US3810280A - Method and apparatus for longitudinal compressive treatment of flexible material - Google Patents

Method and apparatus for longitudinal compressive treatment of flexible material Download PDF

Info

Publication number
US3810280A
US3810280A US00115606A US11560671A US3810280A US 3810280 A US3810280 A US 3810280A US 00115606 A US00115606 A US 00115606A US 11560671 A US11560671 A US 11560671A US 3810280 A US3810280 A US 3810280A
Authority
US
United States
Prior art keywords
retarding
passage
confining
drive
machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00115606A
Inventor
G Munchbach
R Walton
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US00115606A priority Critical patent/US3810280A/en
Priority to IT67473/72A priority patent/IT949108B/en
Priority to CH220172A priority patent/CH576030B5/xx
Priority to DE19722207946 priority patent/DE2207946A1/en
Priority to CA134,854A priority patent/CA963643A/en
Priority to AU39027/72A priority patent/AU464546B2/en
Priority to IT67496/72A priority patent/IT949126B/en
Priority to DE19722207945 priority patent/DE2207945A1/en
Priority to FR727205269A priority patent/FR2125535B1/fr
Priority to CA134,853A priority patent/CA963642A/en
Priority to CH220272A priority patent/CH550273A/en
Priority to JP1571072A priority patent/JPS5629024B1/ja
Priority to GB720972A priority patent/GB1364602A/en
Priority to AU39032/72A priority patent/AU465817B2/en
Priority to FR7205268A priority patent/FR2127023B1/fr
Priority to GB720872A priority patent/GB1364601A/en
Priority to CH220172D priority patent/CH220172A4/xx
Priority to US330176A priority patent/US3869768A/en
Application granted granted Critical
Publication of US3810280A publication Critical patent/US3810280A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06CFINISHING, DRESSING, TENTERING OR STRETCHING TEXTILE FABRICS
    • D06C21/00Shrinking by compressing

