US3832219A - Methods of treating steel surfaces to modify their structure - Google Patents

Methods of treating steel surfaces to modify their structure Download PDF

Info

Publication number
US3832219A
US3832219A US00238619A US23861972A US3832219A US 3832219 A US3832219 A US 3832219A US 00238619 A US00238619 A US 00238619A US 23861972 A US23861972 A US 23861972A US 3832219 A US3832219 A US 3832219A
Authority
US
United States
Prior art keywords
ions
modify
carbon
treated
methods
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00238619A
Inventor
R Nelson
D Mazey
J Hudson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UK Atomic Energy Authority
Original Assignee
UK Atomic Energy Authority
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UK Atomic Energy Authority filed Critical UK Atomic Energy Authority
Application granted granted Critical
Publication of US3832219A publication Critical patent/US3832219A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/48Ion implantation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals

Definitions

  • the present invention relates to methods of treating steel surfaces to modify their structure.
  • a hard, resistant surface' may be produced on a low carbon (tough) steel core by subjecting a low carbon steel article, maintained at elevated temperatures (about 910 C.), to an atmosphere rich in carbon. This may be achieved by use of a hydrocarbon gas or by packing in charcoal. The carbon diffuses into the surface of the steel to a depth of about 0.05 in., forming a high carbon content surface which is subsequently quenched to martensite for maximum hardness and wear resistance. The hardness is dependent on the carbon content and increases as the carbon content increases.
  • the thermal hardening process involves subjecting the articles to be treated to relatively high temperatures; in some circumstances, for example with stainless steel, this may be undesirable and it is one object of the present invention to provide a method of hardening stainless steel which does not involve the use of high temperatures.
  • a method of treating a stainless steel surface to modify the structure of the surface wherein the surface is hardened by subjecting the surface to bombardment of carbon ions to implant carbon in the surface and thereby to' modify its structure.
  • composition of the surface will be modified in addition to the structure of the surface.
  • a somewhat similar technique may be applied to modifying the surface structure of mild steel by ion implantation, in the surface, of chromium ions.
  • the depths of penetration of ions may be greater than is measured as Angstroms and can be such that a hardened structure is formed within a body rather than right at the surface.
  • a hardened surface may be produced at a depth of say 0.001 in.
  • a body can thus be formed in which a soft outer region is provided on a harder inner region.
  • a body so treated to have a buried layer may have its outer region removed, down to the hardened surface, by abrading, grinding, etc.
  • the depth to which ions are implanted depends on the energy of the ions, high energy giving rise to buried layers.
  • Implantation may be carried out from low energies up to energies of several thousand kev.
  • a typical working range is from l-200 kev. with energies in the range 50- kev. being practically convenient.
  • the introduction of carbon into the surfaces by this ion implantation method offers advantages over methods involving the use of high temperatures and carbon rich atmospheres.
  • the term low temperature is used in this specification to indicate temperatures of approximately room temperature.
  • the implantation process may cause the temperature of the specimen undergoing implantation to rise slightly, say 1 or 2 0.; however, this is insignificant.
  • surface hardened ball bearings, watch bearings and similar articles may be produced after they have been fabricated to the required tolerances in stainless steel; a hardened edge may be produced on a stainless steel razor blade.
  • the cost of such a hardening process would be very small per item in the case of watch bearings, where, by virtue of their size, it would be possible to treat a multiplicity (perhaps several hundred) articles in one implantation operation.
  • the regions of the surface to be treated by appropriate control of the ion beam, which may be typically a few millimetres in width; alternatively a mask may be used which permits the ion beam to contact only the exposed regions of the surface to be treated.
  • regions of 316 stainless steel surfaces were treated with a beam of carbon ions.
  • a sample of 316 stainless steel was mounted in the sample chamber of a linear accelerator and the chamber was evacuated.
  • the linear accelerator was switched on and run-up in accordance with normal linear accelerator operating procedures until a beam of ions impinged on the target.
  • the ions in this implantation operation had energies in the 100 kev. range.
  • a carbon dioxide gas source was used and magnetic analysis was utilised to separate and select, from the ions produced by the source, carbon ions for implantation.
  • the treated regions, where carbon ions had been implanted to a depth of a few thousand Angstroms, were found to be completely resistant to vibratory polishing, whilst the untreated regions of the surfaces were removed rather easily.
  • mild steel surfaces were treated with a beam of chromium ions having energies in the 100 kev. range, using a linear acceleratorin a manner similar to that described above.
  • a method of treating a mild steel surface to modify the structure of the surface whereby the corrosion resistance of the surface is increased comprising the steps of producing chromium ions, forming the chromium ions into a beam of predetermined energy such that the ions can penetrate the mild steel surface to be treated and directing the beam of chromium ions at the region to be treated thereby to cause chromium ions to be implanted into the 2.

