US3809402A - Tennis rackets and frames therefor - Google Patents

Tennis rackets and frames therefor Download PDF

Info

Publication number
US3809402A
US3809402A US00286001A US28600172A US3809402A US 3809402 A US3809402 A US 3809402A US 00286001 A US00286001 A US 00286001A US 28600172 A US28600172 A US 28600172A US 3809402 A US3809402 A US 3809402A
Authority
US
United States
Prior art keywords
cross
section
tube
frame
tennis racket
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00286001A
Inventor
R Haines
J Barrett
E Stevens
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dunlop Holdings Ltd
Original Assignee
Dunlop Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dunlop Holdings Ltd filed Critical Dunlop Holdings Ltd
Priority to US00286001A priority Critical patent/US3809402A/en
Application granted granted Critical
Publication of US3809402A publication Critical patent/US3809402A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B60/00Details or accessories of golf clubs, bats, rackets or the like
    • A63B60/42Devices for measuring, verifying, correcting or customising the inherent characteristics of golf clubs, bats, rackets or the like, e.g. measuring the maximum torque a batting shaft can withstand
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B49/00Stringed rackets, e.g. for tennis
    • A63B49/02Frames
    • A63B49/12Frames made of metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4981Utilizing transitory attached element or associated separate material

Definitions

  • This invention relates to steel tennis racket frames and rackets made from them.
  • FIG. l is a plan view of a thin shaft tennis racket showing its principal parts
  • FIG. 2 is a plan view of a tennis racket showing the location of tests performed thereon;
  • FIGS. 3 to 7 illustrate cross-sections of steel tubes used for frames of rackets of this invention
  • FIGS. 8 to 11 illustrate the positioning and apparatus for a tennis racket while conducting distortion tests I to 4, respectively.
  • the ratio of the maximum external dimension of the tube cross-section throughout the frame on the axis perpendicular to the plane containing the racket frame (i.e., the major axis of the cross-section) to the maximum wall thickness of the tube at said cross-section (Relationship A) is at least 26, and I b.
  • the ratio of the external dimension of the tube cross-section throughout the frame on the axis perpendicular to and passing through the midpoint of said major axis (i.e., the minor axis of the cross-section) divided by the maximum wall thickness of the tube at said cross-section (Relationship B) is at least 13.
  • Relationship A is preferably in the range 26 to 52 and especially in the range 30 to 42; and Relationship B is preferably in the range 13 to 28 and especially in the range 20 to 28.
  • the racket frames of this invention are described hereinafter with reference to the use of twin shafts such as that shown in FIG. 1 of the accompanying drawings, but the invention is not limited to the use of twin shafts and, for example, a single shaft can be used.
  • a further aspect of the present invention is based on the discovery that a steel racket, if it is to be ofa desirable rigidity, should preferably have one or more of the following special characteristics as measured by physical tests described below with reference to FIG. 2 of the drawings and referred to respectively as distortion tests I, 2, 3 and 4. These tests are illustrated in FIGS. 8-11 respectively. All four tests are made on the frame, that is the racket before stringing; and tests 1, 2'and 3 should be made after the grip has been affixed to the frame. Test 4 may also, if desired, be made after the grip has been affixed to the frame.
  • a load W of 50 lbs is applied to the center of the head of the frame at a point L 14 inches from the edge of the clamp (i.e., 20 inches from the grip end) so that the head is deflected downwardly in a vertical direction.
  • the displacement d of the head, over length P, at the point H- is then measured.
  • the frame is clamped as in Test 1 and the head is twisted about the longitudinal axis of the handle but with no linear displacement.
  • the twisting couple T is applied on the line YZ by means of a counter weighted beam 13 fastened to the head, 14 inches from the clamp edge.
  • Loads are applied in opposite directions at positions Y and Z in the direction shown by the arrows to provide a torque of inch pound, and the angular displacement at of the frame is measured at line YZ.
  • the test measures torsional stiffness of the frame be tween the clamps.
  • the frame without strings is gripped between hooked jaws l4 and in a tension testing machine at l and .l.
  • a load is steadily applied to the frame in a direction opposed to the direction of tension normally exerted by the transverse strings.
  • the deflection X of the frame under the steadily increasing load is plotted in the form of a graph, and the load deflection ratio at a deflection value of one-tenth of an inch is calculated as load (lb)/deflection (inch).
  • steel rackets preferably have the following properties as measured by the distortion tests:
  • the vertical displacement of H is not more than 1% inches, preferably not more than 1% or 1 /2 inches.
  • the angular distortion of the head is not more than 4, preferably not more than 3.
