US3831179A - Electrographic tape recording medium - Google Patents

Electrographic tape recording medium Download PDF

Info

Publication number
US3831179A
US3831179A US00316001A US31600172A US3831179A US 3831179 A US3831179 A US 3831179A US 00316001 A US00316001 A US 00316001A US 31600172 A US31600172 A US 31600172A US 3831179 A US3831179 A US 3831179A
Authority
US
United States
Prior art keywords
layer
aluminum
stylus
recording medium
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00316001A
Inventor
K Brill
W Grothe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Application granted granted Critical
Publication of US3831179A publication Critical patent/US3831179A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/24Ablative recording, e.g. by burning marks; Spark recording
    • B41M5/245Electroerosion or spark recording

Definitions

  • ABSTRACT A layer of a metallic oxide having a heat of formation less than that of aluminum oxide is provided between the paper or synthetic flexible carrier and an aluminum film having a square resistance of about 2.5 ohms. Electric current flows betweena stylus and the aluminum layer, but the effect of the current is merely to initiate an aluminothermic reaction between the aluminum and the oxide which, however, is sharply limited to the path of the stylus over the mediumas the stylus or the medium is moved, leaving a clearly visible trace.
  • This invention relates to a recording medium for graphic recording devices using a tape of insulating material as a carrier and having a covering layer composed essentially of aluminum.
  • the recording process utilizing known graphic recording media of this type uses a writing stylus through which an electric current flows into or out of the aluminum.
  • the current flow under the point of the stylus melts the metal layer by means of the Joule heatproduced.
  • the layer coalesces there, the electrical contact is broken, and an arc is formed.
  • the arc burns the layer out up to a certain spot size and then extinguishes.
  • This process is repetitive if the paper or the stylus is advanced and a new contact is produced.
  • the writing trace is thus formed by a series of discrete bumouts.
  • a further disadvantage of the known graphic recording media lies in the relatively high corrosion of the metal layer.
  • resin coated paper is used as the carrier layer, solvent residues from the resin layer as well as materials containing acid or alkali groups which are likely to rub off the surface of pigment grains, come into contact with the metal layer, where they promote the corrosion of the metal. That means that the durability of the cover layer cannot yet be regarded or designated as satisfactory in many cases involving known graphic recording media.
  • a further disadvantage of the known graphic recording media is the polarity dependence of the quality of the traces produced.
  • the known graphic recording media sharply bounded traces are obtained if the stylus has negative polarity. That leads, however, to relatively frequent gaps because in that case aluminum oxide is readily formed on the stylus,so that a higher application pressure is needed. For that reason, the stylus is generally connected to the positive pole of the voltage source in spite of the fact that the trace is not so sharply defined in that case. It is possible to reduce the application pressure in that fashion, however, because with positive polarity aluminum oxide no longer forms to the same extent at the stylus'point. 7
  • the graphic recording process involved in the application of the recording medium of the invention may be described as follows.
  • the electric current flowing between the stylus point and the aluminum covering layer, by warming the layer and producing an are sets off an exothermic reaction which delivers most of the necessary energy for producing the trace.
  • This exothermic reaction is a so-called aluminothermic reaction.
