US3816185A - Protective coating on wire - Google Patents

Protective coating on wire Download PDF

Info

Publication number
US3816185A
US3816185A US00216268A US21626872A US3816185A US 3816185 A US3816185 A US 3816185A US 00216268 A US00216268 A US 00216268A US 21626872 A US21626872 A US 21626872A US 3816185 A US3816185 A US 3816185A
Authority
US
United States
Prior art keywords
wire
plated
concentration
bath
permalloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00216268A
Inventor
E Toledo
L Dzwonczyk
Yah Mo R Shih
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Raytheon Co
Original Assignee
Raytheon Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Raytheon Co filed Critical Raytheon Co
Priority to US00216268A priority Critical patent/US3816185A/en
Priority to US450962A priority patent/US3922389A/en
Application granted granted Critical
Publication of US3816185A publication Critical patent/US3816185A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/60Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using alkaline aqueous solutions with pH greater than 8
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/72Protective coatings, e.g. anti-static or antifriction
    • G11B5/722Protective coatings, e.g. anti-static or antifriction containing an anticorrosive material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12556Organic component

Definitions

  • ABSTRACT A chemical bath for applying a protective coating on magnetically plated wire during in-line processing, the bath comprising an aqueous alkaline solution including a 0.05 to 0.25 percent concentration of an adsorbable, organic corrosion inhibitor from the class consisting of thiazole, urea and amine compounds; and a l to 5 percent concentration of an inorganic, PH stabilizer from the class consisting of borate, benzoate and phosphate salts of sodium and potassium.
  • an aqueous alkaline solution including a 0.05 to 0.25 percent concentration of an adsorbable, organic corrosion inhibitor from the class consisting of thiazole, urea and amine compounds; and a l to 5 percent concentration of an inorganic, PH stabilizer from the class consisting of borate, benzoate and phosphate salts of sodium and potassium.
  • This invention is related, generally, to chemical solutions for forming protective coatings on wire and is concerned, more particularly, with a chemical bath for applying a protective coating on plated memory wire during in-line processing.
  • One exemplary magnetic plating line comprises a spaced, parallel array of chemical cells in colinear alignment with a rotatable spool of wire at one end of the array and a longitudinally disposed, tubular furnaceat the other end.
  • the wire usually, is made of a resilient material having good electrical properties, such as beryllium-copper, for example.
  • wire feeds continuously off the spool and is drawn longitudinally through the respective cells of the array and the aligned, tubular furnace.
  • the surface of the wire is cleaned, etched and electropolished while passing through the initial cell stages, and receives a'plating of copper, while passing through the intermediate cell stages of the array.
  • the wire isplated with a material having desirable magnetic properties, such as permalloy, for example.
  • Permalloy is a nickel-iron compound having preferred percentage compositions for plated memory wire which exhibit low magnetostrictive properties when the plated wire is distorted. Another reason permalloy is a preferred plating material for magnetic memory wire is that it acquires uniaxial, anisotropic magnetic properties when influenced by a coaxial magnetic field during the plating process. As a result, an easy direction of magnetication is established circumferentially in the plated permalloy film; and an orthogonal hard" direction of magnetization is established parallel to the axis of the wire.
  • each discrete cylindrical portion of the platedpermalloy film has a nearly square hysteresis loop in the easy direction of magnetization and an almost linear hysteresis loop in the hard direction.
  • any particular portion of the plated permalloy film may be magnetized in the circumferential direction, either clockwise or counterclockwise.
  • the magnetic vector of a selected portion of the plated permalloy film may be switched from one circumferential rest position to the other. Consequently, the two oppositely directed rest positions, usually, are assigned the respective digits, one andzero, of a binary logic system.
  • the plated permalloy film is annealed while exposed to the flux of an orienting magnetic field. Therefore, after leaving the final permalloy plating cell in the magnetic plating line, the plated wire, generally, passes through an additional chemical cell containing a pool of conductive liquid, such as mercury, for example.