  • The. vertical displacement of E is not more than 1% inches, preferably not more than 1% or 1 /2 inches.
  • the load deflection ratio is greater than 450.
  • FIG. 1 is a plan view of a tennis racket whose head A and twin shafts B are constituted by a single length of drawn steel tube whose cross-section is uniform along its whole length;
  • FIG. 2 is a diagrammatic representation of a racket of the invention to illustrate the various distortion tests;
  • FIGS. 3 to 7 are respectively cross-sections of steel tubes used for the frames.
  • Examples 1 to 4 refer respectively to four steel tennis rackets constructed in the form shown in FIG. 1 and having a cross-section at right-angles to the longitudinal axis of the tube, (for example on the line X-X) as shown respectively in FIGS. 3 to 6.
  • the cross-section of the tube of Example 1 (FIG. 3) is circular whereas that of Example 2 (FIG. 4) is oval.
  • the racket of Example I being constructed of a steel tube of circular cross-section has the same values for maximum and minimum (i.e., major and minor axes respectively) external dimensions, in each case being 0.625 inch.
  • the wall thickness is 0.023 inch.
  • Example 2 where the tube has an oval cross-section and a uniform wall thickness of 6 0.022 inch the relationships A and B are obtained as follows:
  • Relationship A 0.580/0.020 29.0
  • Relationship B 0.350/0 .0 20 l 7.5
  • Example 4 the cross-section of the tube is oval but in this instance the wall thickness varies between 0.025 inch and 0.010 inch.
  • the major axis external dimension is 0.680 inch and the minor axis external dimension is 0.450 inch.
  • Relationship B 0.4 50/0.025 18.0
  • EXAMPLE 5 There now follows, with reference to FIGS. 1 and 7 of the accompanying drawings, a description of the manufacture of a tennis racket according to a preferred embodiment of the invention from a length of steel alloy tubing of oval cross-section.
  • the major axis (external dimension) of the cross-section was 0.71 1 inch and the minor axis (minimum external dimension) was 0.497 inch.
  • the wall thickness of the tube was 0.018 inch.
  • a length of this tube 5 feet 1 inch long was first grooved along a length of 21 inches situated symmetrically in the middle of the tube length. This groove was l/16 inch wide and 3/32 inch deep.
  • the tube was filled with a molten bitumen supporting material which was allowed to solidify, and the tube was then bent into the shape of a racket frame so that the groove in the tu he now lay along the outer edge of the loop of the frame (A-FIG. 1). A series of holes were drilled in the loop, the edges of the holes then being deformed by indentation towards the interior of the tube to provide the stringing apertures. The bitumen support material was then melted and drained from the tube.
  • a bridge piece (C) having appropriate stringing apertures was prepared in a similar way to that described above and then brazed onto the frame loop to provide the head of the racket.
  • Two braces (D) were brazed between the parallel ends (B) of the frame, the upper brace being in such a position that when the wooden handle was subsequently applied, the top of the upper brace coincided with the top of the handle.
  • the frame was electroplated with chromium and nickel and then two, like wooden handle pieces were glued together about the handle end of the frame and then bound with leather to provide the handle.
  • the racket was completed by the insertion of nylon grommets into the stringing apertures and then strung in a conventional manner.
  • Test 1 1.1 inches deflection.
  • Test 2 2% degrees angular distortion.
  • Test 3 1.2 inches deflection.
  • a tennis racket frame of greater than conventional rigidity having a head, a throat, a handle portion and a grip at the end of said handle portion, said frame com.- prising a steel tube having a uniform maximum wall thickness and a cross-section measured at right-angles to its longitudinal axis such that,
  • the ratio of the maximum external dimension of the tube cross-section throughout the frame on a first axis perpendicular to the plane containing the racket frame (i.e., the major axis of the crosssection) to said maximum wall thickness of the tube at said cross-section (Relationship A) is at least 26, and
  • the ratio of the external dimension of the tube cross-section throughout the frame on a second axis perpendicular to and passing through the midpoint of said first perpendicular axis (i.e., the minor axis of the cross-section) to said maximum wall thickness of the tube at said cross-section (Relationship B) is at least 13,
  • said frame when subjected to distortion test 3 shows a vertical displacement of not more than 1 inches, said ratios existfined) shows a vertical displacement 1% inches.
  • a tennis racket frame according to claim 1 which when subjected to distortion test 1 (as hereinbefore defined) shows a vertical displacement of not more than 1% inches.
  • a tennis racket frame according to claim 1 which when subjected to distortion test 2 (as hereinbefore defined) shows (under a torque of inch pound) an angular distortion of not more than 4.
  • a tennis racket frame according to claim 1 which when subjected to distortion test 2 (as hereinbefore defined) shows (under a torque of 150 inch pound) an angular distortion of not more than 3 degrees.
  • a tennis racket obtained by stringing a frame as claimed in claim 1.