Definitions

  • ABSTRACT Longitudinal compressive treatments for producing a wide variety of effects in travelling lengths of sheet materials such as textile fabrics, yarns, paper, film, foil and other webs by confining the material against a drive surface by means of a confining surface and driving the material into engagement with a retarder located beyond the trailing edge of the confining surface and also in spaced relation to the drive surface.
  • the retarding surface is provided by material which is essentially inextensible in the machine direction and is provided with a multiplicity of portions which grip and release the passing material.
  • the confining surface is at least in part spaced closer to the drive surface than is the retarder.
  • the forwardly driven material impinges against a column of already compressed material under the trailing portion of the confining surface and under the retarder.
  • the drive surface propels the continuously formed column from beneath the surfaces.
  • PAIENIEU MAY 1 4 m4 sum 12 or 13 METHOD AND APPARATUS FOR LONGITUDINAL (ZOMPRESSIVE TREATMENT OF FLEXIBLE MATERIAL
  • This invention relates to longitudinal treatment to produce desired effects in thin materials such as woven, knitted and nonwoven fabrics, yarns (which may be a warp of side-by-side yarns), papers, films, foils and other webs and strands of deformable material.
  • the effects obtained include improvements in hand, softness,
  • a very specific object of the invention is to provide a method and means for improving the cover and bulk of textile materials and the hand and texture of such materials as paper and nonwoven products.
  • the invention concerns machines having opposed members for contacting respective sides of the material, in the case of uniform treatment of webs the members normally being uniform across the width of the travelling web.
  • a drive member providing a movable drive surface and on the other side there is a retarder member spaced from the movable drive surface and having a retarding surface to engage the exposed face of and retard the material while the material is exposed to the .drive surface.
  • a primary material confining member immediately preceding the retarder member and defining an inlet to the space between the retarder member and the drive surface.
  • the primary member has a preferably smooth confining surface engaging the exposed surface of the material to cause the material to be driven forwardly by the driving surface and is at least in part spaced closer to the driving surface than the retarding surface.
  • the retarding surface is provided with a multiplicity of portions operable successively to grip and release the material thereby to locally retard the material in its passage between the drive surface and the retarding surface, and the retarding surface is further characterized in being essentially nonextensible in the direction of travel of the material.
  • the retarding portions may comprise projections formed of hard grit grains bonded to a non-extensible backing sheet or may be defined by hard metal.
  • the movable drive surface may be the surface of a rubber roll, or the knurled surface of a steel roll, or the roughened surface of a travelling belt, or otherwise be provided by a member having suitable frictional material engaging characteristics.
  • the drive member and primary member are arranged to drive the material in essentially uncompressed condition to an initial treatment point wherein compression thereof commences prior to its reaching the retarding surface, the confining surface being further positioned to define with the drive surface a passage beyond the initial treatment point, the parts being positioned to slidably confine a compressed column of material in the passage and direct the same forward for exposure to the retarding surface.
  • a drive surface comprising a surface having ridges and grooves, the grooves having a component in the direction of travel of the material and providing at the initial treatment point spaces in which the material may initially slide backward relative to the drive surface and compress before leaving the grooves.
  • the drive surface is of cylindrical form and the retarding surface commences less than 10 arc degrees from the initial treatment point.
  • the member defining the retarding surface may comprise a fabric or be a layer member, the
  • a backing layer of resilient material may lie over the retarder layer member and in either case the bent metal member may comprise a resilient or non-resilient sheet form metal keeper member over the backing layer.
  • the retarder member is a sheet form member, and a presser member is provided for pressing toward the drive surface at a point above the region where the primary member ends, the position of the presser member being adjustable backward or forward relative thereto in the direction of travel of the material so as to vary the proportion of force it applies upon the primary member and upon the retarder memher.
  • the primary member may comprise a sheet of deformation-resistant metal, the body thereof having a first thickness and tapering or stepped to a reduced thickness at its forward edge, the retarder member overlying the primary member and extending downstream over and beyond the trailing edge of the primary member.
  • the retarding surface is backed by a layer of a material deformable in the direction of the thickness of the primary member and deformed about the trailing edge of the primary member to position the retarding surface with respect to the drive surface.
  • the machine may include an outer sheet form member of deformation resistant and force-transmitting material overlying the layer, and a presser having a pressing surface engageable with the outer member positioned to transmit pressing forces to a predetermined region beneath the confining surface or beneath the retarding surface or beneath both such surfaces through the thickness of the intervening members.
  • the presser includes mechanism for adjusting backwardly or forwardly the position of engagement of the presser with the outer member in the direction of travel of the material.
  • the passage may be enlarged in the direction of the thickness of the material to permit creping of the overall sheet of the material, the machine being thereby capable of producing a time-varying densification of the material under the confining surface as the resistance of the column of compressed material varies with the varying stages of crepe formation.
  • the surface defining the enlarged portion of the passage may be continuous with the confining surface or separately formed.
  • the spacing of the surface defining the enlarged portion of the passage may be substantially greater than the spacing of the confining surface from the drive surface in the region immediately preceding the initial point of treatment, enabling expansion of the material in the direction of its thickness before reaching the retarder.
  • the spacing of the confining surface from the drive surface within the passage may abruptly increase and the increased spacing extend all the way to the retarder member.
  • the confining surface may be provided by more than one member in overlapped relation.
  • time-varying densification of the material may alternatively be made to occur by providing an abrupt enlargement in the direction of the thickness of the material of the spacing between the retarding surface and the drive surface immediately downstream of the trailing edge of the confining surface rather than in the aforementioned passage.
  • abrupt enlargements may be provided both in the passage to the retarding surface and in the region under the retarding surfce.
  • the primary and retarder members may be arranged at an angle to the path of travel of the material, so that the trailing edge of the confining surface and the leading portion of the retarding surface are angularly disposed to the path of travel of the material.
  • This arrangement may be employed both in embodiments wherein the drive member is a roll, in which case the edges define a helical segment upon the surface of the roll, and in embodiments wherein the drive member is planar, as an endless belt.
  • the adjustments of relative pressure between the driving surface and the other surfaces may be made by mechanisms pressing against the back side of the belt.
  • the invention also features the method of treating a travelling length of flexible material comprising confining the material against a moving drive surface by means of a confining surface so thatrthe material will be driven forward in essentially uncompressed condition to a point of initial treatment and providing a retarding surface on the same side of the material as the confining surface but beyond its trailing edge and in spaced relation to the drive surface.
  • the retarding surface is essentially non-extensible in the direction of travel of the material and has a multiplicity of portions operable to successively grip and release and thereby to locally retard the travelling material, while the confining surface is at least in part spaced closer to the drive surface than is said retarding surface.
  • the forwardly driven material while still uncompressed and beneath and engaged by said confining surface is caused to impinge upon a column of already compressed material at the initial treatment point and is then propelled as a continuously formed column of compressed material from beneath the confining and retarding surfaces.
  • the retarding surface may be arranged to nap the surface of the material in the process of retarding it.
  • the method of the invention is applicable to bulking or softening a length of fibrous material by providing the driving surface with material gripping projections.
  • the material is slippably confined against such driving surface and at least portions thereof pressed into the intervals between the projections by the confining surface; the relationship of the surfaces is maintained such that the driving surface slides with respect to the material so that the projections tend to pull fibers at one side of the material forwardly and out of the intervals while the rough surface has a relatively opposite effect on fibers at the other side of the material.
  • the method of the invention includes the step of slidably confining the material substantially to its original thickness at a point of initial treatment, and then releasing the compressed material to expand its thickness at a point spaced beyond the point of initial treatment.
  • method may include slidably confining the material following the initial treatment point at a spacing greater than the respective spacing at such point with a low friction confining surface prior to exposing the material to the rough retarding surface.
  • the invention also contemplates a method of treating a travelling length of flexible material including confining the material against a moving drive surface by means of a confining surface so that the material will be driven forward by the drive surface, providing a retarding surface which is essentially non-extensible in the direction of travel of the material and located on the same side of the material as the confining surface but beyond it trailing edge and in spaced relation to said drive surface and wherein the confining surface is at least in part spaced closer to said drive surface than is said retarding surface.
  • the material may be drawn out from the end of the effective retarding surface at a rate greater than the unassisted rate of extrusion from the machine, thereby controllingthe geometry of the passage and the degree of treatment.
  • FIG. 1 is a diagrammatic highly magnified perspective view of a preferred embodiment of the invention
  • FIG. 2 is a diagrammatic view of higher magnification than FIG. ll of the action of a projection of the retarding surface upon a fiber or thread;
  • FIG. 3 is a diagrammatic, highly magnified vertical cross-section of a preferred embodiment treating a knitted fabric and FIG. 4 is a plan view of the fabric at various stages of treatment;with-FIGS. 3 and 4 having the points of treatment aligned;
  • FIG. 3a diagrammatically illustrates the directions of the forces believed involved at the point of exit of the material from beneath the retarder.
  • FIG. 5 is a highly magnified cross-section view of a preferred embodiment of the invention including the members defining the effective surfaces;
  • FIG. 5a is a diagrammatic cross-section and force diagram, illustrating forces acting upon the material in FIG. 5;
  • FIG. 6 is a perspective view on a smaller scale of the effective parts of the machine of FIG. 5;
  • FIGS. 7, 8, 9, and 10 are views similar to FIG. 5 of other embodiments of the invention.
  • FIG. 11 is a view similar to FIG. 6 illustrating a retarding assembly curved along the axial extent of a drive roll
  • FIG. 12 may be regarded either as a plan development of the surface of a drive roll, illustrating an embodiment similar to FIG. 1 l or a plan view of a machine employing a planar drive surface;
  • FIG. 13 is a diagrammatic view illustrating a double action effect of the rough retarding surface in a softening or other such treatment
  • FIG. 14 is a diagrammatic view of an overall machine operable according to the invention.
  • FIG. 15 is a view similar to FIG. 5 of another preferred embodiment
  • FIG. 16 is a cross-sectional view similar to FIG. 5 of another preferred embodiment
  • FIGS. 17, 17a, and 17b and FIGS. 18, 18a, and 18b are photographs of materials treated according to the invention.
  • FIG. 1 there is diagrammatically shown a driving surface 10 moving in the direction of arrow D, a confining surface 12 and a retarding surface 14. It is assumed for this figure that surface 10 is provided by a moving member and both surfaces 12 and 14 are provided by stationary members, none of which are shown.
  • a web of flexible material 16 to be treated is shown over the moving drive surface 10 and under the confining and retarding surfaces 12 and 14, all of these surfaces having a uniform widthwise extent corresponding to such width of the web as is to be treated uniformly.
  • the degree of magnification of this view will be understood from the fact that the actual thickness of the material is usually less than 0.015 inch and sometimes less than 0.005 inch. Where a curved drive surface is employed, its radius of curvature may be 2 to 6 inches.
  • the degree 'of compression of the material at its various stages is illustrated in a diagrammatic manner by the sections which are intended to represent equal masses of material.
  • the confining surface is adapted to slippably engage and press the material against the drive surface to confine and drive it forward in region A in longitudinally uncompressed condition to point 0, the initial point of treatment.
  • the machine is shown in running condition after the treatment has stabilized. It will be appreciated that starting conditions may be quite different.
  • the retarding surface 14 lies along the driving surface 10.
  • the confining surface 12 is at least in part closer to the driving surface than is the retarding surface 14.
  • the retarding surface 14 is rough relative to the confining surface 12 and commenses at T, in this embodiment, within one inch (for textile materials of the order of 0.005 inch to 0.015 inch thick within about one-fourth inch) of the point 0. (In other embodiments e.g., with stiff materials, the initial point of treatment may be nearly coincident with the initial point of the effective retarding surface).