  • the mercury liquid provides a minimum resistance means for making an electrical connection to the continuously moving wire, without wetting the metallic components of the plated permalloy film.
  • an orienting current is passed through the permalloy plated wire while the wire is traveling through the subsequent furnace stage of the magnetic plating line.
  • the wire In the furnace, the wire generally passes through an inert or a reducing gas atmosphere which, usually, is maintained at a temperature greater than 250C.
  • the plated permalloy film is annealedwhile the magnetic vectors of the respective memory cells in the permalloy film are uniformly aligned by a coaxial magnetic field established by the orienting current.
  • the wire After passing through the heat treatment furnace, the wire, generally, is tested as part of the continuous process and cut into segments which, subsequently, are assembled into a memory system.
  • the plated permalloy film is very thin, generally being about 1 micron in thickness. Consequently, minute holes occur in the film along the length of the continuous wire. It has been found that, when the permalloy plated wire passes through the liquid contact, minute quantities of mercury enter these pin holes and amalgamate with the exposed copper material. Consequently, when the permalloy plated wire enters the elevated temperature environment of the heat treatment furnace, the low melting temperature mercury-copper alloy' expands radially under the permalloy film. As a result, localized cracking and peeling of the permalloy film were found, at a later time, to have occurred around the respective pin holes and spread radially outward therefrom. Thus, stored memory bits were destroyed and sizable portions of the plated memory wire had become inoperative.
  • any coating of protective material applied during processing of the wire must be capable of withstanding the elevated temperature environment of the heat treatment furnace without stressing or otherwise affecting the magnetic properties of the plated pennalloy film.
  • this invention provides a chemical bath for forming a protectivecoating on plated memory wire while the wire is moving longitudinally through the bath at plating line velocity.
  • the chemical bath of this invention comprises an aqueous, alkaline solution including 0.05 to 0.25 percent concentration of an adsorbable corrosion inhibitor, and l to 5 percent concentration of a Pl-l stabilizer. It was found that members of the thiazole group of compounds, such as thiazole, mercaptothiazole, benzothiazole, for examples, are the most effective adsorbable, corrosion inhibiting agents.
  • members of the urea group of compounds such as thiourea, monotolylthiourea, ditolylthiourea, for examples, and members of the amine group of compounds, such as 'dibenzlamine, tribenzlamine, hexodecylamine, for examples, also are acceptable as adsorbable, corrosion inhibiting agents in the chemical bath of this invention.
  • Sodiumborate, sodium benzoate and sodium phosphate are preferred stabilizing agents, although potassium borate, potassium benzoate and potassium phosphate also are acceptable as PH stabilizing agents for this bath. 1
  • the chemical bath of this invention was developed, specifically, for protecting plated memory wire during in-line processing, it was evaluated in a typical magnetic plating line.
  • the inventive aqueous, alkaline solution was contained in, a chemical cell which was disposed between the final cell of the permalloy plating stage and the mercury contact cell.
  • the chemical cell, so disposed, was 3 inches high, 6 inches long, inches wide and contained 7-50 milliliters of the inventive alkaline, solution.
  • the described bath was maintained at a temperature between and C.
  • the wire used for evaluating this chemical bath was a commercial grade, No. 125 beryllium-copper wire having an initial diameter of about 5.5 mils and a surface finish of about 16 microinches. However, after passing through the etching and electro-polishing cell stages of the magnetic plating line, the diameter of the wire was reduced to about 4.9 mils and the resulting surface finish was about 4 microinches.
  • the polished wire received a plating of copper, about 3 microns thick.
  • the copper-plated-wire received a plating of permalloy material about 1 micron in thickness.
  • the plated wire After passing through the chemical bath of this invention, the plated wire passes through the mercury contact cell and then through the heat treatment furnace.
  • One suitable furnace was 4 feet long and was maintained at a temperature between 300 and 400C. in order to test the quality of the protective coating applied by the chemical bath, an inert or reducing gas atmosphere was not used in the heat treatment stage.