Abstract

The invention concerns tennis rackets whose frames are formed from steel tube (so called ''''steel tennis rackets'''') of enhanced rigidity which gives them superior playing properties. This rigidity can be obtained by choosing steel tube whose dimensions are as follows: (A) the maximum external dimension of the tube cross-section divided by the maximum wall thickness of the tube at the cross-section is at least 26; and (B) the minimum external dimension of the tube cross-section divided by the maximum wall thickness of the tube at the cross-section is at least 13. If the tube is of oval cross-section, the maximum external dimension of the cross-section is preferably in a direction transverse to the plane containing the racket frame, of which the following is a specification.

Description

llmted States Patent 1191 1111 mohaoz lllaines et a1. [45] M 7, 1974 TENNIS RACKETS AND FRAMES 3,086,777 4/1963 Lacoste 273/73 1-1 THEREFOR 3,431,626 3/1969 Carlton 273/73 H 3,582,073 6/1971 Melnick et al 273/73 H [75] Inventors: Robert C. Haines, Huddersfield;
John E. Barre, FOREIGN PATENTS OR APPLICATIONS Kingston on-Thames; Eric H, l6,9l4 7/l9l I Great Britain 273/73 H Stevens, Monk Bretton a of 346,001 4/1931 Great Britain 273/73 H England 8,112 5/1884 Great Britain 273/73 H I Assigneei Dunlop Holdings, Limlled, Primary Examiner-Richard C. Pinkham James London England Assistant Examiner-Richard J. Apley [22] Filed: Sept 5, 1972 Attorney, Agent, or Firm-Stevens, Davis, Miller and Mosher [21] Appl. No.: 286,001
Related US. Application Data ABSTRACT [63] continuatiommpan f s 39 Dec, 3 The invention concerns tennis rackets whose frames 1969, abandoned are formed from steel tube (so called steel tennis rackets") of enhanced rigidity which gives them supe- [30] Foreign Application Priority Data rior playing properties. This rigidity can be obtained Jan 30 1969 Great Britain h 367/69 by choosing steel tube whose dimensions are as follows: (A) the maximum external dimension of the 52 us. on. 273/73 (3, 273/73 H tube Cross-Section divided y the maximum Wall thick- 51 11m. (:1 A63b 49/12 Hess Of the tube at the Cross-section is at least 26; and [58] Field f searchm 2 3 73 R, 7 C, 7 D, 7 G, (B) the minimum external dimension of the tube 273/73 H cross-section divided by the maximum wall thickness of the tube at the cross-section is at least 13. If the 5 References Cited tube is of oval cross-section, the maximum external UNITED STATES PATENTS dimension of the cross-section is preferably in a direction transverse to the plane containing the racket its? 273/73 H frame, of which the following is a specification. 2,171,223 8/1939 Robinson 273/73 H 12 Claims, 11 Drawing Figures TEST NO. 3
P-METEW m4 3309.402 SHEET 2 HF A FIG] WT. MAX. WALL THICKNESS L MIN. EXT. DIA.
R H "l3 ELATIONS IP B W MAX. WALL THICKNESS PATENTEDMAY 71914 9402 I I sumuura TEST NO. 4
ll TENNIS RACKETS AND FRAMES THEREFOR This application is a continuation-in-part of our copending application Ser. No. 889,642 filed Dec. 31, I969 and now abandoned.
This invention relates to steel tennis racket frames and rackets made from them.
To illustrate this invention attention is directed to the attached drawings in which:
FIG. l is a plan view of a thin shaft tennis racket showing its principal parts;
FIG. 2 is a plan view of a tennis racket showing the location of tests performed thereon;
FIGS. 3 to 7 illustrate cross-sections of steel tubes used for frames of rackets of this invention;
FIGS. 8 to 11 illustrate the positioning and apparatus for a tennis racket while conducting distortion tests I to 4, respectively.
DESCRIPTION OF THE INVENTION During recent years considerable work has been done in the development of tennis rackets having steel frames, usually referred to simply as steel tennis rackets." These rackets are, for example, often in the form shown in FIG. I of the accompanying drawings, in which the head (A) and the twin shafts (B) are made from a length of hollow steel tube, and the frame is completed by means ofa bridge-piece (C) and a brace (D) which may or may not be made from the same type of tubing as used for the head and shafts. Hitherto, it has been believed that flexibility in the racket frame was a desirable feature, and indeed whippy" shafts have been acclaimed as an advantage of steel rackets over wooden rackets.