  • Mn- O manganese oxide
  • the reaction may be written as follows:
  • -TI-Ie amount of. energy liberated depends upon the total amount of conversion as well as upon the stage or state of oxidation in which the metal in question (in this case manganese) is provided.
  • the "intermediate metal oxide layer has the important effect of blocking the diffusion of the corrosive groups originating in the carrier layer, which tend to corrode the aluminum covering layerl, In this mannerthe useful life of the aluminum layer of the graphic recording medium of the invention is substantially increased. It was determined by com parative corrosion tests that in the case of the aluminum layer of the new graphic recording medium, no attack of the aluminum layer wasyet recognizable when the aluminum layers of recording media-of previously used types already showed clearly visible corrosion effects.
  • oxides having a heat of formation number with reference to 1 gram-atom of oxygen that is smaller than that of aluminum oxide can be used for the middle layer of the recording medium.
  • certain aspects must be taken into account which come into play in connection with the production of the layers or in connection with the process of trace formation.
  • the oxide layer it is important that the oxide layer should be capable of being applied to the carrier layer in the simplest possible way.
  • the oxide layer serving as an intermediate layer should have no electric conductivity, for otherwise, because of the fact that the overall conductivity is composed of the partial conductivities of the adjoining materials and that the area resistance of the layer should amount to 2.5 ohms, the aluminum cover layer would have to be so thin as to become transparent. That is undesirable, since in that case the traces would not be clearly recognizable, especially in transmitted light.
  • the oxide layer to consist of one or more oxides of at least one of the following metals: manganese, chromium, iron, cobalt, nickel, tin.
  • the oxide layers can be applied to the carrier by known methods, as for example, direct vapor deposition, reactive vapor deposition, vapor deposition of the metal and subsequent oxidation, chemical vapor deposition or chemical precipitation from solution.
  • the individual layers of the graphic recording medium should appropriately have the following thicknesses:
  • the carrier layer should have a thickness from 5 to 500 microns (1.4m), preferably to 100 ,um;
  • the metal oxide layer should have a thickness from 0.005 to l um, preferably 0.01 to 0.5 pm, and the aluminum layer a thickness from 0.01 to 0.5 pm, preferably 0.02 to 0.l um.
  • FIG. 1 is a cross-section of a graphic recording medium using an uncoated layer of synthetic material as a carrier
  • FIG. 2 is a cross-section of a graphic recording medium using a resin coated paper carrier layer.
  • the carrier layer 11 consists of a synthetic material film having a thickness of 50 pm.
  • a manganese oxide layer 12 is applied on this carrier .
  • the thicknessof this manganese oxide layer amounts to about 0.1 p.m.
  • an aluminum layer of about 0.07 um is laid down on this manganese oxide layer in a second vapor deposition apparatus.
  • the carrier tape consists of a paper sheet 21 provided with a resin coating 22. Both together have a thickness of about 80 pm.
  • a manganese oxide layer 23 of about 0.08 pm thickness is vapor deposited in the same way as described above and thereon also likewise an aluminum layer 24 of the same thickness.
  • a recording medium for comprising:
  • a covering layer consisting essentially of aluminum
  • graphic recording devices an intermediate layer between said carrier layer and said covering layer composed of one or more oxides of at least one metal selected from the group consisting of manganese, chromium, iron, cobalt, nickel and tin, said oxide or oxides having a heat of combination less negative than aluminum oxide,