  • the plated wire was exposed to an air atmosphere at high temperature. Under these conditions, any areas left uncovered by the protective coating will be covered with a black oxide coating. it has been found that wire coated with this black oxide film will not pass electrical test at the end of the plating line. When a portion of the wire fails electrical test, an automatic cutter is triggered which then removes the rejectable portion from the continuous wire.
  • compositions of the inventive baths tested under the described conditions are listed below.
  • the function of the organic inhibitor such as thiazole, mercaptothiazole and benzothiazole in the inventive Chemical Baths Nos. 1, 2 and 3, for example, is to coat any exposed copper on the plated wire before it enters the mercury contact cell.
  • organic inhibitors preferentially wet copper and are adsorbed onto the copper surface, thereby forming an extremely thin layer of organic material, only a few molecules in thickness.
  • This molecular thin layer of inert material is sufficient to prevent mercury wetting of the copper and the resulting formation of low melting mercury copper amalgamines.
  • the adsorbed layer of organic material does not interfere with the passage of current from the mercury to the plated wire. Thus, the mercury liquid still retains electrical contact with the surface of the plated wire.
  • organic inhibitors perform satisfactorily in the chemical bath of this invention. Some organic inhibitors do not preferentially wet exposed copper material, and others contaminate the mercury cell. Some organic inhibitors which may be used, alternatively, in place of those disclosed in respective Chemical Baths 1, 2 and 3 are: mercaptobenzothiazol, 1-2 thiazoldinethione, 2-4 thiazoldenione, 1-(2 thiazolylago-2 napthol), thiourea, monotolylthiourea, ditolylthiourea, dibenzlamine, tribenzylamine and hexodecyclamine.
  • the function of the PH stabilizer in this novel chemical bath is to maintain the PH value of the bath in the 8-11 alkaline range.
  • concentration of the PH stabilizer is below the specified minimum value, the PH value of the bath will be in the acidic range and will result in pitting of the plated permalloy film.
  • the resultingalkaline solution reacts with the plated permalloy material and renders it passive thereby forming an extremely thin layer of nickel-iron oxide, only a few molecules thick, on the surface of the permalloy film. This molecular thin layer of nickel-iron oxide material is not thick enough to interfere with the passage of current from the mercury liquid to the plated wire.
  • the concentration of the PH stabilizer is above the specified maximum value, the PH value of the bath will be above the required 8-11 range.
  • This highly alkaline solution will passivate the surface of the plated permalloy material too deeply.
  • the resulting thick nickel-iron oxide layer will interfere significantly with the passage of current from the mercury liquid to the plated wire core. Consequently, the orienting current required for the heat treatment stage will fluctuate and the resulting magnetic properties of the annealed permalloy film will be erratic. Therefore, the maximum concentration value specified for the PH stabilizer in the bath is extremely critical.
  • sodium borate, sodium benzoate and sodium phosphate are preferred PH stabilizing agents.
  • potassium borate, potassium benzoate and potassium phosphate also may be used as PH stabilizers.
  • these PH stabilizing agents may be used alone or in combination with another one of the designated PH stabilizers to maintain the bath in the desired PH range of 8-1 1.
  • the resulting alkaline solution reacts with the permalloy plated wire to produce a surface film which, after passing through the subsequent furnace stage, hardens into a characteristic light colored coating.
  • the bath comprises an aqueous alkaline solution including an organic inhibitor which is adsorbed on the surface of exposed copper material to form a molecular thin film thereon which prevents the copper areas from being wetted by mercury in the subsequent liquid contact cell.
  • the solution also includes at least one PH stabilizer which maintains the solution in the PH range of 8-1 l..As a result, of passing through this alkaline solution and the subsequent furnace stage, the permalloy plated wire is coated with a protective film which prevents further oxidation of the permalloy plated wire.
  • This protective coating does not adversely affect the magnetic properties of the permalloy plated material but appears to ensure that the permalloymaterial will retain the magnetic properties required for plated memory systems.
  • a protective coating on a body comprising a permalloy plated conductor having a coating of magnetic material, said protective coating being applied by a bath comprising an aqueous alkaline solution including an adsorbable, organic corrosion inhibitor comprising thiazole and an inorganic PH stabilizer from the group consisting of borate. benzoate and phosphate salts of sodium and potassium and combinations thereof.