We have now found that conventional steel rackets are in fact not sufficiently rigid and that considerable improvement is obtained by using frames of increased rigidity. Our experiments have shown that during contact with a ball the conventional racket is distorted, particularly by bending along the longitudinal axis X-X (FIG. 1), and/or by twisting about this axis when the ball strikes the racket asymmetrically. Distortion of the racket in this way results in a reduced amount of energy being imparted to the ball by the racket because the strings are not caused to be elastically distorted to the same degree as would occur if the frame were more rigid. Moreover, in some instances the player experiences difficulty in hitting the ball accurately in the intended direction because the direction of flight of the ball on leaving the racket is effected by the angular distortion of the head of the racket.
However, recognition by us of these deficiencies of conventional steel rackets did not lead to a ready solution. To a large extent the difficulty lay in the need to retain the desirable playing qualities of the rackets and to avoid increasing the weight of the racket beyond what is acceptable by the players. It was also necessary, from a commercial aspect, that the racket should have an attractive appearance which will appeal to players, and this factor alone obviated several solutions to the problem which might otherwise have been possible.
We have now found according to the present invention that rackets of the necessary rigidity can be obtained by the use for the frame of steel tube having a particular cross-section. Thus, we have found that the dimensions ofa cross-section of the tube at right-angles to its longitudinal axis should be such that:
a. The ratio of the maximum external dimension of the tube cross-section throughout the frame on the axis perpendicular to the plane containing the racket frame (i.e., the major axis of the cross-section) to the maximum wall thickness of the tube at said cross-section (Relationship A) is at least 26, and I b. The ratio of the external dimension of the tube cross-section throughout the frame on the axis perpendicular to and passing through the midpoint of said major axis (i.e., the minor axis of the cross-section) divided by the maximum wall thickness of the tube at said cross-section (Relationship B) is at least 13. Relationship A is preferably in the range 26 to 52 and especially in the range 30 to 42; and Relationship B is preferably in the range 13 to 28 and especially in the range 20 to 28.
By way of example, the racket frames of this invention are described hereinafter with reference to the use of twin shafts such as that shown in FIG. 1 of the accompanying drawings, but the invention is not limited to the use of twin shafts and, for example, a single shaft can be used.
A further aspect of the present invention is based on the discovery that a steel racket, if it is to be ofa desirable rigidity, should preferably have one or more of the following special characteristics as measured by physical tests described below with reference to FIG. 2 of the drawings and referred to respectively as distortion tests I, 2, 3 and 4. These tests are illustrated in FIGS. 8-11 respectively. All four tests are made on the frame, that is the racket before stringing; and tests 1, 2'and 3 should be made after the grip has been affixed to the frame. Test 4 may also, if desired, be made after the grip has been affixed to the frame.
DISTORTION TEST 1 DEFLECTION OF HEAD WITH HANDLE CLAMPED (SEE FIG. 8).
The last 6 inches of the handle end of the frame is clamped firmly with the strings in a horizontal position.
Using a bridge attachment 12 a load W of 50 lbs is applied to the center of the head of the frame at a point L 14 inches from the edge of the clamp (i.e., 20 inches from the grip end) so that the head is deflected downwardly in a vertical direction. The displacement d of the head, over length P, at the point H-is then measured.