Abstract

A layer of a metallic oxide having a heat of formation less than that of aluminum oxide is provided between the paper or synthetic flexible carrier and an aluminum film having a square resistance of about 2.5 ohms. Electric current flows between a stylus and the aluminum layer, but the effect of the current is merely to initiate an aluminothermic reaction between the aluminum and the oxide which, however, is sharply limited to the path of the stylus over the medium as the stylus or the medium is moved, leaving a clearly visible trace.

Description

United States Patent 1191 Brill et al.
ELECTROGRAPHIC TAPE RECORDING MEDIUM Inventors: Klaus Brill, Korntal; Wolfgang Grothe, Stuttgart, both of Germany Assignee: Robert Bosch Gmbll, Stuttgart,
Germany Filed: Dec. 18, 1972 Appl. No.: 316,001
Foreign Application Priority Data Feb. 1, 1972 Germany 2204509 US. Cl 346/76 R, 346/135, 346/74 R, 346/74 ES, 117/215 Int. Cl... B4lm 5/18 Field of Search 346/135, 76, 74; 117/222, 117/215, 217
References Cited UNITED STATES PATENTS 5/1958 Baumlein 346/135 8/1966 Echeagaray 346/135 2/1969 Ortlieb 346/135 X 1451 Aug. 20, 1974 3,516,911 6/1970 Hopps, Jr 346/135 3,560,994 2/1971 Wolff et al 346/135 3,615,405 10/1971 Shebanow 117/215 X 3,657,721 4/1972 Traub et al. 346/135 FOREIGN PATENTS OR APPLICATIONS 708,912 5/1954 Great Britain...; 346/135 Primary ExaminerRichard B. Wilkinson Assistant Examiner-Vit W. Miska Attorney, Agent, or FirmFlynn & Frishauf [57 ABSTRACT A layer of a metallic oxide having a heat of formation less than that of aluminum oxide is provided between the paper or synthetic flexible carrier and an aluminum film having a square resistance of about 2.5 ohms. Electric current flows betweena stylus and the aluminum layer, but the effect of the current is merely to initiate an aluminothermic reaction between the aluminum and the oxide which, however, is sharply limited to the path of the stylus over the mediumas the stylus or the medium is moved, leaving a clearly visible trace.
4 Claims, 2 Drawing Figures This invention relates to a recording medium for graphic recording devices using a tape of insulating material as a carrier and having a covering layer composed essentially of aluminum.
The recording process utilizing known graphic recording media of this type uses a writing stylus through which an electric current flows into or out of the aluminum. The current flow under the point of the stylus melts the metal layer by means of the Joule heatproduced. The layer coalesces there, the electrical contact is broken, and an arc is formed. The arc burns the layer out up to a certain spot size and then extinguishes. This process is repetitive if the paper or the stylus is advanced and a new contact is produced. The writing trace is thus formed by a series of discrete bumouts.
All the energy necessary for burning out aluminum in these graphic recording media has been provided by the electric arc. In the entire region of the arc plasma very high temperatures are reached. In consequence, the layer material vaporizes and is ionized in the plasma. By convection and under the influence of the electric field, a transfer of material takes place so that scales of aluminum oxide are formed on the stylus. These scales lead to interruption of the flow of current and thus also of the writing trace. For this reason, high writing voltages and stylus application pressures are necessary. The high mechanical and thermal stressing of the stylus leads to indications of wear of the stylus point as well as to so -called trails on the paper, which are weakly visible traces that arise even though neit her' a flow of current nor an arc was present. The causes of these trailslare still unknown.
A further disadvantage of the known graphic recording media, eventhose with aluminum base, lies in the relatively high corrosion of the metal layer. Especially when resin coated paper is used as the carrier layer, solvent residues from the resin layer as well as materials containing acid or alkali groups which are likely to rub off the surface of pigment grains, come into contact with the metal layer, where they promote the corrosion of the metal. That means that the durability of the cover layer cannot yet be regarded or designated as satisfactory in many cases involving known graphic recording media.
A further disadvantage of the known graphic recording media is the polarity dependence of the quality of the traces produced. With the known graphic recording media, sharply bounded traces are obtained if the stylus has negative polarity. That leads, however, to relatively frequent gaps because in that case aluminum oxide is readily formed on the stylus,so that a higher application pressure is needed. For that reason, the stylus is generally connected to the positive pole of the voltage source in spite of the fact that the trace is not so sharply defined in that case. It is possible to reduce the application pressure in that fashion, however, because with positive polarity aluminum oxide no longer forms to the same extent at the stylus'point. 7