  • the longitudinally uncompressed material is driven against a column of temporarily or permanently compressed material, maintained in retarded state by the retarding action of rough retarding surface 14.
  • the material as it leaves confinement under confining surface 12, is freed to expand at least somewhat, and is able to remain in its expanded condition throughout its transit under retarding surface 14.
  • the retarding action can be maintained with light downward pressure, without danger of causing refeed due to excessive pressure of the web against the drive surface and without undue wear of the retarding surface where wear would cause a detrimental change in the treatment.
  • the effective retarding surface lies substantially parallel or diverges relative to the drive surface, or at least does not constrict the compressed material or require it to extrude through a minimum passage.
  • the material illustrated in FIG. 1 is compressible, for instance it could be knitted nylon tricot, or a host of other textile and textile-like products.
  • the transit of such materials at point T from under confining surface 12 to the retarder surface involves a latent tendency for the material to curl upwardly and back, in response to the dragging action of the confining surface, with resultant balling up and jamming of the material.
  • This tendency is defeated by the location of the initial treatment at a point substantially in advance of the transition to the retarding surface. As shown this is accomplished with an extension of the confining surface through passage B, in which is confined a column of longitudinally compressed material.
  • the initial treatment of the material occurs within the confines of the confining surface 12 where the material is significantly densified, achieving greater columnar strength, and also acquiring a tendency to expand.
  • this column reaches transition point T at the end of the passage, its strength resists the tendency to buckle, while its newly acquired expansion tendency causes it to expand up against the regarding surface.
  • Densification at least to some degree within the passage B is a critical requirement for numerous textiles which otherwise would not acquire the necessary columnar strength before encountering the retarding surface, while it is essentially non-critical, but in some cases desirable to achieve certain effects, in the case of denser materials already possessing the requisite columnar strength.
  • the retarder is substantially rougher than the roughness of the confining surface either before or following the initial point of treatment, and in many instances is preferably rougher than the drive surface, all measured in the direction of travel of the machine.
  • the roughness of the retarding surface is in the range of 100 to 500 RMS (Root Mean Square microinch) while for' paper and paper-like products the roughness is in the range of 200 to 800 RMS (the particular roughness selected will vary with the relationship of all operating surfaces and the nature of the material and its desired treatment).
  • a preferred confining surface has a roughness under 20 RMS and a preferred drive surface for textiles comprising a roll coated with tiny hard particles has a roughness less than I RMS and for papers a roughness less than 130 RMS.
  • the length of the retarding surface is not critical over a considerable range, being in general longer than the length of such densification passage 8 as is used, or the distance between initial treatment and initial effective retardation. In certain instances, however, especially dealing with treatment of stiff materials and employing roughnesses in the higher part of the range, the length of the retarding surface in region C may be varied as a control for the nature of the treatment obtained. In other instances, e.g., for bulking textiles while minimizing shortening, it is also desired to shorten the retarding surface and have it rougher than would be the case where a substantial amount of longitudinal shortening is affirmatively desired.
  • the retarding surface must be essentially non-extensible in the direction of travel of the material in order to perform the proper retarding effect and obtain uniformity and other advantages.
  • the retarder member also be resiliently supported in the direction of the thickness of the material, which helps to obtain a self-adjusting proper geometry.
  • the elements defining the projections or the roughness preferably comprise hard, wearresistant material.
  • the material forming the retarder surface has an elongation of less than 5 percent under tensions of 1,000 psi.
  • Materials such as filled urethane, which have dense and stable surfaces, exhibit the property of retarding by slip-stick action and with long wearing properties.
  • the retarding surface not only have its retarding effect, essential for the application of longitudinal compression to the material, but that it also have a napping effect, by which it is meant that the retarding surface should momentarily interlock with the material locally to the extent that the material is locally deformed.
  • FIG. 2 which is a fragmentary, diagrammatic, highly magnified cross-sectional view, a projection P of the retarding surface 14 engages a thread or fiber F of the material undergoing treatment and causes it to be separated and deformed from the yarn or bundle Y to which it originally conformed.
  • This effect multiplied thousands of times over each small area of the material, advantageously contributes to the total treatment, for instance, where it is desired to soften and improve the bulk or cover of nylon knitted fabrics, or to give nonwoven fabrics softeness and a better hand or drape.
  • FIGS. 3 and 4 a treatment of knitted nylon tricot, 40 X 40 denier, ten thousandths of an inch thick is illustrated.
  • region A the longitudinally uncompressed fabric 16, illustrated by a single chain or wale in the plan view of the face of the fabric in FIG. 4, is driven forwardly to the point 0 of initial treatment.
  • a column of longitudinally compressed or densified fabric while it is still confined by a slippable confining surface in region B, in this case by the smooth extension of the confining surface 12.
  • the fabric is converted from an elongated uniform chain, in which the threads of the yarn are tightly bundled together (region A) to a densifed condition where tht total density of threads is increased while the individual fibers are buckled and bent away from each other, although still retaining a recognizable bundle outline (region B).
  • the densified fabric 16a slides to the end of the confining surface 12, it expands and is contacted by the rough retarding surface 14 which has a napping characteristic.
  • the longitudinally unyieldable roughness of the surface 14 penetrates into the body of the fabric to apply retarding forces sufficient to retard the material and maintain the compressed column in region B.
  • the fabric continues to be driven forward in region C, causing relative movement of the fabric under and past the projections of the retarding surface, the movement under the retarding projections being somewhat analogous to a ratcheting movement.
  • the retarding surface is also effective to nap the fabric by dislodging individual threads from their bundles and displaying them in a more random condition.
  • the treated fabric 16b has a barely if at all recognizable chain structure, and the fabric (despite being originally formed of straight nylon monofilament) hasnow a soft and textured appearance.
  • the untreatd fabric may have a thickness of for instance 0.010 inch and the thickness of the treated fabric may range from a slight increase up to 0.020 or 0.030 inch thickness depending upon a number of factors within the control of the operator.
  • the effective length of the retarding surface 14 is kept short, i.e. oneeighth or one-sixteenth inch in length, and the thickening occurs at the end of the confining surface.
  • the material' is subjected to severe shearing forces at its surfaces, causing actual rearward stretching or even localized tearing of the top surface relative to the bottom surface. These forces and shear distortion are illustrated acting on a section of the material in FIG. 3a.
  • the material emeges from under such a short extent of retarder it immediately blooms into a bulky form, and has a distinct tendency to roll back in the direction of the curved arrow shown in FIGS. 3 as a result of the oppositely acting forces upon the face and back of the material, such forces and their directions being indicated by the straight arrows.
  • the drive surface l0- is formed by a cylindrical roll 20, of a diameter on the order of 4 inches for treatment of narrow width materials, up to about 1 foot width, and of increased diameter for wider webs.
  • a sandwich of stationary elements extends over the roll from a stationary support not shown, at the left in FIG. 5.
  • This sandwich includes a primary member 22 whose lower surface defines the confining surface 12, a nonresilient fabric member 24 having a coated grit facing (e.g., emery cloth) defining retarding surface 14, and a relatively thick and unyielding keeper sheet 28.
  • a spring steel keeper 26 is inserted between keeper sheet 28 and the member 24 and extends along the back of the latter. It has an unstressed curvature of a radius less than the radius of the roll 20.
  • the entire sandwich extends as a cantilever over the roll and a presser member 30 is adjustably positioned over the sandwich to press it against the roll.
  • the presser member is adjustable toward the roll surface to vary its pressure and it is adjustable relative to the sandwich back and forth in the lengthwise direction of the latter, to vary'the relative point of application of pressure.
  • the proportion of downward force applied to the confining surface to the downward force applied to the retarder member beyond primary end 23 is variable in an action we refer to as teeter totter.”
  • the forces applied to the confining surface are normally much greater than those applied to the effective retarding member, and an adjustment one way or the other of the presser member of .025 inch in the direction of the travel of the material can have a desirable effect in controllably varying the treatment.
  • Such adjustment affects the degree to which the emery member deforms about the end 23 of the primary. To some extent it also shifts the point M of initial effective contact of the emery with the material to be retarded.
  • the primary member 22 is formed from a sheet of invar metal originally of 0.020 inch thickness, having a slope ground to form a lower surface which causes the forward part of the member to taper from the full thickness down to the end 23 of 0.004 inch over a distance of approximately onequarter inch.
  • the retarding member 24 comprises emery cloth having an uncompressed thickness of about 0.010 inch, and with the rough surface of the emery facing against the top surface of the member 22. The emery extends beyond end 23 a distance e.g., of one-eighth to three-eighths inch depending on the treatment and roughness of the emery chosen.
  • the keeper 26 is a length of spring steel of 0.005 inch thickness, and one-half inch width, bent in the widthwise direction on a radius smaller than the radius of the drive surface, and having its width arranged in the direction of travel of the drive surface.
  • the confining surface 12 With application of pressure by the pressure member 28 as shown, in the region of end 23 of the primary, the confining surface 12 is pressed tightly toward the drive surface and effects forward drive of the material 16, without longitudinal compression, up to an initial point of treatment 0 under the confining surface 12.
  • the material is compressed against a column of longitudinally compressed material which is confined by the forward extension of the confining surface. As the material proceeds forward under this tapering extension, the material is able to gradually expand while being channeled forwardly without opportunity to buckle bodily upon itself. When it reaches the end 23 of the primary member it has stabilized as a lengthwise moving column of nearly the same height as the height under the retarding surface.
  • the effect of the spring keeper member 26 is to maintain the retarding surface in the approximate curvature of the drive surface without at any place permitting the spacing under the retarding surface to narrow down or constrict the column in the region of effective retardation.
  • loading of the pressing edge of presser member 30 may be around 50 pounds per linear inch of presser edge wid'tliwis'e of tlie machineTone can easily raise the f5 ward edge 27 of the spring keeper 26 with one finger, illustrating the relatively light downward forces required while enabling the rough retarding surface to perform its function. With this arrangement therefore the treated material retains substantially its fully expanded thickness throughout the length of the retarding surface.
  • the point of initial treatment is close to the beginning of the retarding surface, for the knitted tricot specifically mentioned this dimension being one-eighth inch or less.
  • the length of the retarding surface is substantially longer, but not necessarily so where bulking or napping are the effects to be achieved.
  • the drive surface is heated and transfers heat into the material in region A to prepare it for treatment. After treatment it is desirable to continue application of the heat to set the material in its new form.
  • Force F represents the impact of the material against the column of compressed material at the point of initial treatment. This force is generated through the gripping of the material by the driving surface at points preceding point 0, these forces being transmitted through the uncompressed material. F represents the further driving force attributable to the portion of the driving surface in the region of point 0. It represents the fact that the gripping effect of the drive surface upon the material must be overcome by the retarded column of compressed material in order for compressive treatment to commence and for the drive surface of the roll to slip freely forward under the compressed column. F; has a slight upward component representing the upward wedging effect of the gripping projections of the roll surface as they slide forward.
  • F represents the confining forces exerted by the confining surface 12.
  • the compressed column of material has a tendency to expand in all directions, an effect which cari be considerable when the material being treated has a resilient consistency.
  • F has a slight rearward component representing the drag effect.
  • the smoothness of the confining surface e.g., roughness less than 20 RMS
  • its low coefficient of friction assisted e.g., by a teflon impregnation, help to keep this drag effect small.
  • force F This pull is a function of the pressure with which the material presses against the drive surface. As indicated above, e.g., in the discussion of keeper 26, this pressure can be very light, keeping force F, small.
  • region B region B, FIG. 1
  • the forces can act together to dramatically alter the structure of the material, the degree of treatment varying with the selection and relationship of the various elements.
  • region B With curved drive surfaces it is to be noted that the limited arcuate extent of the region B assures that the major forces applied by the drive surface preceding or at the point of initial treatment 0 are substantially aligned with the passage under the rough retarding surface, and thus can more readily cause the material to move therethrough without buckling.