Abstract

A chemical bath for applying a protective coating on magnetically plated wire during in-line processing, the bath comprising an aqueous alkaline solution including a 0.05 to 0.25 percent concentration of an adsorbable, organic corrosion inhibitor from the class consisting of thiazole, urea and amine compounds; and a 1 to 5 percent concentration of an inorganic, PH stabilizer from the class consisting of borate, benzoate and phosphate salts of sodium and potassium.

Description

United States Patent 1191 Toledo et al.
' 1 June 11, 1974 PROTECTIVE COATING ON WIRE [73] Assignee: Raytheon Company, Lexington,
' Mass.
[22] Filed: Jan. 7,1972
21 Appl. No.: 216,268
Related US. Application Data [63] Continuation of Ser. No. 20.851. March 18, 1970,
abandoned.
[52] U.S. Cl. 148/624, 148/614 R [51] Int. Cl. C23f 7/00 [58] Field of Search 1 17/239, 240, 237;
148/614 R, 6.24; 29/l9l.6; 179/1002 R; 274/414 [5 6] References Cited UNlTED STATES PATENTS 2.662.019 12/1953 Seymour 106/14 2,739,870 3/1956 Senkus 1 252/390 X 2,803,604 8/1957 Meighen 1 252/390 X 2377,1118 3/1959 Liddell 252/390 X 1/1967 Cotton 21/25 R OTHER PUBLlCATlONS Mathias et al., IEEE Transactions on Magnetics, Vol. May 5 No. 4, December 1969, p. 748. Danylchuk et al., Bell System Technical Journal, Vol. 47. October 1968. pp. 1539. 1550-1552. Abstract of Ser. No. 680,058. Official Gazette. July 19. 1949, p. 928.
Primary ExaminerRalph S. Kendall Attorney, Agent, or Firm.loseph D. Pannone; Harold A. Murphy; Edgar O. Rost 571 ABSTRACT A chemical bath for applying a protective coating on magnetically plated wire during in-line processing, the bath comprising an aqueous alkaline solution including a 0.05 to 0.25 percent concentration of an adsorbable, organic corrosion inhibitor from the class consisting of thiazole, urea and amine compounds; and a l to 5 percent concentration of an inorganic, PH stabilizer from the class consisting of borate, benzoate and phosphate salts of sodium and potassium.
6 Claims, No Drawings 1 PROTECTIVE COATING ON WIRE This application is a division of application Ser. No. 20,851 filed Mar. 18, 1970, now abandoned.
BACKGROUND OF THE INVENTION The invention herein described was made in the course of and under a contract, or subcontract thereunder, with the US. Strategic Systems Projects Office, Department of the Navy.
This invention is related, generally, to chemical solutions for forming protective coatings on wire and is concerned, more particularly, with a chemical bath for applying a protective coating on plated memory wire during in-line processing.
One exemplary magnetic plating line comprises a spaced, parallel array of chemical cells in colinear alignment with a rotatable spool of wire at one end of the array and a longitudinally disposed, tubular furnaceat the other end. The wire, usually, is made of a resilient material having good electrical properties, such as beryllium-copper, for example. In operation, wire feeds continuously off the spool and is drawn longitudinally through the respective cells of the array and the aligned, tubular furnace. Generally, the surface of the wire is cleaned, etched and electropolished while passing through the initial cell stages, and receives a'plating of copper, while passing through the intermediate cell stages of the array. Usually, in the final cell stages of the array, the wire isplated with a material having desirable magnetic properties, such as permalloy, for example.
Permalloy is a nickel-iron compound having preferred percentage compositions for plated memory wire which exhibit low magnetostrictive properties when the plated wire is distorted. Another reason permalloy is a preferred plating material for magnetic memory wire is that it acquires uniaxial, anisotropic magnetic properties when influenced by a coaxial magnetic field during the plating process. As a result, an easy direction of magnetication is established circumferentially in the plated permalloy film; and an orthogonal hard" direction of magnetization is established parallel to the axis of the wire. Furthermore, each discrete cylindrical portion of the platedpermalloy film has a nearly square hysteresis loop in the easy direction of magnetization and an almost linear hysteresis loop in the hard direction. Thus, any particular portion of the plated permalloy film may be magnetized in the circumferential direction, either clockwise or counterclockwise. Also, the magnetic vector of a selected portion of the plated permalloy film may be switched from one circumferential rest position to the other. Consequently, the two oppositely directed rest positions, usually, are assigned the respective digits, one andzero, of a binary logic system.
In order to avoid deterioration of the described magnetic characteristics, the plated permalloy film is annealed while exposed to the flux of an orienting magnetic field. Therefore, after leaving the final permalloy plating cell in the magnetic plating line, the plated wire, generally, passes through an additional chemical cell containing a pool of conductive liquid, such as mercury, for example. The mercury liquid provides a minimum resistance means for making an electrical connection to the continuously moving wire, without wetting the metallic components of the plated permalloy film.
By means of the mercury contact, an orienting current is passed through the permalloy plated wire while the wire is traveling through the subsequent furnace stage of the magnetic plating line. In the furnace, the wire generally passes through an inert or a reducing gas atmosphere which, usually, is maintained at a temperature greater than 250C. Thus, the plated permalloy film is annealedwhile the magnetic vectors of the respective memory cells in the permalloy film are uniformly aligned by a coaxial magnetic field established by the orienting current. After passing through the heat treatment furnace, the wire, generally, is tested as part of the continuous process and cut into segments which, subsequently, are assembled into a memory system.