Abstract

A METHOD OF TREATING A STEEL SURFACE TO MODIFY THE SURFACE TO IMPROVE ITS HARDNESS OR RESISTANCE TO CORROSION CHARACTERISED IN THAT THE SURFACE IS SUBJECTED TO THE IMPLANTATION OF SELECTED IONS ADAPTED SO TO MODIFY THE SURFACE STRUCTURE AS TO IMPROVE ITS HARDNESS OR CORROSION RESISTANCE.

Description

United States Patent ()flice 3,832,219 Patented Aug. 27, 1 9 74 US. a. 117-93.: 3 Claims ABSTRACT OF THE DISCLOSURE A method of treating a steel surface to modify the surface to improve its hardness or resistance to corrosion characterised in that the 'surace is subjected to the implantation of selected ions adapted so to modify the surface structure as to improve its hardness or corrosion resistance.
The present invention relates to methods of treating steel surfaces to modify their structure.
It is well known that steel articles may be case hardened; in known methods of carrying out this process, a hard, resistant surface'may be produced on a low carbon (tough) steel core by subjecting a low carbon steel article, maintained at elevated temperatures (about 910 C.), to an atmosphere rich in carbon. This may be achieved by use of a hydrocarbon gas or by packing in charcoal. The carbon diffuses into the surface of the steel to a depth of about 0.05 in., forming a high carbon content surface which is subsequently quenched to martensite for maximum hardness and wear resistance. The hardness is dependent on the carbon content and increases as the carbon content increases.
The thermal hardening process, as mentioned above, involves subjecting the articles to be treated to relatively high temperatures; in some circumstances, for example with stainless steel, this may be undesirable and it is one object of the present invention to provide a method of hardening stainless steel which does not involve the use of high temperatures.
According to one aspect of the present invention, there is provided a method of treating a stainless steel surface to modify the structure of the surface, wherein the surface is hardened by subjecting the surface to bombardment of carbon ions to implant carbon in the surface and thereby to' modify its structure.
It will be appreciated that in introducing ions into the suface of a metal the composition of the surface will be modified in addition to the structure of the surface.
According to another aspect ofthe invention, a somewhat similar technique may be applied to modifying the surface structure of mild steel by ion implantation, in the surface, of chromium ions.
In treating a suface in accordance with the invention, the depths of penetration of ions may be greater than is measured as Angstroms and can be such that a hardened structure is formed within a body rather than right at the surface. Thus, a hardened surface may be produced at a depth of say 0.001 in. A body can thus be formed in which a soft outer region is provided on a harder inner region. A body so treated to have a buried layer may have its outer region removed, down to the hardened surface, by abrading, grinding, etc.
Such treatments are within the scope of the present invention.
The depth to which ions are implanted depends on the energy of the ions, high energy giving rise to buried layers.
It is also possible to implant at different energies so as to build up a series of implanted regions to give a layer of the required thickness.
Implantation may be carried out from low energies up to energies of several thousand kev. A typical working range is from l-200 kev. with energies in the range 50- kev. being practically convenient.
In the case of ion implantation of stainless steel surfaces, the introduction of carbon into the surfaces by this ion implantation method, which may be carried out at relatively low temperatures, offers advantages over methods involving the use of high temperatures and carbon rich atmospheres. The term low temperature is used in this specification to indicate temperatures of approximately room temperature. The implantation process may cause the temperature of the specimen undergoing implantation to rise slightly, say 1 or 2 0.; however, this is insignificant. By use of the present invention it is possible, for example, to produce hardened regions on stainless steel articles which have been previously fabricated to high precision standards because the risk of distortion and the resulting loss of dimensional precision arising from subjecting the articles to high temperatures is obviated. Thus, surface hardened ball bearings, watch bearings and similar articles may be produced after they have been fabricated to the required tolerances in stainless steel; a hardened edge may be produced on a stainless steel razor blade. The cost of such a hardening process would be very small per item in the case of watch bearings, where, by virtue of their size, it would be possible to treat a multiplicity (perhaps several hundred) articles in one implantation operation.