Abstract

Longitudinal compressive treatments for producing a wide variety of effects in travelling lengths of sheet materials such as textile fabrics, yarns, paper, film, foil and other webs by confining the material against a drive surface by means of a confining surface and driving the material into engagement with a retarder located beyond the trailing edge of the confining surface and also in spaced relation to the drive surface. The retarding surface is provided by material which is essentially inextensible in the machine direction and is provided with a multiplicity of portions which grip and release the passing material. The confining surface is at least in part spaced closer to the drive surface than is the retarder. The forwardly driven material impinges against a column of already compressed material under the trailing portion of the confining surface and under the retarder. The drive surface propels the continuously formed column from beneath the surfaces.

Description

United States Patent [191 Walton et al.
[ May 14, 1974 [54] METHOD AND APPARATUS FOR LoNorTUmNAL COMPRESSlVE TREATMENT OF FLEXIBLE MATERIAL [75] Inventors: Richard R. Walton, 10 W. Hill PL,
Boston, Mass. 021 14; George E. Munchbach, Roslindale, Mass.
[73] Assignee: said Walton, by said Munchbach [22] Filed: Feb. 16, 1971 [2]] App]. No.: 115,606
[52] U.S. Cl. 26/l8.6, 264/282 [51] Int. Cl D06c 21/00 [58] Field of Search 26/l8.6; 264/282 [56] References Cited UNITED STATES PATENTS 2,263,712 1 1/194] Wrigley et al. 26/l8.6 3,0l5,l45 1/1962 Cohn et a]. 26/l8.6 3,260,778 7/1966 Walton 26/l8.6 UX 3,426,405 2/l969 Walton 26/'l8.6 3,452,409 7/l969 Trifunovic et al. 26/l8.6 3,597,8l4 8/1971 Trifunovic 26/l8.6
Primary Examiner-Robert R. Mackey Attorney, Agent, or Firm-William R. Hulbert [5 7] ABSTRACT Longitudinal compressive treatments for producing a wide variety of effects in travelling lengths of sheet materials such as textile fabrics, yarns, paper, film, foil and other webs by confining the material against a drive surface by means of a confining surface and driving the material into engagement with a retarder located beyond the trailing edge of the confining surface and also in spaced relation to the drive surface. The retarding surface is provided by material which is essentially inextensible in the machine direction and is provided with a multiplicity of portions which grip and release the passing material. The confining surface is at least in part spaced closer to the drive surface than is the retarder. The forwardly driven material impinges against a column of already compressed material under the trailing portion of the confining surface and under the retarder. The drive surface propels the continuously formed column from beneath the surfaces.
25 Claims, 24 Drawing Figures rmmmm 14 m4 sum 01 or as PMETED m 14 1914 sum 02 0F 13 PATHEMY 14 m4 saw our 13;
PAIENIEU MAY 1 4 m4 sum 12 or 13 METHOD AND APPARATUS FOR LONGITUDINAL (ZOMPRESSIVE TREATMENT OF FLEXIBLE MATERIAL This invention relates to longitudinal treatment to produce desired effects in thin materials such as woven, knitted and nonwoven fabrics, yarns (which may be a warp of side-by-side yarns), papers, films, foils and other webs and strands of deformable material. The effects obtained include improvements in hand, softness,
cover, thickness, bulk, ability to drape, and extensibility.
At the present time, in spite of numerous attempts over many years by workers in the field, so far as we are aware there are essentially only two compressive treatment processes in commercial use (leaving aside the age-old method of creping by scraping a web from a drum by a doctor blade). These are the. well-known Sanforizing process involving longitudinally compressing the material by the retractive action of thick moving belts which straighten after passing around a roll, and the machines of our earlier work all of which are still in use commercially, some more extensively than others. See U.S. Pat. Nos. 2,765,513; 2,765,5l4, 3,260,778, 3,066,046, 2,761,490, 2,915,109 as well as others.
It has been the purpose of our work over many years to create a machine and process that would go beyond experimentally demonstrating desired effects to provide the key to practical operation, with leeway to tolerate variables that occur. In this way we have been successful, and a number of machines employing different principles we have developed are in operation in mills today.
We have recognized, however, that use of longitudinal treatments of thin materials would greatly increase if there were a practical machine and process which could be used on very wide webs, e.g., feet wide and more; could operate at high speeds, e.g., for papers and nonwovens at speeds of 300 feet per minute and higher; could tolerate a wider range of temperatures, e.g., from ambient up to 200 to 400 F. without affecting the re lationship of the machine elements; would not involve rapid wear of parts so as to operate for needed lengths of time without adjustment; would not require high accuracy of alignment; as a standard machine design, could be used on a wide variety of materials and treatments; would increase the degree of treatment obtained; and which could be simple and capable of operation by personnel of average skill.
It is an object of the present invention to provide a machine and process meeting these needs and capable of producing uniform effects while accommodating variables of the materials such as density, thickness, uniformity, temperature-sensitivity, limpness and prior history.
Other objects are to realize effects not heretofore realized on a practical commercial basis and to make other effects easier to obtain.
Specifically it is an object to provide an improved machine and process that can uniformly alter a web by forces exerted essentially only within its plane.
A very specific object of the invention is to provide a method and means for improving the cover and bulk of textile materials and the hand and texture of such materials as paper and nonwoven products.
The invention concerns machines having opposed members for contacting respective sides of the material, in the case of uniform treatment of webs the members normally being uniform across the width of the travelling web. According to the invention, on one side of the material is located a drive member providing a movable drive surface and on the other side there is a retarder member spaced from the movable drive surface and having a retarding surface to engage the exposed face of and retard the material while the material is exposed to the .drive surface. On the same side as the retarder member is a primary material confining member immediately preceding the retarder member and defining an inlet to the space between the retarder member and the drive surface. The primary member has a preferably smooth confining surface engaging the exposed surface of the material to cause the material to be driven forwardly by the driving surface and is at least in part spaced closer to the driving surface than the retarding surface. The retarding surface is provided with a multiplicity of portions operable successively to grip and release the material thereby to locally retard the material in its passage between the drive surface and the retarding surface, and the retarding surface is further characterized in being essentially nonextensible in the direction of travel of the material.
In one form of the invention we provide a resilient means supporting the retarder member in the direction of the thickness of the material being treated.
In any of the forms of the invention the retarding portions may comprise projections formed of hard grit grains bonded to a non-extensible backing sheet or may be defined by hard metal.
The movable drive surface, according to the invention, may be the surface of a rubber roll, or the knurled surface of a steel roll, or the roughened surface of a travelling belt, or otherwise be provided by a member having suitable frictional material engaging characteristics.
When the machine is adapted to treat compressible materials the drive member and primary member are arranged to drive the material in essentially uncompressed condition to an initial treatment point wherein compression thereof commences prior to its reaching the retarding surface, the confining surface being further positioned to define with the drive surface a passage beyond the initial treatment point, the parts being positioned to slidably confine a compressed column of material in the passage and direct the same forward for exposure to the retarding surface.
For treatment of some materials all portions of the retarding surface which engage the material are spaced at least as far from the drive surface as the portion of the retarding surface which first effectively retards the material. For treating compressible materials, we may use a drive surface comprising a surface having ridges and grooves, the grooves having a component in the direction of travel of the material and providing at the initial treatment point spaces in which the material may initially slide backward relative to the drive surface and compress before leaving the grooves.
In an embodiment for treating compressible materials, the drive surface is of cylindrical form and the retarding surface commences less than 10 arc degrees from the initial treatment point.
ln many cases the member defining the retarding surface may comprise a fabric or be a layer member, the
drive surface being curved and the machine having a bent metal member over the retarder member positioning the retarding surface with respect to the driving surface. In the latter case a backing layer of resilient material may lie over the retarder layer member and in either case the bent metal member may comprise a resilient or non-resilient sheet form metal keeper member over the backing layer.
In other embodiments the retarder member is a sheet form member, and a presser member is provided for pressing toward the drive surface at a point above the region where the primary member ends, the position of the presser member being adjustable backward or forward relative thereto in the direction of travel of the material so as to vary the proportion of force it applies upon the primary member and upon the retarder memher.
The primary member may comprise a sheet of deformation-resistant metal, the body thereof having a first thickness and tapering or stepped to a reduced thickness at its forward edge, the retarder member overlying the primary member and extending downstream over and beyond the trailing edge of the primary member.
In another form of the invention the retarding surface is backed by a layer of a material deformable in the direction of the thickness of the primary member and deformed about the trailing edge of the primary member to position the retarding surface with respect to the drive surface. In this case the machine may include an outer sheet form member of deformation resistant and force-transmitting material overlying the layer, and a presser having a pressing surface engageable with the outer member positioned to transmit pressing forces to a predetermined region beneath the confining surface or beneath the retarding surface or beneath both such surfaces through the thickness of the intervening members. The presser includes mechanism for adjusting backwardly or forwardly the position of engagement of the presser with the outer member in the direction of travel of the material.
In machines for treating compressible materials wherein the material is advanced to an initial treatment point and then through a passage between the confining surface and the drive surface to the retarding surface, the passage may be enlarged in the direction of the thickness of the material to permit creping of the overall sheet of the material, the machine being thereby capable of producing a time-varying densification of the material under the confining surface as the resistance of the column of compressed material varies with the varying stages of crepe formation. In this case the surface defining the enlarged portion of the passage may be continuous with the confining surface or separately formed. Likewise, at least immediately preceding the retarder member, the spacing of the surface defining the enlarged portion of the passage may be substantially greater than the spacing of the confining surface from the drive surface in the region immediately preceding the initial point of treatment, enabling expansion of the material in the direction of its thickness before reaching the retarder. In either case, the spacing of the confining surface from the drive surface within the passage may abruptly increase and the increased spacing extend all the way to the retarder member. Likewise, the confining surface may be provided by more than one member in overlapped relation. The
time-varying densification of the material may alternatively be made to occur by providing an abrupt enlargement in the direction of the thickness of the material of the spacing between the retarding surface and the drive surface immediately downstream of the trailing edge of the confining surface rather than in the aforementioned passage. For some effects abrupt enlargements may be provided both in the passage to the retarding surface and in the region under the retarding surfce.
To achieve other special effects the primary and retarder members may be arranged at an angle to the path of travel of the material, so that the trailing edge of the confining surface and the leading portion of the retarding surface are angularly disposed to the path of travel of the material. This arrangement may be employed both in embodiments wherein the drive member is a roll, in which case the edges define a helical segment upon the surface of the roll, and in embodiments wherein the drive member is planar, as an endless belt. When a belt is employed and the treatment occurs in a planar section thereof, the adjustments of relative pressure between the driving surface and the other surfaces may be made by mechanisms pressing against the back side of the belt.
The invention also features the method of treating a travelling length of flexible material comprising confining the material against a moving drive surface by means of a confining surface so thatrthe material will be driven forward in essentially uncompressed condition to a point of initial treatment and providing a retarding surface on the same side of the material as the confining surface but beyond its trailing edge and in spaced relation to the drive surface. The retarding surface is essentially non-extensible in the direction of travel of the material and has a multiplicity of portions operable to successively grip and release and thereby to locally retard the travelling material, while the confining surface is at least in part spaced closer to the drive surface than is said retarding surface. The forwardly driven material while still uncompressed and beneath and engaged by said confining surface is caused to impinge upon a column of already compressed material at the initial treatment point and is then propelled as a continuously formed column of compressed material from beneath the confining and retarding surfaces.
For treating textiles, the retarding surface may be arranged to nap the surface of the material in the process of retarding it.
The method of the invention is applicable to bulking or softening a length of fibrous material by providing the driving surface with material gripping projections. The material is slippably confined against such driving surface and at least portions thereof pressed into the intervals between the projections by the confining surface; the relationship of the surfaces is maintained such that the driving surface slides with respect to the material so that the projections tend to pull fibers at one side of the material forwardly and out of the intervals while the rough surface has a relatively opposite effect on fibers at the other side of the material.
To achieve certain effects with some materials the method of the invention includes the step of slidably confining the material substantially to its original thickness at a point of initial treatment, and then releasing the compressed material to expand its thickness at a point spaced beyond the point of initial treatment. The
method may include slidably confining the material following the initial treatment point at a spacing greater than the respective spacing at such point with a low friction confining surface prior to exposing the material to the rough retarding surface.
The invention also contemplates a method of treating a travelling length of flexible material including confining the material against a moving drive surface by means of a confining surface so that the material will be driven forward by the drive surface, providing a retarding surface which is essentially non-extensible in the direction of travel of the material and located on the same side of the material as the confining surface but beyond it trailing edge and in spaced relation to said drive surface and wherein the confining surface is at least in part spaced closer to said drive surface than is said retarding surface. We cause the forwardly driven material while still uncompressed and beneath and engaged by the confining surface to impinge upon a column of already compressed material at an initial treatment point beneath the confining surface located upstream of the trailing edge and propel the continuously formed column of compressed material from beneath the surfaces.
In all forms of the invention, the material may be drawn out from the end of the effective retarding surface at a rate greater than the unassisted rate of extrusion from the machine, thereby controllingthe geometry of the passage and the degree of treatment.
The foregoing and other objects, features and advantages of the invention will be apparent from the following detailed description of presently preferred embodiments thereof taken in conjunction with the accompanying drawings wherein:
FIG. 1 is a diagrammatic highly magnified perspective view of a preferred embodiment of the invention;
FIG. 2 is a diagrammatic view of higher magnification than FIG. ll of the action of a projection of the retarding surface upon a fiber or thread;
FIG. 3 is a diagrammatic, highly magnified vertical cross-section of a preferred embodiment treating a knitted fabric and FIG. 4 is a plan view of the fabric at various stages of treatment;with-FIGS. 3 and 4 having the points of treatment aligned;
FIG. 3a diagrammatically illustrates the directions of the forces believed involved at the point of exit of the material from beneath the retarder.
FIG. 5 is a highly magnified cross-section view of a preferred embodiment of the invention including the members defining the effective surfaces; FIG. 5a is a diagrammatic cross-section and force diagram, illustrating forces acting upon the material in FIG. 5; FIG. 6 is a perspective view on a smaller scale of the effective parts of the machine of FIG. 5;
FIGS. 7, 8, 9, and 10 are views similar to FIG. 5 of other embodiments of the invention;
FIG. 11 is a view similar to FIG. 6 illustrating a retarding assembly curved along the axial extent of a drive roll;
4 FIG. 12 may be regarded either as a plan development of the surface of a drive roll, illustrating an embodiment similar to FIG. 1 l or a plan view of a machine employing a planar drive surface;
FIG. 13 is a diagrammatic view illustrating a double action effect of the rough retarding surface in a softening or other such treatment;
FIG. 14 is a diagrammatic view of an overall machine operable according to the invention;
FIG. 15 is a view similar to FIG. 5 of another preferred embodiment;
FIG. 16 is a cross-sectional view similar to FIG. 5 of another preferred embodiment;
FIGS. 17, 17a, and 17b and FIGS. 18, 18a, and 18b are photographs of materials treated according to the invention.
DETAILED DESCRIPTION In FIG. 1 there is diagrammatically shown a driving surface 10 moving in the direction of arrow D, a confining surface 12 and a retarding surface 14. It is assumed for this figure that surface 10 is provided by a moving member and both surfaces 12 and 14 are provided by stationary members, none of which are shown. A web of flexible material 16 to be treated is shown over the moving drive surface 10 and under the confining and retarding surfaces 12 and 14, all of these surfaces having a uniform widthwise extent corresponding to such width of the web as is to be treated uniformly. The degree of magnification of this view will be understood from the fact that the actual thickness of the material is usually less than 0.015 inch and sometimes less than 0.005 inch. Where a curved drive surface is employed, its radius of curvature may be 2 to 6 inches. The degree 'of compression of the material at its various stages is illustrated in a diagrammatic manner by the sections which are intended to represent equal masses of material.
The confining surface is adapted to slippably engage and press the material against the drive surface to confine and drive it forward in region A in longitudinally uncompressed condition to point 0, the initial point of treatment.
The machine is shown in running condition after the treatment has stabilized. It will be appreciated that starting conditions may be quite different. The retarding surface 14 lies along the driving surface 10. The confining surface 12 is at least in part closer to the driving surface than is the retarding surface 14. The retarding surface 14 is rough relative to the confining surface 12 and commenses at T, in this embodiment, within one inch (for textile materials of the order of 0.005 inch to 0.015 inch thick within about one-fourth inch) of the point 0. (In other embodiments e.g., with stiff materials, the initial point of treatment may be nearly coincident with the initial point of the effective retarding surface).