It is the object of the present invention to improve the quality and the safety in operation of graphic recording media. In particular, it is an object to avoid or mitigate the formation of oxide layers or scale at the stylus point, so that the recording device can be operated with low application pressure, thus largely avoiding wear of its mechanically stressed parts. In addition,
it is desirable for the quality of the inscribed traces to be, so far as possible, independent of polarity, so that this too is an object of the invention. Finally, it is an object of the invention to provide a graphic recording medium of high corrosion resistance and thereby to provide a medium of increased durability.
SUBJECT MATTER OF THE PRESENT INVENTION Briefly, instead of supplying all the energy for the formation of the trace through the am that is formed, a
large proportion of the necessary energy is stored in the writing layer of the medium itself, in the form of latent chemical energy. This is accomplished by providing'a layer of an oxide having a lower heat of formation less negative than that of aluminum oxide in between the carrier layer and the aluminum covering. Heat of formation is generally expressed with reference to 1 gramatom of oxygen, so that the value for A1 0 is minus 133 kilocalories per gram-atom of oxygen.
The graphic recording process involved in the application of the recording medium of the invention may be described as follows. The electric current flowing between the stylus point and the aluminum covering layer, by warming the layer and producing an are sets off an exothermic reaction which delivers most of the necessary energy for producing the trace. This exothermic reaction is a so-called aluminothermic reaction. When manganese oxide, Mn- O is used for the intermediate layer, the reaction may be written as follows:
8 Al 3 M11 0, 4 A1,o 9 Mn AHI= 607 kcal.
-TI-Ie amount of. energy liberated depends upon the total amount of conversion as well as upon the stage or state of oxidation in which the metal in question (in this case manganese) is provided.
By inspection of the energy balance, it is evident that the energy liberated by' the reaction with manganese oxide, Mn O is by itself sufficient to vaporize an aluminum coating having a square resistance of 2.5 ohms, which corresponds to a mass distribution of 10 ng/cm": The fact that the place at which the formation of the trace takes place has been'shiftedfrom'the arc plasma into the layer itself is doubtless responsible'for the good quality of the traces obtained with the graphic recording medium of this'invention. Inthis fashion, a local limitation or confinement of the reaction is reached that leads to very sharp-traces. 'It has moreover been found-that no polarity effect or influence is to be distinguished-in .the' use of thegraphic recording medium of the invention. The writing sensitivity of the layer is thus practically independent of the polarity of the stylus.
1 It furthermore appearsthat the "intermediate metal oxide layer has the important effect of blocking the diffusion of the corrosive groups originating in the carrier layer, which tend to corrode the aluminum covering layerl, In this mannerthe useful life of the aluminum layer of the graphic recording medium of the invention is substantially increased. It was determined by com parative corrosion tests that in the case of the aluminum layer of the new graphic recording medium, no attack of the aluminum layer wasyet recognizable when the aluminum layers of recording media-of previously used types already showed clearly visible corrosion effects.
In principle, all oxides having a heat of formation number with reference to 1 gram-atom of oxygen, that is smaller than that of aluminum oxide can be used for the middle layer of the recording medium. For the present purposes, however, certain aspects must be taken into account which come into play in connection with the production of the layers or in connection with the process of trace formation. In the first place, it is important that the oxide layer should be capable of being applied to the carrier layer in the simplest possible way. Next, the oxide layer serving as an intermediate layer should have no electric conductivity, for otherwise, because of the fact that the overall conductivity is composed of the partial conductivities of the adjoining materials and that the area resistance of the layer should amount to 2.5 ohms, the aluminum cover layer would have to be so thin as to become transparent. That is undesirable, since in that case the traces would not be clearly recognizable, especially in transmitted light.