The plated permalloy film is very thin, generally being about 1 micron in thickness. Consequently, minute holes occur in the film along the length of the continuous wire. It has been found that, when the permalloy plated wire passes through the liquid contact, minute quantities of mercury enter these pin holes and amalgamate with the exposed copper material. Consequently, when the permalloy plated wire enters the elevated temperature environment of the heat treatment furnace, the low melting temperature mercury-copper alloy' expands radially under the permalloy film. As a result, localized cracking and peeling of the permalloy film were found, at a later time, to have occurred around the respective pin holes and spread radially outward therefrom. Thus, stored memory bits were destroyed and sizable portions of the plated memory wire had become inoperative.
Therefore, in order to ensure long term reliability for plated memory systems, it is imperative that the plated memory wire be protected from the described type of mercury-induced corrosion. Protective coatings ap plied after the plated wire has been processed and tested will not solve this problem, because the mercury must be prevented from wetting any exposed copper material during processing of the wire. Furthermore, it is essential that the mercury liquid be in electrical contact with the continuously moving wire in order to provide an orienting current during the heat treatment process. Consequently, coatings of insulating material, such as' paints, varnishes, resins and the like, are unsuitable for such protective coatings. Also, any coating of protective material applied during processing of the wire must be capable of withstanding the elevated temperature environment of the heat treatment furnace without stressing or otherwise affecting the magnetic properties of the plated pennalloy film.
SUMMARY OF THE INVENTION Accordingly, this invention provides a chemical bath for forming a protectivecoating on plated memory wire while the wire is moving longitudinally through the bath at plating line velocity. The chemical bath of this invention comprises an aqueous, alkaline solution including 0.05 to 0.25 percent concentration of an adsorbable corrosion inhibitor, and l to 5 percent concentration of a Pl-l stabilizer. It was found that members of the thiazole group of compounds, such as thiazole, mercaptothiazole, benzothiazole, for examples, are the most effective adsorbable, corrosion inhibiting agents. However, members of the urea group of compounds, such as thiourea, monotolylthiourea, ditolylthiourea, for examples, and members of the amine group of compounds, such as 'dibenzlamine, tribenzlamine, hexodecylamine, for examples, also are acceptable as adsorbable, corrosion inhibiting agents in the chemical bath of this invention. Sodiumborate, sodium benzoate and sodium phosphate are preferred stabilizing agents, although potassium borate, potassium benzoate and potassium phosphate also are acceptable as PH stabilizing agents for this bath. 1
Since the chemical bath of this invention was developed, specifically, for protecting plated memory wire during in-line processing, it was evaluated in a typical magnetic plating line. The inventive aqueous, alkaline solution was contained in, a chemical cell which was disposed between the final cell of the permalloy plating stage and the mercury contact cell. The chemical cell, so disposed, was 3 inches high, 6 inches long, inches wide and contained 7-50 milliliters of the inventive alkaline, solution. During the evaluation tests, the described bath was maintained at a temperature between and C.
The wire used for evaluating this chemical bath was a commercial grade, No. 125 beryllium-copper wire having an initial diameter of about 5.5 mils and a surface finish of about 16 microinches. However, after passing through the etching and electro-polishing cell stages of the magnetic plating line, the diameter of the wire was reduced to about 4.9 mils and the resulting surface finish was about 4 microinches. In the intermediate cell stages of the line, the polished wire received a plating of copper, about 3 microns thick. In the magnetic plating stage of the line, the copper-plated-wire received a plating of permalloy material about 1 micron in thickness. I
After passing through the chemical bath of this invention, the plated wire passes through the mercury contact cell and then through the heat treatment furnace. One suitable furnace was 4 feet long and was maintained at a temperature between 300 and 400C. in order to test the quality of the protective coating applied by the chemical bath, an inert or reducing gas atmosphere was not used in the heat treatment stage. Thus, the plated wire was exposed to an air atmosphere at high temperature. Under these conditions, any areas left uncovered by the protective coating will be covered with a black oxide coating. it has been found that wire coated with this black oxide film will not pass electrical test at the end of the plating line. When a portion of the wire fails electrical test, an automatic cutter is triggered which then removes the rejectable portion from the continuous wire.
The compositions of the inventive baths tested under the described conditions are listed below.
Chemical Bath No. l
Constituent Cone. Range Preferable Cone. Benzothiazolc 5-2.5 gm/liter l gm/litcr Sodium phosphate l0 gm/liter Chemical Bath No.
l0-50 gm/litcr The function of the organic inhibitor, such as thiazole, mercaptothiazole and benzothiazole in the inventive Chemical Baths Nos. 1, 2 and 3, for example, is to coat any exposed copper on the plated wire before it enters the mercury contact cell. These organic inhibitors preferentially wet copper and are adsorbed onto the copper surface, thereby forming an extremely thin layer of organic material, only a few molecules in thickness. This molecular thin layer of inert material is sufficient to prevent mercury wetting of the copper and the resulting formation of low melting mercury copper amalgamines. However, the adsorbed layer of organic material does not interfere with the passage of current from the mercury to the plated wire. Thus, the mercury liquid still retains electrical contact with the surface of the plated wire.