At the point of treatment the longitudinally uncompressed material is driven against a column of temporarily or permanently compressed material, maintained in retarded state by the retarding action of rough retarding surface 14. The material, as it leaves confinement under confining surface 12, is freed to expand at least somewhat, and is able to remain in its expanded condition throughout its transit under retarding surface 14. Through the cooperation of the roughness of that surface, with its relatively large spacing from the drive surface, the retarding action can be maintained with light downward pressure, without danger of causing refeed due to excessive pressure of the web against the drive surface and without undue wear of the retarding surface where wear would cause a detrimental change in the treatment. Advantageously, from the initial area of contact of the retarding surface with the material, the effective retarding surface lies substantially parallel or diverges relative to the drive surface, or at least does not constrict the compressed material or require it to extrude through a minimum passage.
The material illustrated in FIG. 1 is compressible, for instance it could be knitted nylon tricot, or a host of other textile and textile-like products. For many treat ments of such materials the transit of such materials at point T from under confining surface 12 to the retarder surface involves a latent tendency for the material to curl upwardly and back, in response to the dragging action of the confining surface, with resultant balling up and jamming of the material. This tendency is defeated by the location of the initial treatment at a point substantially in advance of the transition to the retarding surface. As shown this is accomplished with an extension of the confining surface through passage B, in which is confined a column of longitudinally compressed material. Thus the initial treatment of the material occurs within the confines of the confining surface 12 where the material is significantly densified, achieving greater columnar strength, and also acquiring a tendency to expand. When this column reaches transition point T at the end of the passage, its strength resists the tendency to buckle, while its newly acquired expansion tendency causes it to expand up against the regarding surface. Densification at least to some degree within the passage B is a critical requirement for numerous textiles which otherwise would not acquire the necessary columnar strength before encountering the retarding surface, while it is essentially non-critical, but in some cases desirable to achieve certain effects, in the case of denser materials already possessing the requisite columnar strength.
According to the present invention, the retarder is substantially rougher than the roughness of the confining surface either before or following the initial point of treatment, and in many instances is preferably rougher than the drive surface, all measured in the direction of travel of the machine.
Preferably for textiles and textile-like materials the roughness of the retarding surface is in the range of 100 to 500 RMS (Root Mean Square microinch) while for' paper and paper-like products the roughness is in the range of 200 to 800 RMS (the particular roughness selected will vary with the relationship of all operating surfaces and the nature of the material and its desired treatment).
In comparison a preferred confining surface has a roughness under 20 RMS and a preferred drive surface for textiles comprising a roll coated with tiny hard particles has a roughness less than I RMS and for papers a roughness less than 130 RMS.
The length of the retarding surface is not critical over a considerable range, being in general longer than the length of such densification passage 8 as is used, or the distance between initial treatment and initial effective retardation. In certain instances, however, especially dealing with treatment of stiff materials and employing roughnesses in the higher part of the range, the length of the retarding surface in region C may be varied as a control for the nature of the treatment obtained. In other instances, e.g., for bulking textiles while minimizing shortening, it is also desired to shorten the retarding surface and have it rougher than would be the case where a substantial amount of longitudinal shortening is affirmatively desired.
A wide variety of materials may be used to provide the retarder projections or retarder surface roughness of the invention. The retarding surface must be essentially non-extensible in the direction of travel of the material in order to perform the proper retarding effect and obtain uniformity and other advantages. For many treatments it is essential that the retarder member also be resiliently supported in the direction of the thickness of the material, which helps to obtain a self-adjusting proper geometry. The elements defining the projections or the roughness preferably comprise hard, wearresistant material. Preferably the material forming the retarder surface has an elongation of less than 5 percent under tensions of 1,000 psi.
Materials, such as filled urethane, which have dense and stable surfaces, exhibit the property of retarding by slip-stick action and with long wearing properties.
It is advantageous to many treatments that the retarding surface not only have its retarding effect, essential for the application of longitudinal compression to the material, but that it also have a napping effect, by which it is meant that the retarding surface should momentarily interlock with the material locally to the extent that the material is locally deformed. Referring to FIG. 2, which is a fragmentary, diagrammatic, highly magnified cross-sectional view, a projection P of the retarding surface 14 engages a thread or fiber F of the material undergoing treatment and causes it to be separated and deformed from the yarn or bundle Y to which it originally conformed. This effect, multiplied thousands of times over each small area of the material, advantageously contributes to the total treatment, for instance, where it is desired to soften and improve the bulk or cover of nylon knitted fabrics, or to give nonwoven fabrics softeness and a better hand or drape.
Referring to FIGS. 3 and 4 a treatment of knitted nylon tricot, 40 X 40 denier, ten thousandths of an inch thick is illustrated. ln region A the longitudinally uncompressed fabric 16, illustrated by a single chain or wale in the plan view of the face of the fabric in FIG. 4, is driven forwardly to the point 0 of initial treatment. Here it is confronted by a column of longitudinally compressed or densified fabric while it is still confined by a slippable confining surface in region B, in this case by the smooth extension of the confining surface 12. Within the length of one chain loop the fabric is converted from an elongated uniform chain, in which the threads of the yarn are tightly bundled together (region A) to a densifed condition where tht total density of threads is increased while the individual fibers are buckled and bent away from each other, although still retaining a recognizable bundle outline (region B).
After the densified fabric 16a slides to the end of the confining surface 12, it expands and is contacted by the rough retarding surface 14 which has a napping characteristic. Here, in region C, the longitudinally unyieldable roughness of the surface 14 penetrates into the body of the fabric to apply retarding forces sufficient to retard the material and maintain the compressed column in region B. The fabric continues to be driven forward in region C, causing relative movement of the fabric under and past the projections of the retarding surface, the movement under the retarding projections being somewhat analogous to a ratcheting movement.
While this occurs, the retarding surface is also effective to nap the fabric by dislodging individual threads from their bundles and displaying them in a more random condition. The treated fabric 16b has a barely if at all recognizable chain structure, and the fabric (despite being originally formed of straight nylon monofilament) hasnow a soft and textured appearance.
In this example the untreatd fabric may have a thickness of for instance 0.010 inch and the thickness of the treated fabric may range from a slight increase up to 0.020 or 0.030 inch thickness depending upon a number of factors within the control of the operator.
Where it is desired mainly to bulk or thicken a textile, and not to shorten it, advantageously the effective length of the retarding surface 14 is kept short, i.e. oneeighth or one-sixteenth inch in length, and the thickening occurs at the end of the confining surface. The material'is subjected to severe shearing forces at its surfaces, causing actual rearward stretching or even localized tearing of the top surface relative to the bottom surface. These forces and shear distortion are illustrated acting on a section of the material in FIG. 3a. When the material emeges from under such a short extent of retarder it immediately blooms into a bulky form, and has a distinct tendency to roll back in the direction of the curved arrow shown in FIGS. 3 as a result of the oppositely acting forces upon the face and back of the material, such forces and their directions being indicated by the straight arrows.
In important instances it is required that the body of the fabric not be visibly creped, it being desired to achieve treatment of the threads and yarns individually. We have made this possible by the densification of the fabric in region B in which the columnar strength of the fabric is increased while the material is tightly confined at its faces before it is exposed to the retarding surface. With maintenance of this geometry the fabric is resistant to bodily buckling as it is pushed through the successive passages.
Referring to FIG. a non-creping treatment with moderate bulking is achievable with the construction shown. The drive surface l0-is formed by a cylindrical roll 20, of a diameter on the order of 4 inches for treatment of narrow width materials, up to about 1 foot width, and of increased diameter for wider webs. A sandwich of stationary elements extends over the roll from a stationary support not shown, at the left in FIG. 5. This sandwich includes a primary member 22 whose lower surface defines the confining surface 12, a nonresilient fabric member 24 having a coated grit facing (e.g., emery cloth) defining retarding surface 14, and a relatively thick and unyielding keeper sheet 28. A spring steel keeper 26 is inserted between keeper sheet 28 and the member 24 and extends along the back of the latter. It has an unstressed curvature of a radius less than the radius of the roll 20. The entire sandwich extends as a cantilever over the roll and a presser member 30 is adjustably positioned over the sandwich to press it against the roll. As indicated by the arrows the presser member is adjustable toward the roll surface to vary its pressure and it is adjustable relative to the sandwich back and forth in the lengthwise direction of the latter, to vary'the relative point of application of pressure. By the latter adjustment the proportion of downward force applied to the confining surface to the downward force applied to the retarder member beyond primary end 23 is variable in an action we refer to as teeter totter." The forces applied to the confining surface are normally much greater than those applied to the effective retarding member, and an adjustment one way or the other of the presser member of .025 inch in the direction of the travel of the material can have a desirable effect in controllably varying the treatment. Such adjustment affects the degree to which the emery member deforms about the end 23 of the primary. To some extent it also shifts the point M of initial effective contact of the emery with the material to be retarded.
In the embodiment of FIG. 5 the primary member 22 is formed from a sheet of invar metal originally of 0.020 inch thickness, having a slope ground to form a lower surface which causes the forward part of the member to taper from the full thickness down to the end 23 of 0.004 inch over a distance of approximately onequarter inch. The retarding member 24 comprises emery cloth having an uncompressed thickness of about 0.010 inch, and with the rough surface of the emery facing against the top surface of the member 22. The emery extends beyond end 23 a distance e.g., of one-eighth to three-eighths inch depending on the treatment and roughness of the emery chosen. The keeper 26 is a length of spring steel of 0.005 inch thickness, and one-half inch width, bent in the widthwise direction on a radius smaller than the radius of the drive surface, and having its width arranged in the direction of travel of the drive surface.
With application of pressure by the pressure member 28 as shown, in the region of end 23 of the primary, the confining surface 12 is pressed tightly toward the drive surface and effects forward drive of the material 16, without longitudinal compression, up to an initial point of treatment 0 under the confining surface 12. The material is compressed against a column of longitudinally compressed material which is confined by the forward extension of the confining surface. As the material proceeds forward under this tapering extension, the material is able to gradually expand while being channeled forwardly without opportunity to buckle bodily upon itself. When it reaches the end 23 of the primary member it has stabilized as a lengthwise moving column of nearly the same height as the height under the retarding surface. It therefore readily bridges the small space at the end 23 of the primary member and engages the retarding surface 14 at point M while moving nearly parallel thereto. From point M the retarding surface itself resists any tendency of the material to turn up, while at the same time the retarding surface applies retarding forces in the manner described previously.
The effect of the spring keeper member 26 is to maintain the retarding surface in the approximate curvature of the drive surface without at any place permitting the spacing under the retarding surface to narrow down or constrict the column in the region of effective retardation. In fact, with this embodiment, although loading of the pressing edge of presser member 30 may be around 50 pounds per linear inch of presser edge wid'tliwis'e of tlie machineTone can easily raise the f5 ward edge 27 of the spring keeper 26 with one finger, illustrating the relatively light downward forces required while enabling the rough retarding surface to perform its function. With this arrangement therefore the treated material retains substantially its fully expanded thickness throughout the length of the retarding surface.
The fore and aft adjustability of the relative position of the presser member on the sandwich, indicated by arrow L in FIG. 5, enables a control of the pressure applied by the retarding surface 14; through the force transmitting action of rigid keeper 28 and spring keeper 26, increased pressure on the retarding surface has the effect of increasing the over-all retarding force and the degree of treatment.
In FIG. 5 as in the embodiment of FIG. 1, the point of initial treatment is close to the beginning of the retarding surface, for the knitted tricot specifically mentioned this dimension being one-eighth inch or less. In general for treatments where substantial longitudinal compression is desired of densifiable materials, the length of the retarding surface is substantially longer, but not necessarily so where bulking or napping are the effects to be achieved.
In certain instances, as with nylon tricot, the drive surface is heated and transfers heat into the material in region A to prepare it for treatment. After treatment it is desirable to continue application of the heat to set the material in its new form.
Referring to FIG. a (which is adjacent FIG. 12 in the drawings) principal forces which are apparently acting upon the material in the embodiment of FIG. 5 are illustrated. Force F, represents the impact of the material against the column of compressed material at the point of initial treatment. This force is generated through the gripping of the material by the driving surface at points preceding point 0, these forces being transmitted through the uncompressed material. F represents the further driving force attributable to the portion of the driving surface in the region of point 0. It represents the fact that the gripping effect of the drive surface upon the material must be overcome by the retarded column of compressed material in order for compressive treatment to commence and for the drive surface of the roll to slip freely forward under the compressed column. F; has a slight upward component representing the upward wedging effect of the gripping projections of the roll surface as they slide forward.
F represents the confining forces exerted by the confining surface 12. The compressed column of material has a tendency to expand in all directions, an effect which cari be considerable when the material being treated has a resilient consistency. F;, has a slight rearward component representing the drag effect. The smoothness of the confining surface (e.g., roughness less than 20 RMS) and its low coefficient of friction, assisted e.g., by a teflon impregnation, help to keep this drag effect small.
Throughout the exposure of the material to the moving drive surface there is a slight tendency for that surface to pull the material forward, represented by force F This pull is a function of the pressure with which the material presses against the drive surface. As indicated above, e.g., in the discussion of keeper 26, this pressure can be very light, keeping force F, small.
When the compressed column moves from under end 23 of the confining surface, it expands and immediately engages the rough retarding surface 14, whereupon a significant retarding force is applied along that surface. The localized retarding forces at points along the retarding surface are represented by F while the cumulative efiect of the retarding surface downstream beyond that shown is represented by F In this connection it is to be noted that because the retarding surface is essentially non-extensible in the machine direction, its projections remain stationary under the force exerted by the moving material and prevent non-uniform retarding patterns or bunching to occur; this feature also causes the force applied to the projections to produce an upward turning couple, i.e., a forward force on the projection produced by the material, and an equal reaction force acting rearward along the thickness of the emery, this tendency being yieldingly resisted by a vertically resilient support. Note that this turning tendency varies during treatment and produces a self-adjusting effect to provide uniform treatment.
It is found that with the shortness of the treatment zone as mentioned (region B, FIG. 1), the forces can act together to dramatically alter the structure of the material, the degree of treatment varying with the selection and relationship of the various elements. With curved drive surfaces it is to be noted that the limited arcuate extent of the region B assures that the major forces applied by the drive surface preceding or at the point of initial treatment 0 are substantially aligned with the passage under the rough retarding surface, and thus can more readily cause the material to move therethrough without buckling.
In increasing order of the degree of treatment the following retarding surfaces have been employed in the arrangement of FIGS. 5 and 5a for treatment of knitted and other textiles, all of these retarding members being emery cloth sold by Behr Manning of Troy, New York, under the tradename Metalite, having a thickness on the order of 0.010 inch.
description RMS new RMS in use crocus cloth (polishing -130 90-110 cloth with fine abrasive grit) 500 J 200-240 -200 400 J 270-300 230-270 320 J 300-500 230-280 These roughness readings were made with a profilimeter on the abrasive side of these materials, the side which is ordinarily disposed against the material. Durable fabric of essentially inelastic qualities may itself be used. as a retarding surface; one such demonstration employed a tightly woven mesh fabric having a profilimeter reading of 450-650 new, 400-450 used. Metal screening and other materials having the requisite gripping characteristics may also be used.
Another point worthy of mention is the discovery that used emery surfaces which appear worn-out in fact have a very desirable effect and are actually preferred. When new emery surface is employed it is preferable to pre-treat the retarding surface by rubbing toilet tissue or other fibrous material on the emery, to leave a deposit of tiny fibers. We are not fully sure why this has good results, but it is believed that the fibers duplicate the condition, for new emery, of the emery in use, where certain free fibers serve somewhat as a lubricant over the roughest portions of the surface. The lubrieating effect of retained fibers is demonstrated especially in the small region where the emery bends about the end of the primary member. It is usually preferred to have the emery surface lie parallel to the drive surface or to slightly diverge all along its effective length. But in order for the emery to reach its initial point of effectiveness at the desired height, it usually must be