It is also possible to select, quite precisely, the regions of the surface to be treated by appropriate control of the ion beam, which may be typically a few millimetres in width; alternatively a mask may be used which permits the ion beam to contact only the exposed regions of the surface to be treated.
It is to be understood that the foregoing statements regarding the treatment of a multiplicity of articles and the way in which areas may be treated selectively will also apply to the implantation of chromium into mild steel.
Several methods of carrying out the invention will now be described byway of example.
In the first example, regions of 316 stainless steel surfaces were treated with a beam of carbon ions. A sample of 316 stainless steel was mounted in the sample chamber of a linear accelerator and the chamber was evacuated. The linear accelerator was switched on and run-up in accordance with normal linear accelerator operating procedures until a beam of ions impinged on the target. The ions in this implantation operation had energies in the 100 kev. range. A carbon dioxide gas source was used and magnetic analysis was utilised to separate and select, from the ions produced by the source, carbon ions for implantation. The treated regions, where carbon ions had been implanted to a depth of a few thousand Angstroms, were found to be completely resistant to vibratory polishing, whilst the untreated regions of the surfaces were removed rather easily.
In the second example, regions of 18-8 stainless steel surfaces were treated with a beam of carbon ions according to a procedure essentially similar to that described above. Results were obtained which were similar to those in the case of the 316 stainless steel in the first example.
In the third example, mild steel surfaces were treated with a beam of chromium ions having energies in the 100 kev. range, using a linear acceleratorin a manner similar to that described above. A sputtering source with a'chromium strip was used as a source of chromium ions and magnetic analysis was used to select chromium ions for im- 515513111055 Chromium was-i155 anted to a depth of a few thousand Angstrorns -in"-the treated-regions and=i=t wasmild steeiz found that the corrosion resistance (for example, to rusting) was greatly improved inE-these regions.
, Carburising of metal .by hitherto knowntechnigues is carried out. at high temperatures, about 900-1000 (l 311i depends on carbon diffusing into the metal as hereinbefore mentioned. Thus, if the present invention is utilised to implant carbon at a high temperaturethere is a risk that carbon may ditfuse into the metal and that the hardening effect at or near the surface will be lost. Therefore,.the present invention is conveniently used to implant carbon at temperatures below about 600 C.
A similar situation exists in relation to chromium ions. 4 What is claimed is:
1. A method of treating a mild steel surface to modify the structure of the surface whereby the corrosion resistance of the surface is increased, comprising the steps of producing chromium ions, forming the chromium ions into a beam of predetermined energy such that the ions can penetrate the mild steel surface to be treated and directing the beam of chromium ions at the region to be treated thereby to cause chromium ions to be implanted into the 2. A method according to claim 1, wherein the implanted ions are implanted- 1o a depth of a few thousand Angstroms.
3. A method according toclaim 1, wherein the implantationis carried-out withl'ions thaving,energies such that a buried laye'r'is'f ormed- ,1, ,f I
g Refer ces giit' edj UNITED STATES ru in r 3,232,853 '2/1966- cob'g g 2,915,409 12/1959 cek1 .a t 2o4 29s 1X 3,127,283 3/1964 Chadwick 117-106 R 3,177,134 4/1965 Gartner et al'. 204-192 3,645,710 2/1972 Plumat et al. 20 1-492X JOHN H. MACK, PrimaryErzarninen
US00238619A 1971-04-07 1972-03-27 Methods of treating steel surfaces to modify their structure Expired - Lifetime US3832219A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB901371A GB1392811A (en) 1971-04-07 1971-04-07 Methods for treating steel to modify the structure thereof

Publications (1)

Publication Number Publication Date
US3832219A true US3832219A (en) 1974-08-27

Family

ID=9863673

Family Applications (1)

Application Number Title Priority Date Filing Date
US00238619A Expired - Lifetime US3832219A (en) 1971-04-07 1972-03-27 Methods of treating steel surfaces to modify their structure

Country Status (6)