Taking account, therefore, of these various aspects, it is particularly advantageous for the oxide layer to consist of one or more oxides of at least one of the following metals: manganese, chromium, iron, cobalt, nickel, tin.
The oxide layers can be applied to the carrier by known methods, as for example, direct vapor deposition, reactive vapor deposition, vapor deposition of the metal and subsequent oxidation, chemical vapor deposition or chemical precipitation from solution.
The individual layers of the graphic recording medium should appropriately have the following thicknesses: The carrier layer should have a thickness from 5 to 500 microns (1.4m), preferably to 100 ,um; the metal oxide layer should have a thickness from 0.005 to l um, preferably 0.01 to 0.5 pm, and the aluminum layer a thickness from 0.01 to 0.5 pm, preferably 0.02 to 0.l um. I I
Illustrative examples of the invention are further described with reference to the accompanying drawing, wherein:
FIG. 1 is a cross-section of a graphic recording medium using an uncoated layer of synthetic material as a carrier, and
FIG. 2 is a cross-section of a graphic recording medium using a resin coated paper carrier layer.
In FIG. 1 the carrier layer 11 consists of a synthetic material film having a thickness of 50 pm. On this carrier a manganese oxide layer 12 is applied. This is accomplished by so-called reactive vapor deposition, i.e., the carrier tape 11 is exposed to manganese vapor in the presence of steam in a vapor deposition apparatus, so that manganese oxide, essentially Mn O is formed. The thicknessof this manganese oxide layer amounts to about 0.1 p.m. In a'further operation, an aluminum layer of about 0.07 um is laid down on this manganese oxide layer in a second vapor deposition apparatus.
In FIG. 2 the carrier tape consists of a paper sheet 21 provided with a resin coating 22. Both together have a thickness of about 80 pm. On the resin layer 22, a manganese oxide layer 23 of about 0.08 pm thickness is vapor deposited in the same way as described above and thereon also likewise an aluminum layer 24 of the same thickness.
It is also possible to carry out vapor deposition of the oxide layer and of the aluminum layer one after the other in the same vapor deposition equipment, if a suit- 7 ably constructed vapor deposition apparatus is available.
A comparison of the graphic recording media of the present invention illustrated in FIGS. 1 and 2 and described just above, with known recording media of the kind previously mentioned, provides the following comparative values:
For a particular standardized trace width and trace quality, a writing voltage from 30 to 35 volts was necessary in the case of the previously known recording media, whereas the same trace width and the same trace quality was already obtained with a writing voltage of 20 volts in the case of the recording medium of the present invention. With a stylus application pressure of 35 mp (milliponds) excellent traces could still be produced on the graphic recording medium of the invention, and actually also independent of whether the stylus was polarized negatively or positively with respect to the medium. For the previously known graphic recording media, on the other hand, with the same application pressure and negative stylus polarity, no "more writing trace was visible and with positive stylus polarity, only an erratic writing trace with gaps could be obtained.
The improved corrosionresistance and the resulting layer durability of the graphic recording medium of the invention compared to the previously known recording media has already been mentioned above.
Although the invention has been described with reference to particular illustrative embodiments, it is to be understood that modifications and variations may be made within the inventive concept without departing from the spirit of the invention.
'-We claim;
1. A recording medium for comprising:
a flexible tape of insulating material'serving as a carrier layer;
a covering layer consisting essentially of aluminum;
graphic recording devices an intermediate layer between said carrier layer and said covering layer composed of one or more oxides of at least one metal selected from the group consisting of manganese, chromium, iron, cobalt, nickel and tin, said oxide or oxides having a heat of combination less negative than aluminum oxide,
said intermediate and covering layers being mechanically supported on said tape. v
2. A recording medium as defined in claim 1 in which said intermediate layer is composed essentially of one or more oxides of manganese. I
3. A recording medium as defined in claim 1 in which said intermediate layer has a thickness between 0.005 and 1 micron and said covering layer has a thickness between 0.01 and 0.5 micron.
4. A recording medium as defined in claim 3 in which said intermediate layer has a thickness between 0.01 and 0.5 micron and said covering layer has a thickness of between 0.02 and 0.1 micron.