Claims (25)

1. In a machine capable of treating a traveling length of flexible material, the combination, in the running condition of the machine, comprising: a drive member providing a movable drive surface for contacting one side of the material, means providing a confining surface and a retarding surface, said last named two surfaces being arranged for contacting the other side of the material and being in immediate succession and opposite and spaced from said drive surface, said drive surface and said confining surface together defining a first passage for said material, means for pressing the means defining said confining surface tightly against said material at a point within but near the end of said first passage so as to press said material in untreated condition into driven engagement with said drive surface along a line and propel it forwardly within said first passage in slipping engagement with said confining surface, said drive surface and said retarding surface defining together a second passage, immediately following said first passage, into which said material may enter from said first passage, said retarding surface and said drive surface being so mutually spaced at least at the entrance portion of said second passage that said material will enter therein and pass therethrough essentially without changing its path of travel and therein engage and be retarded by said retarding surface, said retarding surface having a multiplicity of projecting portions operable successively to grip and release the material thereby to locally retard the material as it passes through said second passage to exert sufficient retarding force thereon to cause a continuously replenished column of at least partially treated material to build up, said retarding surface being essentially non-extensible and immobile in the direction of travel of the material, said first passage having at least near its exit a dimension in the direction of the thickness of the material which is no greater than any similar significant dimension of said second passage, whereby untreated material driven forward by said drive surface beneath said confining member will continuously impinge upon said column, the point of impingement comprising a treatment point, said treatment point being located in a zone defined by the exit portion of said first passage and the initial portion of said second passage, the mutual spacing of said drive and confining surfaces and that of said drive and retarding surfaces and their frictional surface characteristics Being so related to the retarding characteristics of said retarding surface that at said treatment point the forwardly propelled material supported by said surfaces has sufficient columnar strength to extrude said column of treated material from the passage portions in which it is contained.
2. The machine of claim 1 including a resilient means supporting said retarding surface in the direction of the thickness of the material being treated.
3. The machine of claim 1 wherein said projecting portions comprise projections formed of hard grit grains bonded to a non-extensible backing sheet.
4. The machine of claim 1 wherein all portions of said retarding surface which engage said material are spaced at least as far from said drive surface as the portion of said retarding surface which first effectively retards said material.
5. The machine of claim 1 wherein said drive surface comprises a surface having ridges and grooves, the grooves having a component in the direction of travel of the material, said grooves at said treatment point providing spaces in which the material may initially slide backward relative to said drive surface and compress before leaving said grooves.
6. The machine of claim 1 wherein said drive surface is of cylindrical form and said retarding surface commences less than 10 arc degrees from said treatment point.
7. The machine of claim 1 wherein the means defining said retarding surface comprises a fabric.
8. The machine of claim 1 wherein the means providing said retarding surface is a layer member, said drive surface is curved and a bent metal member lies over said layer member positioning said retarding surface with respect to said drive surface.
9. The machine of claim 8 wherein a backing layer of resilient material lies over said retarder layer member and said bent metal member comprises a sheet form metal keeper member over said backing layer.
10. The machine of claim 1 wherein said retarding surface is provided by a sheet form member and wherein said pressing means lies above the region of the exit portion of said first passage, said pressing means being adjustable relative to said sheet form member backwardly and forwardly in the direction of travel of the material so as to vary the proportion of force it applies upon said confining surface and upon said retarding surface.
11. The machine of claim 1 wherein said confining surface is provided by a primary member comprising a sheet of deformation-resistant metal, the body thereof having a first thickness and tapering to a reduced thickness at the exit of said first passage, said retarding surface being provided by a retarder member overlying said primary member at least in part.
12. The machine of claim 1 wherein said retarding surface is backed by a layer of a material deformable in the direction of the thickness of said flexible material being treated, extending over said confining surface and deformed about the trailing edge of the means defining said confining surface to position said retarding surface with respect to said drive surface.
13. The machine of claim 12 including an outer sheet form member of deformation resistant and force-transmitting material overlying said layer, and a presser having a narrow pressing surface engageable with said outer member in a position to transmit pressing forces to a predetermined region beneath said confining surface through the thickness of the intervening members, said presser including mechanism for adjusting the position of engagement of said presser with said outer member in the direction of travel of said material.
14. The machine of claim 1 wherein there is provided an abrupt enlargement in the direction of the thickness of the material of the spacing between said retarding surface and said drive surface immediately beyond the exit of said first passage to permit creping of the overall sheet of the material, the machine being capable of producing a time-varying densification of the material as the reSistance of the column of compressed material varies with the varying stages of crepe formation.
15. The machine of claim 1 wherein said treatment point is located in said first passage and said first passage beyond said treatment point is enlarged in the direction of the thickness of the material to permit creping of the overall sheet of the material, the machine being thereby capable of producing a time-varying densification of the material under said confining surface as the resistance of the column of compressed material varies with the varying stages of crepe formation.
16. The machine of claim 15 wherein there is provided an abrupt enlargement in the direction of the thickness of the material of the spacing between said retarding surface and said drive surface immediately beyond the exit of said first passage to assist the aforementioned time-varying densification of the material.
17. The machine of claim 15 wherein the surface defining the enlarged portion of said first passage is continuous with said confining surface.
18. The machine of claim 15 wherein, at least immediately preceding said retarding surface, the spacing of the surfaces defining the enlarged portion of said first passage is substantially greater than the spacing of said confining surface from said drive surface in the region immediately preceding said point of treatment, enabling expansion of the material in the direction of its thickness before reaching said retarding surface.
19. The machine of claim 15 wherein within said first passage the spacing of said confining surface from said drive surface abruptly increases and extends increased to said retarding surface.
20. The machine of claim 19 wherein said confining surface is provided by more than one member in overlapped relation.
21. A method of treating a traveling length of flexible material comprising: providing a movable drive surface for contacting one side of the material, providing a confining surface and a retarding surface arranged for contacting the other side of the material and being in immediate succession and opposite and spaced from said drive surface, said retarding surface having a multiplicity of projecting portions and being essentially non-extensible and immobile in the direction of material travel, said drive surface and said confining surface together defining a first passage for said material, pressing said material in untreated condition into driven engagement with said drive surface at a point in the exit portion of said first passage to propel it forwardly within said first passage in slipping engagement with said confining surface, said drive surface and said retarding surface defining together a second passage immediately following said first passage, said retarding surface and said drive surface being so mutually spaced at least at the entrance portion of said second passage that said material will enter therein and pass therethrough essentially without changing its path of travel, in said second passage successively gripping and releasing said material by means of said projecting portions thereby locally retarding said material as it passes through said second passage to cause a continuously replenished column of at least partially treated material to build up, said first passage having at least near its exit a dimension in the direction of the thickness of the material which is no greater than any similar significant dimension of said second passage, whereby untreated material driven forward by said drive surface beneath said confining member will continuously impinge upon said column, the point of impingement comprising a treatment point, said treatment point being located in a zone defined by the exit portion of said first passage and the initial portion of said second passage, the mutual spacing of said drive and confining surfaces and that of said drive and retarding surfaces and their frictional surface characteristics being so related to the retarding cHaracteristics of said retarding surface that at said treatment point the forwardly propelled material supported by said surfaces has sufficient columnar strength to extrude said column of treated material from the passage portions in which it is contained.
22. The method of claim 21 employed in treating textiles wherein said retarding surface is arranged to nap the surface of the material in the process of retarding it.
23. The method of claim 21 including slidably confining said material substantially to its original thickness at said treatment point and releasing said compressed material to expand its thickness at a point spaced downstream of said treatment point.
24. The method of claim 21 including slidably confining said material following said treatment point at a spacing greater than the respective spacing at said point of treatment with a low friction confining surface prior to exposing said material to said retarding surface.
25. The method of claim 21 for bulking or softening a length of fibrous material wherein said drive surface is provided with material gripping projections and said material is slippably confined against said drive surface and at least portions thereof pressed into the intervals between said projections by said confining surface, and including the step of maintaining the relationship of the surfaces such that the drive surface slides with respect to the material so that the projections tend to pull fibers at one side of the material forwardly and out of said intervals while the retarding surface has a relatively opposite effect on fibers at the other side of the material.
US00115606A 1971-02-16 1971-02-16 Method and apparatus for longitudinal compressive treatment of flexible material Expired - Lifetime US3810280A (en)

Priority Applications (18)

