatable support elements for stents
US7761968B2 (en) 2006-05-25 2010-07-27 Advanced Cardiovascular Systems, Inc. Method of crimping a polymeric stent
US8752268B2 (en) 2006-05-26 2014-06-17 Abbott Cardiovascular Systems Inc. Method of making stents with radiopaque markers
US7951194B2 (en) 2006-05-26 2011-05-31 Abbott Cardiovascular Sysetms Inc. Bioabsorbable stent with radiopaque coating
US9038260B2 (en) 2006-05-26 2015-05-26 Abbott Cardiovascular Systems Inc. Stent with radiopaque markers
US9358325B2 (en) 2006-05-26 2016-06-07 Abbott Cardiovascular Systems Inc. Stents with radiopaque markers
US9694116B2 (en) 2006-05-26 2017-07-04 Abbott Cardiovascular Systems Inc. Stents with radiopaque markers
US8752267B2 (en) 2006-05-26 2014-06-17 Abbott Cardiovascular Systems Inc. Method of making stents with radiopaque markers
US7959940B2 (en) 2006-05-30 2011-06-14 Advanced Cardiovascular Systems, Inc. Polymer-bioceramic composite implantable medical devices
US7971333B2 (en) 2006-05-30 2011-07-05 Advanced Cardiovascular Systems, Inc. Manufacturing process for polymetric stents
US20070282434A1 (en) * 2006-05-30 2007-12-06 Yunbing Wang Copolymer-bioceramic composite implantable medical devices
US8343530B2 (en) 2006-05-30 2013-01-01 Abbott Cardiovascular Systems Inc. Polymer-and polymer blend-bioceramic composite implantable medical devices
US8486135B2 (en) 2006-06-01 2013-07-16 Abbott Cardiovascular Systems Inc. Implantable medical devices fabricated from branched polymers
US8034287B2 (en) 2006-06-01 2011-10-11 Abbott Cardiovascular Systems Inc. Radiation sterilization of medical devices
US8808342B2 (en) 2006-06-14 2014-08-19 Abbott Cardiovascular Systems Inc. Nanoshell therapy
US8603530B2 (en) 2006-06-14 2013-12-10 Abbott Cardiovascular Systems Inc. Nanoshell therapy
US7731890B2 (en) 2006-06-15 2010-06-08 Advanced Cardiovascular Systems, Inc. Methods of fabricating stents with enhanced fracture toughness
US8048448B2 (en) 2006-06-15 2011-11-01 Abbott Cardiovascular Systems Inc. Nanoshells for drug delivery
US8535372B1 (en) 2006-06-16 2013-09-17 Abbott Cardiovascular Systems Inc. Bioabsorbable stent with prohealing layer
US8333000B2 (en) 2006-06-19 2012-12-18 Advanced Cardiovascular Systems, Inc. Methods for improving stent retention on a balloon catheter
US9259341B2 (en) 2006-06-19 2016-02-16 Abbott Cardiovascular Systems Inc. Methods for improving stent retention on a balloon catheter
US9579225B2 (en) 2006-06-19 2017-02-28 Abbott Cardiovascular Systems Inc. Methods for improving stent retention on a balloon catheter
US8925177B2 (en) 2006-06-19 2015-01-06 Abbott Cardiovascular Systems Inc. Methods for improving stent retention on a balloon catheter
US10342688B2 (en) 2006-06-19 2019-07-09 Abbott Cardiovascular Systems Inc. Methods for improving stent retention on a balloon catheter
US8592036B2 (en) 2006-06-23 2013-11-26 Abbott Cardiovascular Systems Inc. Nanoshells on polymers
US8293367B2 (en) 2006-06-23 2012-10-23 Advanced Cardiovascular Systems, Inc. Nanoshells on polymers
US8017237B2 (en) 2006-06-23 2011-09-13 Abbott Cardiovascular Systems, Inc. Nanoshells on polymers
US9072820B2 (en) 2006-06-26 2015-07-07 Advanced Cardiovascular Systems, Inc. Polymer composite stent with polymer particles
US8128688B2 (en) 2006-06-27 2012-03-06 Abbott Cardiovascular Systems Inc. Carbon coating on an implantable device
US7794776B1 (en) 2006-06-29 2010-09-14 Abbott Cardiovascular Systems Inc. Modification of polymer stents with radiation
US7740791B2 (en) 2006-06-30 2010-06-22 Advanced Cardiovascular Systems, Inc. Method of fabricating a stent with features by blow molding
US7823263B2 (en) 2006-07-11 2010-11-02 Abbott Cardiovascular Systems Inc. Method of removing stent islands from a stent
US7998404B2 (en) 2006-07-13 2011-08-16 Advanced Cardiovascular Systems, Inc. Reduced temperature sterilization of stents
US10145811B2 (en) 2006-07-13 2018-12-04 Abbott Cardiovascular Systems Inc. Radio frequency identification monitoring of stents
US7757543B2 (en) 2006-07-13 2010-07-20 Advanced Cardiovascular Systems, Inc. Radio frequency identification monitoring of stents
US7794495B2 (en) 2006-07-17 2010-09-14 Advanced Cardiovascular Systems, Inc. Controlled degradation of stents
US7886419B2 (en) 2006-07-18 2011-02-15 Advanced Cardiovascular Systems, Inc. Stent crimping apparatus and method
US8016879B2 (en) 2006-08-01 2011-09-13 Abbott Cardiovascular Systems Inc. Drug delivery after biodegradation of the stent scaffolding
US9173733B1 (en) 2006-08-21 2015-11-03 Abbott Cardiovascular Systems Inc. Tracheobronchial implantable medical device and methods of use
US9833342B2 (en) 2006-08-21 2017-12-05 Abbott Cardiovascular Systems Inc. Tracheobronchial implantable medical device and methods of use
US7923022B2 (en) 2006-09-13 2011-04-12 Advanced Cardiovascular Systems, Inc. Degradable polymeric implantable medical devices with continuous phase and discrete phase