Country Link
US (1) US3832219A (en)
DE (1) DE2216628C2 (en)
FR (1) FR2132712B1 (en)
GB (1) GB1392811A (en)
NL (1) NL179833C (en)
SE (1) SE384538B (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3988955A (en) * 1972-12-14 1976-11-02 Engel Niels N Coated steel product and process of producing the same
DE2703392A1 (en) * 1976-01-28 1977-08-04 Atomic Energy Authority Uk METALWORKING TOOLS TREATMENT METHOD, THESE TOOLS AND THEIR USES
US4486247A (en) * 1982-06-21 1984-12-04 Westinghouse Electric Corp. Wear resistant steel articles with carbon, oxygen and nitrogen implanted in the surface thereof
US4565710A (en) * 1984-06-06 1986-01-21 The United States Of America As Represented By The Secretary Of The Navy Process for producing carbide coatings
US4629631A (en) * 1984-09-14 1986-12-16 United Kingdom Atomic Energy Authority Surface treatment of metals
US4640169A (en) * 1982-01-25 1987-02-03 Westinghouse Electric Corp. Cemented carbide cutting tools and processes for making and using
US4645715A (en) * 1981-09-23 1987-02-24 Energy Conversion Devices, Inc. Coating composition and method
US4704168A (en) * 1984-10-16 1987-11-03 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Ion-beam nitriding of steels
US4764394A (en) * 1987-01-20 1988-08-16 Wisconsin Alumni Research Foundation Method and apparatus for plasma source ion implantation
US4915746A (en) * 1988-08-15 1990-04-10 Welsch Gerhard E Method of forming high temperature barriers in structural metals to make such metals creep resistant at high homologous temperatures
DE4238784C1 (en) * 1992-11-17 1994-01-20 Multi Arc Oberflaechentechnik Corrosion susceptibility redn. and increasing wear resistance of components made of low-alloy steels - by cleaning component surface and forming diffusive layer by chrome on bombardment in vacuum on diffusion layer
US5985742A (en) * 1997-05-12 1999-11-16 Silicon Genesis Corporation Controlled cleavage process and device for patterned films
US6027988A (en) * 1997-05-28 2000-02-22 The Regents Of The University Of California Method of separating films from bulk substrates by plasma immersion ion implantation
US6098655A (en) * 1996-12-03 2000-08-08 Carolina Power & Light Company Alleviating sticking of normally closed valves in nuclear reactor plants
US6221740B1 (en) 1999-08-10 2001-04-24 Silicon Genesis Corporation Substrate cleaving tool and method
US6263941B1 (en) 1999-08-10 2001-07-24 Silicon Genesis Corporation Nozzle for cleaving substrates
US6284631B1 (en) 1997-05-12 2001-09-04 Silicon Genesis Corporation Method and device for controlled cleaving process
US6291313B1 (en) 1997-05-12 2001-09-18 Silicon Genesis Corporation Method and device for controlled cleaving process
US6291326B1 (en) 1998-06-23 2001-09-18 Silicon Genesis Corporation Pre-semiconductor process implant and post-process film separation
US6500732B1 (en) 1999-08-10 2002-12-31 Silicon Genesis Corporation Cleaving process to fabricate multilayered substrates using low implantation doses
US6548382B1 (en) 1997-07-18 2003-04-15 Silicon Genesis Corporation Gettering technique for wafers made using a controlled cleaving process
US20030124815A1 (en) * 1999-08-10 2003-07-03 Silicon Genesis Corporation Cleaving process to fabricate multilayered substrates using low implantation doses
US20040067644A1 (en) * 2002-10-04 2004-04-08 Malik Igor J. Non-contact etch annealing of strained layers
US20090277314A1 (en) * 2008-05-07 2009-11-12 Silicon Genesis Corporation Layer transfer of films utilizing controlled shear region
US7776717B2 (en) 1997-05-12 2010-08-17 Silicon Genesis Corporation Controlled process and resulting device
US7811900B2 (en) 2006-09-08 2010-10-12 Silicon Genesis Corporation Method and structure for fabricating solar cells using a thick layer transfer process
US20100323113A1 (en) * 2009-06-18 2010-12-23 Ramappa Deepak A Method to Synthesize Graphene
US8293619B2 (en) 2008-08-28 2012-10-23 Silicon Genesis Corporation Layer transfer of films utilizing controlled propagation
US8330126B2 (en) 2008-08-25 2012-12-11 Silicon Genesis Corporation Race track configuration and method for wafering silicon solar substrates
US8329557B2 (en) 2009-05-13 2012-12-11 Silicon Genesis Corporation Techniques for forming thin films by implantation with reduced channeling
US8993410B2 (en) 2006-09-08 2015-03-31 Silicon Genesis Corporation Substrate cleaving under controlled stress conditions