Application Number Priority Date Filing Date Title
US00115606A US3810280A (en) 1971-02-16 1971-02-16 Method and apparatus for longitudinal compressive treatment of flexible material
IT67473/72A IT949108B (en) 1971-02-16 1972-02-15 PROCEDURE AND DEVICE FOR THE LONGITUDE TREATMENT OF MATERIALS IN SHEET PARTS COLARLY MATERIALS FORMED BY FI BRE
JP1571072A JPS5629024B1 (en) 1971-02-16 1972-02-16
CA134,854A CA963643A (en) 1971-02-16 1972-02-16 Treatment of sheet materials
AU39027/72A AU464546B2 (en) 1971-02-16 1972-02-16 Compressive treatment of flexible sheet materials
IT67496/72A IT949126B (en) 1971-02-16 1972-02-16 PROCEDURE AND DEVICE FOR THE LONGITUDINAL SENSE TREATMENT OF MATERIALS IN SHEET PARTICULARLY MATERIALS FORMED OF FIBERS
DE19722207945 DE2207945A1 (en) 1971-02-16 1972-02-16 Method and machine for treating flat or long material
FR727205269A FR2125535B1 (en) 1971-02-16 1972-02-16
CH220172A CH576030B5 (en) 1971-02-16 1972-02-16
CH220272A CH550273A (en) 1971-02-16 1972-02-16 DEVICE FOR COMPRESSIVE BUMPING OF A MATERIAL TRAIL.
DE19722207946 DE2207946A1 (en) 1971-02-16 1972-02-16 Method and machine for treating flat or long material
GB720972A GB1364602A (en) 1971-02-16 1972-02-16 Treatment of sheet materials
AU39032/72A AU465817B2 (en) 1971-02-16 1972-02-16 Compressive treatment of flexible sheet materials
FR7205268A FR2127023B1 (en) 1971-02-16 1972-02-16
GB720872A GB1364601A (en) 1971-02-16 1972-02-16 Treatment of sheet materials
CH220172D CH220172A4 (en) 1971-02-16 1972-02-16
CA134,853A CA963642A (en) 1971-02-16 1972-02-16 Treatment of sheet materials
US330176A US3869768A (en) 1971-02-16 1973-02-07 Methods of compressively treating flexible sheet materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00115606A US3810280A (en) 1971-02-16 1971-02-16 Method and apparatus for longitudinal compressive treatment of flexible material

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US330176A Continuation-In-Part US3869768A (en) 1971-02-16 1973-02-07 Methods of compressively treating flexible sheet materials

Publications (1)

Publication Number Publication Date
US3810280A true US3810280A (en) 1974-05-14

Family

ID=22362396

Family Applications (1)

Application Number Title Priority Date Filing Date
US00115606A Expired - Lifetime US3810280A (en) 1971-02-16 1971-02-16 Method and apparatus for longitudinal compressive treatment of flexible material

Country Status (9)

Country Link
US (1) US3810280A (en)
JP (1) JPS5629024B1 (en)
AU (2) AU464546B2 (en)
CA (2) CA963643A (en)
CH (3) CH576030B5 (en)
DE (2) DE2207945A1 (en)
FR (2) FR2125535B1 (en)
GB (2) GB1364601A (en)
IT (2) IT949108B (en)

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4086687A (en) * 1972-01-28 1978-05-02 The Fiberwoven Corporation Apparatus for relaxing or loosening needled textile fabrics
US4432926A (en) * 1979-11-23 1984-02-21 Tilburg Jan Van Method and apparatus for imparting two-way properties to flexible webs
WO1985004369A1 (en) * 1984-03-29 1985-10-10 Walton Richard R Longitudinal compressive treatment of webs
US4627849A (en) * 1982-06-30 1986-12-09 Kimberly-Clark Corporation Tampon
US4717329A (en) * 1986-12-30 1988-01-05 Bird Machine Company, Inc. Apparatus for compressively treating travel flexible sheet material
US4919877A (en) * 1987-12-03 1990-04-24 Kimberly-Clark Corporation Process for softening webs
US5060349A (en) * 1987-04-02 1991-10-29 Richard R. Walton Compressive treatment of webs
WO1992005306A1 (en) * 1990-09-24 1992-04-02 Walton Richard R Longitudinal compressive treatment of web materials
US5335612A (en) * 1990-02-02 1994-08-09 Pathold Investments Company Limited Anti-pucker presser foot
WO1994017991A1 (en) * 1993-02-04 1994-08-18 WALTON, Richard, C. (Executor for the Estate of Richard R. Walton (deceased)) Apparatus for compressively treating flexible sheet materials
WO1994019525A1 (en) * 1993-02-22 1994-09-01 Richard C. Walton Compressively treating flexible sheet materials
US5582892A (en) * 1994-04-08 1996-12-10 Minnesota Mining And Manufacturing Company Dimensionally stable particle-loaded PTFE web
US5666703A (en) * 1994-02-04 1997-09-16 Richard C. Walton Apparatus for compressively treating flexible sheet materials
USD415353S (en) 1998-11-04 1999-10-19 Kimberly-Clark Worldwide, Inc. Embossed tissue
USD417962S (en) * 1998-11-04 1999-12-28 Kimberly-Clark Worldwide, Inc. Embossed tissue
USD419780S (en) * 1998-11-04 2000-02-01 Kimberly-Clark Worldwide, Inc. Embossed tissue
USD419779S (en) * 1998-11-04 2000-02-01 Kimberly-Clark Worldwide, Inc. Embossed tissue
DE3309819C2 (en) * 1982-03-19 2000-11-23 Rhodes Walton Richard Method and device for upsetting treatment of a material web
US6361636B1 (en) * 1998-10-06 2002-03-26 Dr. Günther Kast GmhH & Co. Process to manufacture a back-adhering material for an inner book
US20030087571A1 (en) * 2001-11-07 2003-05-08 Hoying Jody Lynn Textured materials and method of manufacturing textured materials
US20030119392A1 (en) * 2001-10-29 2003-06-26 Polymer Group, Inc. Protective layer for automotive surfaces
US6592697B2 (en) 2000-12-08 2003-07-15 Kimberly-Clark Worldwide, Inc. Method of producing post-crepe stabilized material
US20030213546A1 (en) * 2002-03-11 2003-11-20 Herbert Hartgrove Extensible nonwoven fabric
US20040007323A1 (en) * 2002-02-01 2004-01-15 Errette Bevins Lightweight nonwoven fabric having improved performance
US20040099389A1 (en) * 2002-11-27 2004-05-27 Fung-Jou Chen Soft, strong clothlike webs
US20040121686A1 (en) * 2002-08-29 2004-06-24 The Procter & Gamble Company Low density, high loft nonwoven substrates
US20040123963A1 (en) * 2002-12-26 2004-07-01 Kimberly-Clark Worldwide, Inc. Absorbent webs including highly textured surface
US20040137200A1 (en) * 2002-11-13 2004-07-15 The Procter & Gamble Company Nonwoven wipe with resilient wet thickness
US20050039837A1 (en) * 2003-03-10 2005-02-24 Polymer Group, Inc. Nonwoven fabric having improved performance
US20060083898A1 (en) * 2004-10-15 2006-04-20 Nanlin Deng Self-adhering flashing system having high extensibility and low retraction
US7182837B2 (en) 2002-11-27 2007-02-27 Kimberly-Clark Worldwide, Inc. Structural printing of absorbent webs
WO2007079502A2 (en) 2006-01-06 2007-07-12 Micrex Corporation Microcreping traveling sheet material
US20070186465A1 (en) * 2002-02-22 2007-08-16 Fermin Ruiz Controlled ripening protective cover for agricultural products
US20070196610A1 (en) * 2006-02-21 2007-08-23 O'rourke Barbara K Durable metallized self-adhesive laminates
US20070212960A1 (en) * 2001-03-26 2007-09-13 Walton Richard C Non-woven wet wiping
US20070221347A1 (en) * 2006-03-22 2007-09-27 Ratia Juan Antonio T Creping machine
US20100175234A1 (en) * 2009-01-14 2010-07-15 Frank Catallo Spring steel slip sheet for a compactor and for extending into a compression zone defined by a feed roll and a retard roll for shrinking a fabric
US20100323773A1 (en) * 2009-06-23 2010-12-23 Jeffrey Ross Jewellery Ltd. Imprint Collecting Device and Method of Manufacturing Same
US20130161858A1 (en) * 2010-09-15 2013-06-27 Hiroyuki Sasaki Apparatus for manufacturing a netted structure and method for manufacturing a netted structure
US8916012B2 (en) 2010-12-28 2014-12-23 Kimberly-Clark Worldwide, Inc. Method of making substrates comprising frothed benefit agents
US20160002836A1 (en) * 2013-02-13 2016-01-07 TRüTZSCHLER GMBH & CO. KG Apparatus and method for hydrodynamic entanglement of non-wovens, wovens and knits
EP3272369A1 (en) 2016-07-20 2018-01-24 Advanced Medical Solutions Limited Absorbent materials
US10233296B2 (en) 2013-05-30 2019-03-19 Kimberly-Clark Worldwide, Inc. Method of forming creped thin film-like structures from frothed chemistry
CN111394976A (en) * 2020-03-18 2020-07-10 姚雪根 Subassembly is ironed in dust clearance that knitwear was used
US20210254249A1 (en) * 2018-07-26 2021-08-19 Andritz Kuesters Gmbh Method for treating a textile material web and apparatus for treating a textile material web

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017222281A1 (en) * 2017-12-08 2019-06-13 Robert Bosch Gmbh electric motor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2263712A (en) * 1939-03-20 1941-11-25 Bradford Dyers Ass Ltd Process of and apparatus for shrinking fabrics and yarns
US3015145A (en) * 1957-02-04 1962-01-02 Compax Corp Method and apparatus for treating web materials, such as fabrics
US3260778A (en) * 1964-01-23 1966-07-12 Richard R Walton Treatment of materials
US3426405A (en) * 1966-07-11 1969-02-11 Richard Rhodes Walton Confining device for compressive treatment of materials
US3452409A (en) * 1966-02-04 1969-07-01 Bancroft & Sons Co J Mechanical treatment of materials for longitudinally compressing the same
US3597814A (en) * 1969-01-24 1971-08-10 Bancroft & Sons Co J Machine for mechanically treating materials having a movable flexible retarder

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2263712A (en) * 1939-03-20 1941-11-25 Bradford Dyers Ass Ltd Process of and apparatus for shrinking fabrics and yarns
US3015145A (en) * 1957-02-04 1962-01-02 Compax Corp Method and apparatus for treating web materials, such as fabrics
US3260778A (en) * 1964-01-23 1966-07-12 Richard R Walton Treatment of materials
US3452409A (en) * 1966-02-04 1969-07-01 Bancroft & Sons Co J Mechanical treatment of materials for longitudinally compressing the same
US3426405A (en) * 1966-07-11 1969-02-11 Richard Rhodes Walton Confining device for compressive treatment of materials
US3597814A (en) * 1969-01-24 1971-08-10 Bancroft & Sons Co J Machine for mechanically treating materials having a movable flexible retarder