Claims (3)

  1. 2. A recording medium as defined in claim 1 in which said intermediate layer is composed essentially of one or more oxides of manganese.
  2. 3. A recording medium as defined in claim 1 in which said intermediate layer has a thickness between 0.005 and 1 micron and said covering layer has a thickness between 0.01 and 0.5 micron.
  3. 4. A recording medium as defined in claim 3 in which said intermediate layer has a thickness between 0.01 and 0.5 micron and said covering layer has a thickness of between 0.02 and 0.1 micron.
US00316001A 1972-02-01 1972-12-18 Electrographic tape recording medium Expired - Lifetime US3831179A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2204509A DE2204509C3 (en) 1972-02-01 1972-02-01 Data carriers for recorders

Publications (1)

Publication Number Publication Date
US3831179A true US3831179A (en) 1974-08-20

Family

ID=5834595

Family Applications (1)

Application Number Title Priority Date Filing Date
US00316001A Expired - Lifetime US3831179A (en) 1972-02-01 1972-12-18 Electrographic tape recording medium

Country Status (6)

Country Link
US (1) US3831179A (en)
JP (1) JPS4885255A (en)
DE (1) DE2204509C3 (en)
FR (1) FR2163199A5 (en)
GB (1) GB1410424A (en)
IT (1) IT971918B (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3959799A (en) * 1974-09-09 1976-05-25 International Business Machines Corporation Information storage by laser beam initiated reactions
US4150387A (en) * 1976-10-27 1979-04-17 Mita Industrial Company Ltd. Alternating current electrostatic recording process
US4195937A (en) * 1977-09-19 1980-04-01 Termcom, Inc. Electroresistive printing apparatus
US4217596A (en) * 1977-10-27 1980-08-12 Robert Bosch Gmbh Recording carrier for electrical discharge recording apparatus
US4241356A (en) * 1976-10-08 1980-12-23 Robert Bosch Gmbh Recording medium for thermographic recording of data items
US4339477A (en) * 1980-06-25 1982-07-13 International Business Machines Corporation Process for preparing a pigmented lacquer
US4359749A (en) * 1980-01-19 1982-11-16 Licentia Patent-Verwaltungs-Gmbh Recording medium and method for making a record on the recording medium
US4419392A (en) * 1981-08-21 1983-12-06 International Business Machines Corporation Process for producing compact lacquer layers for record carriers
US4482901A (en) * 1981-02-07 1984-11-13 Robert Bosch Gmbh Method and system for thermally recording information on a metalized recording carrier
US4617579A (en) * 1984-04-05 1986-10-14 International Business Machines Corporation Hydrophilic protective coatings for electroerosion printing
US5459018A (en) * 1990-03-08 1995-10-17 Matsushita Electric Industrial Co., Ltd. Optical information recording medium, a manufacturing method thereof and an optical information recording and reproducing method using the medium
US5786129A (en) * 1997-01-13 1998-07-28 Presstek, Inc. Laser-imageable recording constructions utilizing controlled, self-propagating exothermic chemical reaction mechanisms
US6416929B2 (en) * 1997-10-17 2002-07-09 Kabushiki Kaisha Toyota Chuo Kenkyusho Memory member
US20040175258A1 (en) * 2002-12-16 2004-09-09 Hansjoerg Haas Robotic carousel workstation

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2747485A1 (en) * 1977-10-22 1979-04-26 Bosch Gmbh Robert RECORDING MEDIA FOR REGISTRATION DEVICES
CA1144418A (en) * 1979-12-17 1983-04-12 Ari Aviram Erosion process for generation of offset masters

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB708912A (en) * 1949-04-04 1954-05-12 Bosch Gmbh Robert Improvements in metal coated recording strips
US2833677A (en) * 1954-06-09 1958-05-06 Recording paper for spark recorders
US3265524A (en) * 1963-02-08 1966-08-09 Ignacio P Echeagaray Recording blank
US3429991A (en) * 1964-01-17 1969-02-25 Bosch Gmbh Robert Facsimile system for reproducing a picture or the like on a metal layer
US3516911A (en) * 1967-12-01 1970-06-23 Nashua Corp Electrosensitive recording material
US3560994A (en) * 1968-02-06 1971-02-02 Bosch Gmbh Robert Vaporizable recording medium
US3615405A (en) * 1968-05-10 1971-10-26 Honeywell Inc Composite image plate
US3657721A (en) * 1969-09-11 1972-04-18 Bosch Gmbh Robert Recording tape with partially oxidized aluminum film

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB708912A (en) * 1949-04-04 1954-05-12 Bosch Gmbh Robert Improvements in metal coated recording strips
US2833677A (en) * 1954-06-09 1958-05-06 Recording paper for spark recorders
US3265524A (en) * 1963-02-08 1966-08-09 Ignacio P Echeagaray Recording blank
US3429991A (en) * 1964-01-17 1969-02-25 Bosch Gmbh Robert Facsimile system for reproducing a picture or the like on a metal layer
US3516911A (en) * 1967-12-01 1970-06-23 Nashua Corp Electrosensitive recording material
US3560994A (en) * 1968-02-06 1971-02-02 Bosch Gmbh Robert Vaporizable recording medium
US3615405A (en) * 1968-05-10 1971-10-26 Honeywell Inc Composite image plate
US3657721A (en) * 1969-09-11 1972-04-18 Bosch Gmbh Robert Recording tape with partially oxidized aluminum film