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE668639C (en) * 1932-07-20 1938-12-07 Bernhard Berghaus Process for the annealing of metal objects
CH342980A (en) * 1950-11-09 1959-12-15 Berghaus Elektrophysik Anst Process for the diffusion treatment of pipes made of iron and steel or their alloys

Cited By (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3988955A (en) * 1972-12-14 1976-11-02 Engel Niels N Coated steel product and process of producing the same
DE2703392A1 (en) * 1976-01-28 1977-08-04 Atomic Energy Authority Uk METALWORKING TOOLS TREATMENT METHOD, THESE TOOLS AND THEIR USES
US4105443A (en) * 1976-01-28 1978-08-08 United Kingdom Atomic Energy Authority Metal-forming dies
US4645715A (en) * 1981-09-23 1987-02-24 Energy Conversion Devices, Inc. Coating composition and method
US4640169A (en) * 1982-01-25 1987-02-03 Westinghouse Electric Corp. Cemented carbide cutting tools and processes for making and using
US4486247A (en) * 1982-06-21 1984-12-04 Westinghouse Electric Corp. Wear resistant steel articles with carbon, oxygen and nitrogen implanted in the surface thereof
US4565710A (en) * 1984-06-06 1986-01-21 The United States Of America As Represented By The Secretary Of The Navy Process for producing carbide coatings
US4629631A (en) * 1984-09-14 1986-12-16 United Kingdom Atomic Energy Authority Surface treatment of metals
US4704168A (en) * 1984-10-16 1987-11-03 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Ion-beam nitriding of steels
US4764394A (en) * 1987-01-20 1988-08-16 Wisconsin Alumni Research Foundation Method and apparatus for plasma source ion implantation
US4915746A (en) * 1988-08-15 1990-04-10 Welsch Gerhard E Method of forming high temperature barriers in structural metals to make such metals creep resistant at high homologous temperatures
DE4238784C1 (en) * 1992-11-17 1994-01-20 Multi Arc Oberflaechentechnik Corrosion susceptibility redn. and increasing wear resistance of components made of low-alloy steels - by cleaning component surface and forming diffusive layer by chrome on bombardment in vacuum on diffusion layer
US6098655A (en) * 1996-12-03 2000-08-08 Carolina Power & Light Company Alleviating sticking of normally closed valves in nuclear reactor plants
US7348258B2 (en) 1997-05-12 2008-03-25 Silicon Genesis Corporation Method and device for controlled cleaving process
US20030113983A1 (en) * 1997-05-12 2003-06-19 Silicon Genesis Corporation Method and device for controlled cleaving process
US6013563A (en) * 1997-05-12 2000-01-11 Silicon Genesis Corporation Controlled cleaning process
US7846818B2 (en) 1997-05-12 2010-12-07 Silicon Genesis Corporation Controlled process and resulting device
US6048411A (en) * 1997-05-12 2000-04-11 Silicon Genesis Corporation Silicon-on-silicon hybrid wafer assembly
US5994207A (en) * 1997-05-12 1999-11-30 Silicon Genesis Corporation Controlled cleavage process using pressurized fluid
US6146979A (en) * 1997-05-12 2000-11-14 Silicon Genesis Corporation Pressurized microbubble thin film separation process using a reusable substrate
US6155909A (en) * 1997-05-12 2000-12-05 Silicon Genesis Corporation Controlled cleavage system using pressurized fluid
US6159825A (en) * 1997-05-12 2000-12-12 Silicon Genesis Corporation Controlled cleavage thin film separation process using a reusable substrate
US6159824A (en) * 1997-05-12 2000-12-12 Silicon Genesis Corporation Silicon-on-silicon wafer bonding process using a thin film blister-separation method
US6162705A (en) * 1997-05-12 2000-12-19 Silicon Genesis Corporation Controlled cleavage process and resulting device using beta annealing
US6187110B1 (en) 1997-05-12 2001-02-13 Silicon Genesis Corporation Device for patterned films
US7776717B2 (en) 1997-05-12 2010-08-17 Silicon Genesis Corporation Controlled process and resulting device
US6245161B1 (en) 1997-05-12 2001-06-12 Silicon Genesis Corporation Economical silicon-on-silicon hybrid wafer assembly
US7759217B2 (en) 1997-05-12 2010-07-20 Silicon Genesis Corporation Controlled process and resulting device
US6284631B1 (en) 1997-05-12 2001-09-04 Silicon Genesis Corporation Method and device for controlled cleaving process
US6291313B1 (en) 1997-05-12 2001-09-18 Silicon Genesis Corporation Method and device for controlled cleaving process
US7410887B2 (en) 1997-05-12 2008-08-12 Silicon Genesis Corporation Controlled process and resulting device
US6294814B1 (en) 1997-05-12 2001-09-25 Silicon Genesis Corporation Cleaved silicon thin film with rough surface
US6391740B1 (en) 1997-05-12 2002-05-21 Silicon Genesis Corporation Generic layer transfer methodology by controlled cleavage process
US6458672B1 (en) 1997-05-12 2002-10-01 Silicon Genesis Corporation Controlled cleavage process and resulting device using beta annealing