US7842737B2 (en) 2006-09-29 2010-11-30 Abbott Cardiovascular Systems Inc. Polymer blend-bioceramic composite implantable medical devices
US8099849B2 (en) 2006-12-13 2012-01-24 Abbott Cardiovascular Systems Inc. Optimizing fracture toughness of polymeric stent
US8262723B2 (en) 2007-04-09 2012-09-11 Abbott Cardiovascular Systems Inc. Implantable medical devices fabricated from polymer blends with star-block copolymers
US7829008B2 (en) 2007-05-30 2010-11-09 Abbott Cardiovascular Systems Inc. Fabricating a stent from a blow molded tube
US7959857B2 (en) 2007-06-01 2011-06-14 Abbott Cardiovascular Systems Inc. Radiation sterilization of medical devices
US8202528B2 (en) 2007-06-05 2012-06-19 Abbott Cardiovascular Systems Inc. Implantable medical devices with elastomeric block copolymer coatings
US8293260B2 (en) 2007-06-05 2012-10-23 Abbott Cardiovascular Systems Inc. Elastomeric copolymer coatings containing poly (tetramethyl carbonate) for implantable medical devices
US8425591B1 (en) 2007-06-11 2013-04-23 Abbott Cardiovascular Systems Inc. Methods of forming polymer-bioceramic composite medical devices with bioceramic particles
US8048441B2 (en) 2007-06-25 2011-11-01 Abbott Cardiovascular Systems, Inc. Nanobead releasing medical devices
US7901452B2 (en) 2007-06-27 2011-03-08 Abbott Cardiovascular Systems Inc. Method to fabricate a stent having selected morphology to reduce restenosis
US7955381B1 (en) 2007-06-29 2011-06-07 Advanced Cardiovascular Systems, Inc. Polymer-bioceramic composite implantable medical device with different types of bioceramic particles
US9867728B2 (en) 2010-01-30 2018-01-16 Abbott Cardiovascular Systems Inc. Method of making a stent
US9827119B2 (en) 2010-01-30 2017-11-28 Abbott Cardiovascular Systems Inc. Polymer scaffolds having a low crossing profile
US9770351B2 (en) 2010-01-30 2017-09-26 Abbott Cardiovascular Systems Inc. Crush recoverable polymer scaffolds
US10123894B2 (en) 2010-01-30 2018-11-13 Abbott Cardiovascular Systems Inc. Method of crimping stent on catheter delivery assembly
US9763818B2 (en) 2010-01-30 2017-09-19 Abbott Cardiovascular Systems Inc. Method of crimping stent on catheter delivery assembly
US9198785B2 (en) 2010-01-30 2015-12-01 Abbott Cardiovascular Systems Inc. Crush recoverable polymer scaffolds
US11324614B2 (en) 2010-01-30 2022-05-10 Abbott Cardiovascular Systems Inc. Balloon expanded polymer stent
US10307274B2 (en) 2011-07-29 2019-06-04 Abbott Cardiovascular Systems Inc. Methods for uniform crimping and deployment of a polymer scaffold
US9999527B2 (en) 2015-02-11 2018-06-19 Abbott Cardiovascular Systems Inc. Scaffolds having radiopaque markers
US10610387B2 (en) 2015-06-12 2020-04-07 Abbott Cardiovascular Systems Inc. Scaffolds having a radiopaque marker and methods for attaching a marker to a scaffold
US11478370B2 (en) 2015-06-12 2022-10-25 Abbott Cardiovascular Systems Inc. Scaffolds having a radiopaque marker and methods for attaching a marker to a scaffold

Similar Documents

Publication Publication Date Title
US3839743A (en) Method for maintaining the normal integrity of blood
JP6495241B2 (en) Method for manufacturing medical device and medical device
US5100689A (en) Surface modified surgical instruments, devices, implants, contact lenses and the like
US5278200A (en) Thromboresistant material and articles
EP1265653B1 (en) Use of polyphosphazene derivatives for antibacterial coatings
US6270788B1 (en) Implantable medical device
EP0714417B1 (en) Polymer surface coatings
JP6373872B2 (en) Medical tools
JPH09506665A (en) Surface modified medical device
KR940003863B1 (en) Perfluorocarbon-grafted polyurethane with improved blood compatibility and process for their preparation
US4785059A (en) Process for the preparation of a hydrophilic water swellable graft copolymer
US9956324B2 (en) Medical material, and medical device using the medical material
KR20190065254A (en) Copolymers and medical materials using the same
US20070042015A1 (en) Coating composition for polymeric surfaces comprising serpin or serpin derivatives
US3633578A (en) Method of maintaining the integrity of blood
Salyer et al. New blood‐compatible polymers for artificial heart applications
Singh et al. Radiation-induced graft copolymerization of methacrylic acid on to poly (vinyl chloride) films and their thrombogenicity
WO2015098764A1 (en) Antithrombotic medical material, and medical device utilizing said medical material
JP3367570B2 (en) Antithrombotic material
JPS6343109B2 (en)
JPS6034451A (en) Artificial blood vessel
CN114558174A (en) Preparation method of polyurethane catheter with hydrophilic anticoagulant surface
CN114522278A (en) Long-acting anticoagulant coating and preparation method thereof
JPS5953058B2 (en) Method for producing anti-blood coagulant polymer material
Cunningham RF plasma-induced modification of surfaces for applications in small-diameter vascular grafts