It has been found that if the organic inhibitor concentration is below the specified minimum value, the exposed copper material will not be completely coated with inert material. Consequently, mercury-induced corrosion can take place at the still exposed copper areas and result in damage to the surrounding permalloy film, as previously described. On the other hand, if the organic inhibitor concentration is above the specified maximum value, organic inhibitor material, being Y solubility sensitive, will precipitate out of the solution.
Not all organic inhibitors perform satisfactorily in the chemical bath of this invention. Some organic inhibitors do not preferentially wet exposed copper material, and others contaminate the mercury cell. Some organic inhibitors which may be used, alternatively, in place of those disclosed in respective Chemical Baths 1, 2 and 3 are: mercaptobenzothiazol, 1-2 thiazoldinethione, 2-4 thiazoldenione, 1-(2 thiazolylago-2 napthol), thiourea, monotolylthiourea, ditolylthiourea, dibenzlamine, tribenzylamine and hexodecyclamine.
The function of the PH stabilizer in this novel chemical bath is to maintain the PH value of the bath in the 8-11 alkaline range. Thus, if the concentration of the PH stabilizer is below the specified minimum value, the PH value of the bath will be in the acidic range and will result in pitting of the plated permalloy film. When the PH stabilizer concentration is within the specified limits, the resultingalkaline solution reacts with the plated permalloy material and renders it passive thereby forming an extremely thin layer of nickel-iron oxide, only a few molecules thick, on the surface of the permalloy film. This molecular thin layer of nickel-iron oxide material is not thick enough to interfere with the passage of current from the mercury liquid to the plated wire. However, if the concentration of the PH stabilizer is above the specified maximum value, the PH value of the bath will be above the required 8-11 range. This highly alkaline solution will passivate the surface of the plated permalloy material too deeply. The resulting thick nickel-iron oxide layer will interfere significantly with the passage of current from the mercury liquid to the plated wire core. Consequently, the orienting current required for the heat treatment stage will fluctuate and the resulting magnetic properties of the annealed permalloy film will be erratic. Therefore, the maximum concentration value specified for the PH stabilizer in the bath is extremely critical.
in this chemical bath, sodium borate, sodium benzoate and sodium phosphate are preferred PH stabilizing agents. However, potassium borate, potassium benzoate and potassium phosphate also may be used as PH stabilizers. Further, these PH stabilizing agents may be used alone or in combination with another one of the designated PH stabilizers to maintain the bath in the desired PH range of 8-1 1. When at least one of the designated PH stabilizers is present, within the concentration range specified, the resulting alkaline solution reacts with the permalloy plated wire to produce a surface film which, after passing through the subsequent furnace stage, hardens into a characteristic light colored coating. Evaluation studies disclose that a permalloy plated memory wire having this light colored coating has a low failure rate in electrical test and exhibits improved aging properties. It also has been found that the coating action of this inventive bath is practically instantaneous and, therefore, not dependent on the speed of the magnetic plating line.
Thus, there has been disclosed herein a novel chemical bath for applying a protective coating to plated magnetic memory wire during processing of the wire. The bath comprises an aqueous alkaline solution including an organic inhibitor which is adsorbed on the surface of exposed copper material to form a molecular thin film thereon which prevents the copper areas from being wetted by mercury in the subsequent liquid contact cell. The solution also includes at least one PH stabilizer which maintains the solution in the PH range of 8-1 l..As a result, of passing through this alkaline solution and the subsequent furnace stage, the permalloy plated wire is coated with a protective film which prevents further oxidation of the permalloy plated wire. This protective coating does not adversely affect the magnetic properties of the permalloy plated material but appears to ensure that the permalloymaterial will retain the magnetic properties required for plated memory systems. v
From the foregoing, it will be apparent that various changes may be made by those skilled in the art without departing from the spirit of this invention as expressed in the appended claims. It is to be understood, therefore, that all "matter described herein is to be interpreted as illustrative and not in a limiting sense.
What is claimed is:
1. In combination:
a protective coating on a body comprising a permalloy plated conductor having a coating of magnetic material, said protective coating being applied by a bath comprising an aqueous alkaline solution including an adsorbable, organic corrosion inhibitor comprising thiazole and an inorganic PH stabilizer from the group consisting of borate. benzoate and phosphate salts of sodium and potassium and combinations thereof.
2. The combination as set forth in claim 1 wherein the PH of the bath is maintained at a value between 8 and 11.
3. The combination as set forth in claim 1 wherein the minimum concentration of said organic corrosion inhibitor is about 0.05 percent, and the minimum concentration of said inorganic PH stabilizer is about 1 percent.
4. The combination as set forth in claim 1 wherein the maximum concentration of said corrosion inhibitor is about 0.25 percent and the maximum concentration of said inorganic PH stabilizer is about 5 percent.
5. The combination as set forth in claim 4 wherein said organic corrosion inhibitor is substantially entirely thiazole and said inorganic PH stabilizer is a combination of sodium borate and sodium benzoate.
6. The combination-as set forth in claim 5 wherein the concentration of thiazole is about 1 gram per liter, the concentration of sodium borate is about l0 grams per liter, and the concentration of sodium benzoate is about 10 grams per liter.