US6486041B2 (en) 1997-05-12 2002-11-26 Silicon Genesis Corporation Method and device for controlled cleaving process
US7371660B2 (en) 1997-05-12 2008-05-13 Silicon Genesis Corporation Controlled cleaving process
US6511899B1 (en) 1997-05-12 2003-01-28 Silicon Genesis Corporation Controlled cleavage process using pressurized fluid
US5985742A (en) * 1997-05-12 1999-11-16 Silicon Genesis Corporation Controlled cleavage process and device for patterned films
US6528391B1 (en) 1997-05-12 2003-03-04 Silicon Genesis, Corporation Controlled cleavage process and device for patterned films
US20070123013A1 (en) * 1997-05-12 2007-05-31 Silicon Genesis Corporation Controlled process and resulting device
US7160790B2 (en) 1997-05-12 2007-01-09 Silicon Genesis Corporation Controlled cleaving process
US6558802B1 (en) 1997-05-12 2003-05-06 Silicon Genesis Corporation Silicon-on-silicon hybrid wafer assembly
US6010579A (en) * 1997-05-12 2000-01-04 Silicon Genesis Corporation Reusable substrate for thin film separation
US20050186758A1 (en) * 1997-05-12 2005-08-25 Silicon Genesis Corporation Controlled cleaving process
US6632724B2 (en) 1997-05-12 2003-10-14 Silicon Genesis Corporation Controlled cleaving process
US20050070071A1 (en) * 1997-05-12 2005-03-31 Silicon Genesis Corporation Method and device for controlled cleaving process
US6790747B2 (en) 1997-05-12 2004-09-14 Silicon Genesis Corporation Method and device for controlled cleaving process
US6027988A (en) * 1997-05-28 2000-02-22 The Regents Of The University Of California Method of separating films from bulk substrates by plasma immersion ion implantation
US6548382B1 (en) 1997-07-18 2003-04-15 Silicon Genesis Corporation Gettering technique for wafers made using a controlled cleaving process
US6890838B2 (en) 1997-07-18 2005-05-10 Silicon Genesis Corporation Gettering technique for wafers made using a controlled cleaving process
US20040097055A1 (en) * 1997-07-18 2004-05-20 Silicon Genesis Corporation Gettering technique for wafers made using a controlled cleaving process
US6291326B1 (en) 1998-06-23 2001-09-18 Silicon Genesis Corporation Pre-semiconductor process implant and post-process film separation
US6221740B1 (en) 1999-08-10 2001-04-24 Silicon Genesis Corporation Substrate cleaving tool and method
US6513564B2 (en) 1999-08-10 2003-02-04 Silicon Genesis Corporation Nozzle for cleaving substrates
US6500732B1 (en) 1999-08-10 2002-12-31 Silicon Genesis Corporation Cleaving process to fabricate multilayered substrates using low implantation doses
US7056808B2 (en) 1999-08-10 2006-06-06 Silicon Genesis Corporation Cleaving process to fabricate multilayered substrates using low implantation doses
US6554046B1 (en) 1999-08-10 2003-04-29 Silicon Genesis Corporation Substrate cleaving tool and method
US6263941B1 (en) 1999-08-10 2001-07-24 Silicon Genesis Corporation Nozzle for cleaving substrates
US20030124815A1 (en) * 1999-08-10 2003-07-03 Silicon Genesis Corporation Cleaving process to fabricate multilayered substrates using low implantation doses
US20040067644A1 (en) * 2002-10-04 2004-04-08 Malik Igor J. Non-contact etch annealing of strained layers
US8187377B2 (en) 2002-10-04 2012-05-29 Silicon Genesis Corporation Non-contact etch annealing of strained layers
US8993410B2 (en) 2006-09-08 2015-03-31 Silicon Genesis Corporation Substrate cleaving under controlled stress conditions
US7811900B2 (en) 2006-09-08 2010-10-12 Silicon Genesis Corporation Method and structure for fabricating solar cells using a thick layer transfer process
US9640711B2 (en) 2006-09-08 2017-05-02 Silicon Genesis Corporation Substrate cleaving under controlled stress conditions
US9356181B2 (en) 2006-09-08 2016-05-31 Silicon Genesis Corporation Substrate cleaving under controlled stress conditions
US20090277314A1 (en) * 2008-05-07 2009-11-12 Silicon Genesis Corporation Layer transfer of films utilizing controlled shear region
US9362439B2 (en) 2008-05-07 2016-06-07 Silicon Genesis Corporation Layer transfer of films utilizing controlled shear region
US11444221B2 (en) 2008-05-07 2022-09-13 Silicon Genesis Corporation Layer transfer of films utilizing controlled shear region
US8330126B2 (en) 2008-08-25 2012-12-11 Silicon Genesis Corporation Race track configuration and method for wafering silicon solar substrates
US8293619B2 (en) 2008-08-28 2012-10-23 Silicon Genesis Corporation Layer transfer of films utilizing controlled propagation
US8329557B2 (en) 2009-05-13 2012-12-11 Silicon Genesis Corporation Techniques for forming thin films by implantation with reduced channeling
US20100323113A1 (en) * 2009-06-18 2010-12-23 Ramappa Deepak A Method to Synthesize Graphene