Cited By (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4086687A (en) * 1972-01-28 1978-05-02 The Fiberwoven Corporation Apparatus for relaxing or loosening needled textile fabrics
US4432926A (en) * 1979-11-23 1984-02-21 Tilburg Jan Van Method and apparatus for imparting two-way properties to flexible webs
DE3309819C2 (en) * 1982-03-19 2000-11-23 Rhodes Walton Richard Method and device for upsetting treatment of a material web
US4627849A (en) * 1982-06-30 1986-12-09 Kimberly-Clark Corporation Tampon
WO1985004369A1 (en) * 1984-03-29 1985-10-10 Walton Richard R Longitudinal compressive treatment of webs
EP0273709A3 (en) * 1986-12-30 1989-08-16 Bird Machine International, Inc. Apparatus for compressively treating flexible sheet material
EP0273709A2 (en) * 1986-12-30 1988-07-06 Bird Machine Company, Inc. Apparatus for compressively treating flexible sheet material
US4717329A (en) * 1986-12-30 1988-01-05 Bird Machine Company, Inc. Apparatus for compressively treating travel flexible sheet material
US5060349A (en) * 1987-04-02 1991-10-29 Richard R. Walton Compressive treatment of webs
US4919877A (en) * 1987-12-03 1990-04-24 Kimberly-Clark Corporation Process for softening webs
US5335612A (en) * 1990-02-02 1994-08-09 Pathold Investments Company Limited Anti-pucker presser foot
WO1992005306A1 (en) * 1990-09-24 1992-04-02 Walton Richard R Longitudinal compressive treatment of web materials
US5117540A (en) * 1990-09-24 1992-06-02 Richard R. Walton Longitudinal compressive treatment of web materials
WO1994017991A1 (en) * 1993-02-04 1994-08-18 WALTON, Richard, C. (Executor for the Estate of Richard R. Walton (deceased)) Apparatus for compressively treating flexible sheet materials
WO1994019525A1 (en) * 1993-02-22 1994-09-01 Richard C. Walton Compressively treating flexible sheet materials
US5678288A (en) * 1993-02-22 1997-10-21 Richard R. Walton Compressively treating flexible sheet materials
US5666703A (en) * 1994-02-04 1997-09-16 Richard C. Walton Apparatus for compressively treating flexible sheet materials
US5669123A (en) * 1994-04-08 1997-09-23 Minnesota Mining And Manufacturing Company Method of making a dimensionally stable particle-loaded PTFE web
US5582892A (en) * 1994-04-08 1996-12-10 Minnesota Mining And Manufacturing Company Dimensionally stable particle-loaded PTFE web
US6361636B1 (en) * 1998-10-06 2002-03-26 Dr. Günther Kast GmhH & Co. Process to manufacture a back-adhering material for an inner book
USD419780S (en) * 1998-11-04 2000-02-01 Kimberly-Clark Worldwide, Inc. Embossed tissue
USD419779S (en) * 1998-11-04 2000-02-01 Kimberly-Clark Worldwide, Inc. Embossed tissue
USD417962S (en) * 1998-11-04 1999-12-28 Kimberly-Clark Worldwide, Inc. Embossed tissue
USD415353S (en) 1998-11-04 1999-10-19 Kimberly-Clark Worldwide, Inc. Embossed tissue
US6592697B2 (en) 2000-12-08 2003-07-15 Kimberly-Clark Worldwide, Inc. Method of producing post-crepe stabilized material
US7767058B2 (en) 2001-03-26 2010-08-03 Micrex Corporation Non-woven wet wiping
US20070212960A1 (en) * 2001-03-26 2007-09-13 Walton Richard C Non-woven wet wiping
US20050170733A1 (en) * 2001-10-29 2005-08-04 Polymer Group, Inc. Protective layer for automotive surfaces
US20030119392A1 (en) * 2001-10-29 2003-06-26 Polymer Group, Inc. Protective layer for automotive surfaces
US6869122B2 (en) 2001-10-29 2005-03-22 Polymer Group, Inc. Protective layer for automotive surfaces
US20030087571A1 (en) * 2001-11-07 2003-05-08 Hoying Jody Lynn Textured materials and method of manufacturing textured materials
US7183231B2 (en) * 2001-11-07 2007-02-27 The Procter & Gamble Company Textured materials and method of manufacturing textured materials
US7045030B2 (en) 2002-02-01 2006-05-16 Polymer Group, Inc. Lightweight nonwoven fabric having improved performance
US20040007323A1 (en) * 2002-02-01 2004-01-15 Errette Bevins Lightweight nonwoven fabric having improved performance
US20070186465A1 (en) * 2002-02-22 2007-08-16 Fermin Ruiz Controlled ripening protective cover for agricultural products
US20030213546A1 (en) * 2002-03-11 2003-11-20 Herbert Hartgrove Extensible nonwoven fabric
US20040121686A1 (en) * 2002-08-29 2004-06-24 The Procter & Gamble Company Low density, high loft nonwoven substrates
US20060234586A1 (en) * 2002-08-29 2006-10-19 The Procter & Gamble Company Low density, high loft nonwoven substrates
US20040137200A1 (en) * 2002-11-13 2004-07-15 The Procter & Gamble Company Nonwoven wipe with resilient wet thickness
US7182837B2 (en) 2002-11-27 2007-02-27 Kimberly-Clark Worldwide, Inc. Structural printing of absorbent webs
US20040099389A1 (en) * 2002-11-27 2004-05-27 Fung-Jou Chen Soft, strong clothlike webs
US7419570B2 (en) 2002-11-27 2008-09-02 Kimberly-Clark Worldwide, Inc. Soft, strong clothlike webs
US6964726B2 (en) 2002-12-26 2005-11-15 Kimberly-Clark Worldwide, Inc. Absorbent webs including highly textured surface
US20040123963A1 (en) * 2002-12-26 2004-07-01 Kimberly-Clark Worldwide, Inc. Absorbent webs including highly textured surface
US20050039837A1 (en) * 2003-03-10 2005-02-24 Polymer Group, Inc. Nonwoven fabric having improved performance
US7195685B2 (en) 2003-03-10 2007-03-27 Polymer Group, Inc. Nonwoven fabric having improved performance
US8399088B2 (en) 2004-10-15 2013-03-19 E I Du Pont De Nemours And Company Self-adhering flashing system having high extensibility and low retraction
US20060083898A1 (en) * 2004-10-15 2006-04-20 Nanlin Deng Self-adhering flashing system having high extensibility and low retraction
US20080036135A1 (en) * 2006-01-06 2008-02-14 Horn J Drew Microcreping Traveling Sheet Material
WO2007079502A2 (en) 2006-01-06 2007-07-12 Micrex Corporation Microcreping traveling sheet material
US7854046B2 (en) 2006-01-06 2010-12-21 Micrex Corporation Microcreping traveling sheet material
WO2007098016A1 (en) 2006-02-21 2007-08-30 E. I. Du Pont De Nemours And Company Durable metallized self-adhesive laminates
US20070196610A1 (en) * 2006-02-21 2007-08-23 O'rourke Barbara K Durable metallized self-adhesive laminates
US7641952B2 (en) 2006-02-21 2010-01-05 E.I. Du Pont De Nemours And Company Durable metallized self-adhesive laminates
US20070221347A1 (en) * 2006-03-22 2007-09-27 Ratia Juan Antonio T Creping machine
US7767060B2 (en) * 2006-03-22 2010-08-03 E. I. Du Pont De Nemours And Company Creping machine
US8127410B2 (en) * 2009-01-14 2012-03-06 Frank Catallo Spring steel slip sheet for a compactor and for extending into a compression zone defined by a feed roll and a retard roll for shrinking a fabric
US20100175234A1 (en) * 2009-01-14 2010-07-15 Frank Catallo Spring steel slip sheet for a compactor and for extending into a compression zone defined by a feed roll and a retard roll for shrinking a fabric
US20100323773A1 (en) * 2009-06-23 2010-12-23 Jeffrey Ross Jewellery Ltd. Imprint Collecting Device and Method of Manufacturing Same
US20130161858A1 (en) * 2010-09-15 2013-06-27 Hiroyuki Sasaki Apparatus for manufacturing a netted structure and method for manufacturing a netted structure
US9334593B2 (en) * 2010-09-15 2016-05-10 Airweave Manufacturing Inc. Apparatus for manufacturing a netted structure and method for manufacturing a netted structure
US8916012B2 (en) 2010-12-28 2014-12-23 Kimberly-Clark Worldwide, Inc. Method of making substrates comprising frothed benefit agents
US20160002836A1 (en) * 2013-02-13 2016-01-07 TRüTZSCHLER GMBH & CO. KG Apparatus and method for hydrodynamic entanglement of non-wovens, wovens and knits
US10233296B2 (en) 2013-05-30 2019-03-19 Kimberly-Clark Worldwide, Inc. Method of forming creped thin film-like structures from frothed chemistry
EP3272369A1 (en) 2016-07-20 2018-01-24 Advanced Medical Solutions Limited Absorbent materials
US10695458B2 (en) 2016-07-20 2020-06-30 Advanced Medical Solutions Limited Absorbent materials
US20210254249A1 (en) * 2018-07-26 2021-08-19 Andritz Kuesters Gmbh Method for treating a textile material web and apparatus for treating a textile material web
CN111394976A (en) * 2020-03-18 2020-07-10 姚雪根 Subassembly is ironed in dust clearance that knitwear was used

Also Published As

Publication number Publication date
FR2125535A1 (en) 1972-09-29
IT949126B (en) 1973-06-11
AU464546B2 (en) 1975-08-28
CA963643A (en) 1975-03-04
CA963642A (en) 1975-03-04
GB1364601A (en) 1974-08-21
CH576030B5 (en) 1976-05-31
FR2125535B1 (en) 1973-06-29
CH220172A4 (en) 1975-12-15
FR2127023A1 (en) 1972-10-13
JPS5629024B1 (en) 1981-07-06
AU3902772A (en) 1973-08-23
FR2127023B1 (en) 1979-08-03
DE2207946A1 (en) 1972-08-24
AU3903272A (en) 1973-08-23
CH550273A (en) 1974-06-14
AU465817B2 (en) 1975-10-09
GB1364602A (en) 1974-08-21
IT949108B (en) 1973-06-11
DE2207945A1 (en) 1972-09-14

Similar Documents

Publication Publication Date Title
US3810280A (en) Method and apparatus for longitudinal compressive treatment of flexible material
US3426405A (en) Confining device for compressive treatment of materials
US5117540A (en) Longitudinal compressive treatment of web materials
US3427376A (en) Softening nonwoven fabrics
US3260778A (en) Treatment of materials
JP2897187B2 (en) Method for softening and bulking stitch-bonded fiber cloth
EP0364788B1 (en) Compressive treatment of webs
US4921643A (en) Web processing with two mated rolls
US4142278A (en) Compressive treatment of web materials
EP1789613B1 (en) Apparatus for tow opening
US3015145A (en) Method and apparatus for treating web materials, such as fabrics
US3869768A (en) Methods of compressively treating flexible sheet materials
US3975806A (en) Apparatus for compressively treating flexible sheet materials
EP0144526B1 (en) Method and apparatus for the compressive treatment of fabric
US4859169A (en) Web processing by longitudinal compression using matched drive disks and retarding fingers
US3188372A (en) Machine and method for compacting materials
KR930009836B1 (en) Method and apparatus for the compressive treatment of fabric
CA1167627A (en) Longitudinal compressive treatment method and apparatus for web materials
GB2116593A (en) Microcreping with surface diversion retarding
US4432926A (en) Method and apparatus for imparting two-way properties to flexible webs
US4086687A (en) Apparatus for relaxing or loosening needled textile fabrics
GB1592103A (en) Process for texturing synthetic fibrous textile material
US9725837B2 (en) Shoe for a compactor and for avoiding heat deformation thereof
EP0176566A4 (en) Longitudinal compressive treatment of webs.