Claims (5)

  1. 2. The combination as set forth in claim 1 wherein the PH of the bath is maintained at a value between 8 and 11.
  2. 3. The combination as set forth in claim 1 wherein the minimum concentration of said organic corrosion inhibitor is about 0.05 percent, and the minimum concentration of said inorganic PH stabilizer is about 1 percent.
  3. 4. The combination as set forth in claim 1 wherein the maximum concentration of said corrosion inhibitor is about 0.25 percent and the maximum concentration of said inorganic PH stabilizer is about 5 percent.
  4. 5. The combination as set forth in claim 4 wherein said organic corrosion inhibitor is substantially entirely thiazole and said inorganic PH stabilizer is a combination of sodium borate and sodium benzoate.
  5. 6. The combination as set forth in claim 5 wherein the concentration of thiazole is about 1 gram per liter, the concentration of sodium borate is about 10 grams per liter, and the concentration of sodium benzoate is about 10 grams per liter.
US00216268A 1970-03-18 1972-01-07 Protective coating on wire Expired - Lifetime US3816185A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US00216268A US3816185A (en) 1970-03-18 1972-01-07 Protective coating on wire
US450962A US3922389A (en) 1972-01-07 1974-03-14 Method for protectively coating magnetic wire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US2085170A 1970-03-18 1970-03-18
US00216268A US3816185A (en) 1970-03-18 1972-01-07 Protective coating on wire

Publications (1)

Publication Number Publication Date
US3816185A true US3816185A (en) 1974-06-11

Family

ID=26693961

Family Applications (1)

Application Number Title Priority Date Filing Date
US00216268A Expired - Lifetime US3816185A (en) 1970-03-18 1972-01-07 Protective coating on wire

Country Status (1)

Country Link
US (1) US3816185A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2342539A1 (en) * 1976-02-27 1977-09-23 Basf Ag PROCESS FOR MANUFACTURING MAGNETIC RECORDING MEDIA WITH A NON-WEARABLE SURFACE
EP0093194A2 (en) * 1982-04-30 1983-11-09 Matsushita Electric Industrial Co., Ltd. Magnetic recording medium
US4564397A (en) * 1984-06-21 1986-01-14 J. N. Eltzroth & Associates Inc. Composition and process for inhibiting corrosion of ferrous or non-ferrous metal surfaced articles and providing receptive surface for synthetic resin coating compositions
US5994211A (en) * 1997-11-21 1999-11-30 Lsi Logic Corporation Method and composition for reducing gate oxide damage during RF sputter clean
US6068879A (en) * 1997-08-26 2000-05-30 Lsi Logic Corporation Use of corrosion inhibiting compounds to inhibit corrosion of metal plugs in chemical-mechanical polishing
US6117795A (en) * 1998-02-12 2000-09-12 Lsi Logic Corporation Use of corrosion inhibiting compounds in post-etch cleaning processes of an integrated circuit
WO2012050997A1 (en) * 2010-10-11 2012-04-19 Wireco Worldgroup Inc. Four strand blackened wire rope

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2662019A (en) * 1951-03-14 1953-12-08 Atlas Mineral Products Company Pipe jointing composition
US2739870A (en) * 1950-09-15 1956-03-27 Daubert Chemical Co Composition and sheet material for inhibition of corrosion of metals
US2803604A (en) * 1954-12-24 1957-08-20 Commerical Solvents Corp Heat exchange compositions
US2877188A (en) * 1956-07-27 1959-03-10 Hagan Chemicals & Controls Inc Corrosion inhibitors and method of using same
US3295917A (en) * 1959-12-04 1967-01-03 Ici Ltd Inhibiting corrosion of copper and copper-base alloys