Also Published As

Publication number Publication date
FR2132712B1 (en) 1976-10-29
FR2132712A1 (en) 1972-11-24
GB1392811A (en) 1975-04-30
SE384538B (en) 1976-05-10
DE2216628C2 (en) 1982-07-15
NL179833B (en) 1986-06-16
NL179833C (en) 1986-11-17
DE2216628A1 (en) 1972-10-19
NL7204711A (en) 1972-10-10

Similar Documents

Publication Publication Date Title
US3832219A (en) Methods of treating steel surfaces to modify their structure
US4486247A (en) Wear resistant steel articles with carbon, oxygen and nitrogen implanted in the surface thereof
JPH0288714A (en) Manufacture of steel member
Moncoffre Nitrogen implantation into steels
JPS58189323A (en) Formation of case hardening surface
US4481264A (en) Method for chromizing metallic pieces such as steel pieces and chromized metallic pieces obtained thereby
US6235128B1 (en) Carbon and alloy steels thermochemical treatments
Onate et al. A study of dual chromium plus carbon ion implantation into high speed steel
JP3193320B2 (en) Heat treatment method for machine parts
Nelson et al. Improvements in or relating to methods for treating steel to modify the structure thereof
RU2465373C1 (en) Ion implantation method of surfaces of parts made from structural steel
RU2117073C1 (en) Method of modifying titanium alloy surface
Blawert et al. Surface treatment of nitriding steel 34CrAlNi7: a comparison between pulsed plasma nitriding and plasma immersion ion implantation
Ecer et al. Friction and wear properties of nitrided and N+-implanted 17-4 PH stainless steel
Byeli et al. Microstructural variations and tribology of molybdenum-type high speed steel ion implanted with high current density nitrogen beams
Singer et al. Friction, wear and deformation of soft steels implanted with Ti and N
US5217748A (en) Method of hardening metal surfaces
Mahboubi et al. Plasma immersion ion implantation (PI3) and rf plasma nitriding of a microalloyed steel
JPH0146586B2 (en)
Hutchings et al. Plasma immersion ion implantation at elevated temperatures
Wang et al. The surface modification of 9Cr18 steel using nitrogen ion implantation
Alonso et al. Effects of implantation treatments on micromechanical properties of M2 steel
Blawert et al. Plasma immersion ion implantation of 100Cr6 ball bearing steel
Madakson et al. Friction and wear of ion implanted aluminium
Byeli et al. Structure and wear resistance of 20X13 steel ion-implanted with nitrogen at a high beam-current density