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3959799A (en) * 1974-09-09 1976-05-25 International Business Machines Corporation Information storage by laser beam initiated reactions
US4241356A (en) * 1976-10-08 1980-12-23 Robert Bosch Gmbh Recording medium for thermographic recording of data items
US4150387A (en) * 1976-10-27 1979-04-17 Mita Industrial Company Ltd. Alternating current electrostatic recording process
US4195937A (en) * 1977-09-19 1980-04-01 Termcom, Inc. Electroresistive printing apparatus
US4217596A (en) * 1977-10-27 1980-08-12 Robert Bosch Gmbh Recording carrier for electrical discharge recording apparatus
US4359749A (en) * 1980-01-19 1982-11-16 Licentia Patent-Verwaltungs-Gmbh Recording medium and method for making a record on the recording medium
US4339477A (en) * 1980-06-25 1982-07-13 International Business Machines Corporation Process for preparing a pigmented lacquer
US4482901A (en) * 1981-02-07 1984-11-13 Robert Bosch Gmbh Method and system for thermally recording information on a metalized recording carrier
US4419392A (en) * 1981-08-21 1983-12-06 International Business Machines Corporation Process for producing compact lacquer layers for record carriers
US4617579A (en) * 1984-04-05 1986-10-14 International Business Machines Corporation Hydrophilic protective coatings for electroerosion printing
US5459018A (en) * 1990-03-08 1995-10-17 Matsushita Electric Industrial Co., Ltd. Optical information recording medium, a manufacturing method thereof and an optical information recording and reproducing method using the medium
US5786129A (en) * 1997-01-13 1998-07-28 Presstek, Inc. Laser-imageable recording constructions utilizing controlled, self-propagating exothermic chemical reaction mechanisms
US6416929B2 (en) * 1997-10-17 2002-07-09 Kabushiki Kaisha Toyota Chuo Kenkyusho Memory member
US20040175258A1 (en) * 2002-12-16 2004-09-09 Hansjoerg Haas Robotic carousel workstation

Also Published As

Publication number Publication date
IT971918B (en) 1974-05-10
DE2204509B2 (en) 1980-02-21
JPS4885255A (en) 1973-11-12
GB1410424A (en) 1975-10-15
DE2204509A1 (en) 1973-08-16
DE2204509C3 (en) 1981-12-03
FR2163199A5 (en) 1973-07-20

Similar Documents

Publication Publication Date Title
US3831179A (en) Electrographic tape recording medium
US3514325A (en) Electrosensitive recording article and method of making the same
US3122448A (en) Translucent electrosensitive recording sheet
CH609731A5 (en) Process for coating a substrate made of nickel-based super alloy or cobalt-based super alloy with a refractory coating and articles obtained
US2726179A (en) Recording tapes having a metal layer applied by vapour deposition
US4241356A (en) Recording medium for thermographic recording of data items
JPH0535074B2 (en)
US3657721A (en) Recording tape with partially oxidized aluminum film
JPS5813703Y2 (en) thermal recording pen
US3769629A (en) Multicolor permanent and erasable printing
Prudenziati et al. Novel high-temperature reliable heaters in plasma spray technology
US4056823A (en) Analog chart recorder employing thermal printing means
JPS6166693A (en) Energized recording sheet and recording method thereof
JP2523765B2 (en) Glass ceramic substrate
JPH0534205A (en) Temperature sensor
JPS5388530A (en) Information recording medium
JPS61135764A (en) Thermal head
JPH0751361B2 (en) Thermal head
JPS63145052A (en) Thermal recording head
GB1491727A (en) Image recording member
RU571U1 (en) Thermal head
SU705546A1 (en) Electric contact
JPS5265118A (en) Metallic material difficult to form scale in oxidation at high temperature
Devereux Electrode polarization studies in hot corrosion systems. Progress report, 1 June 1981-31 May 1982
JPS57113435A (en) Storage material