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2739870A (en) * 1950-09-15 1956-03-27 Daubert Chemical Co Composition and sheet material for inhibition of corrosion of metals
US2662019A (en) * 1951-03-14 1953-12-08 Atlas Mineral Products Company Pipe jointing composition
US2803604A (en) * 1954-12-24 1957-08-20 Commerical Solvents Corp Heat exchange compositions
US2877188A (en) * 1956-07-27 1959-03-10 Hagan Chemicals & Controls Inc Corrosion inhibitors and method of using same
US3295917A (en) * 1959-12-04 1967-01-03 Ici Ltd Inhibiting corrosion of copper and copper-base alloys

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Abstract of Ser. No. 680,058, Official Gazette, July 19, 1949, p. 928. *
Danylchuk et al., Bell System Technical Journal, Vol. 47, October 1968, pp. 1539, 1550 1552. *
Mathias et al., IEEE Transactions on Magnetics, Vol. May 5 No. 4, December 1969, p. 748. *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2342539A1 (en) * 1976-02-27 1977-09-23 Basf Ag PROCESS FOR MANUFACTURING MAGNETIC RECORDING MEDIA WITH A NON-WEARABLE SURFACE
EP0093194A2 (en) * 1982-04-30 1983-11-09 Matsushita Electric Industrial Co., Ltd. Magnetic recording medium
EP0093194A3 (en) * 1982-04-30 1986-01-22 Matsushita Electric Industrial Co., Ltd. Magnetic recording medium
US4564397A (en) * 1984-06-21 1986-01-14 J. N. Eltzroth & Associates Inc. Composition and process for inhibiting corrosion of ferrous or non-ferrous metal surfaced articles and providing receptive surface for synthetic resin coating compositions
US6068879A (en) * 1997-08-26 2000-05-30 Lsi Logic Corporation Use of corrosion inhibiting compounds to inhibit corrosion of metal plugs in chemical-mechanical polishing
US6383414B1 (en) 1997-08-26 2002-05-07 Lsi Logic Corporation Use of corrosion inhibiting compounds to inhibit corrosion of metal plugs in chemical-mechanical polishing
US5994211A (en) * 1997-11-21 1999-11-30 Lsi Logic Corporation Method and composition for reducing gate oxide damage during RF sputter clean
US6204550B1 (en) 1997-11-21 2001-03-20 Lsi Logic Corporation Method and composition for reducing gate oxide damage during RF sputter clean
US6117795A (en) * 1998-02-12 2000-09-12 Lsi Logic Corporation Use of corrosion inhibiting compounds in post-etch cleaning processes of an integrated circuit
WO2012050997A1 (en) * 2010-10-11 2012-04-19 Wireco Worldgroup Inc. Four strand blackened wire rope
US8438826B2 (en) 2010-10-11 2013-05-14 Wireco Worldgroup Inc. Four strand blackened wire rope

Similar Documents

Publication Publication Date Title
US3816185A (en) Protective coating on wire
Bozorth et al. Magnetic crystal anisotropy and magnetostriction of iron-nickel alloys
Smith Anisotropy in nickel-iron films
US3922389A (en) Method for protectively coating magnetic wire
US4503099A (en) Heat transfer surfaces having scale resistant polymer coatings thereon
JP2002082000A (en) Magnetostrictive stress sensor and method for manufacturing the same
US7901588B2 (en) MRAM wet etch method
KR100429918B1 (en) Anticorrosive treating concentrate
US2200486A (en) Material and method for removing coatings of nickel or the like from a metal base
US3379539A (en) Chemical plating
Man et al. Corrosion protection of NdFeB magnets by surface coatings-Part 2: Electrochemical behaviour in various solutions
KR950000012B1 (en) Method of improving a corrosion resistance of stainless steel
US3682604A (en) Memory element and method of making protective coating therefor
Heritage et al. Chemically deposited NiCo layers as high-speed storage elements
US5571573A (en) Process of forming magnetic devices with enhanced poles
US3411892A (en) Ferromagnetic thin film memory element
US3372037A (en) Magnetic materials
US3756927A (en) Magnetic plating solution for ndro memory wire
JPS6196512A (en) Magnetic recording medium
KR20050044613A (en) Magnetoresistive memory cell comprising a dynamic reference layer
US4981741A (en) Coating alloy
KR20220120569A (en) chemical mechanical polishing liquid
US20060227458A1 (en) Corrosion inhibitors and methods for magnetic media and magnetic head read-write device
US6395458B2 (en) Corrosion inhibitor of NiCu for high performance writers
Raza et al. Effect of pH and Concentration on Electrochemical Corrosion Behavior of Aluminum Al-7075 T6 Alloy in NaCl Aqueous Environment