DISTORTION TEST 2 TWIST OF HEAD WITH HANDLE CLAMPED (SEE FIG. 9).
The frame is clamped as in Test 1 and the head is twisted about the longitudinal axis of the handle but with no linear displacement. The twisting couple T is applied on the line YZ by means ofa counter weighted beam 13 fastened to the head, 14 inches from the clamp edge. Loads are applied in opposite directions at positions Y and Z in the direction shown by the arrows to provide a torque of inch pound, and the angular displacement at of the frame is measured at line YZ. The test measures torsional stiffness of the frame be tween the clamps.
DISTORTION TEST 3 DEFLECTION OF HANDLE WITH HEAD CLAMPED (SEE FIG. 10).
The crown of the racket up to line PG (6 inches from H) is clamped firmly in a horizontalposition. A load W of 20 lbs is applied at the end E of the handle and the DISTORTION TEST 4 DISTORTION OF HEAD IN PLANE OF STRINGS (SEE FIG. 11).
The frame without strings is gripped between hooked jaws l4 and in a tension testing machine at l and .l.
A load is steadily applied to the frame in a direction opposed to the direction of tension normally exerted by the transverse strings. The deflection X of the frame under the steadily increasing load is plotted in the form of a graph, and the load deflection ratio at a deflection value of one-tenth of an inch is calculated as load (lb)/deflection (inch).
According to a further aspect of the invention, steel rackets preferably have the following properties as measured by the distortion tests:
1. Distortion Test 1.
The vertical displacement of H is not more than 1% inches, preferably not more than 1% or 1 /2 inches.
2. Distortion Test 2.
Under a torque of 150 inch pound the angular distortion of the head is not more than 4, preferably not more than 3.
3. Distortion Test 3.
The. vertical displacement of E is not more than 1% inches, preferably not more than 1% or 1 /2 inches.
4.,Distortion Test 4.
The load deflection ratio is greater than 450.
The invention is illustrated in the following examples with reference to the accompanying drawings. In the drawings'FlG. I is a plan view ofa tennis racket whose head A and twin shafts B are constituted by a single length of drawn steel tube whose cross-section is uniform along its whole length; FIG. 2 is a diagrammatic representation of a racket of the invention to illustrate the various distortion tests; and FIGS. 3 to 7 are respectively cross-sections of steel tubes used for the frames EXAMPLES Examples 1 to 4 refer respectively to four steel tennis rackets constructed in the form shown in FIG. 1 and having a cross-section at right-angles to the longitudinal axis of the tube, (for example on the line X-X) as shown respectively in FIGS. 3 to 6. Thus, for example, the cross-section of the tube of Example 1 (FIG. 3) is circular whereas that of Example 2 (FIG. 4) is oval.
The racket of Example I, being constructed ofa steel tube of circular cross-section has the same values for maximum and minimum (i.e., major and minor axes respectively) external dimensions, in each case being 0.625 inch. The wall thickness is 0.023 inch. Thus, both relationships A and B are obtained by the expression: 0.625/0.023 27.2
In Example 2 (see FIG. 4), where the tube has an oval cross-section and a uniform wall thickness of 6 0.022 inch the relationships A and B are obtained as follows:
Relationship A Major axis external dimension/maximum wall thickness 0.700/0.022 31.8 Relationship B Minor axis external dimension/maximum wall thickness In Example 3 (see FIG. 5), where the wall thickness is 0.020 inch the major axis external dimension is 0.580 and the minor axis external dimension is 0.350 inch.
Thus Relationship A 0.580/0.020 29.0 Relationship B 0.350/0 .0 20 l 7.5
In Example 4 (FIG. 6) the cross-section of the tube is oval but in this instance the wall thickness varies between 0.025 inch and 0.010 inch. The major axis external dimension is 0.680 inch and the minor axis external dimension is 0.450 inch.
Thus Relationship A 0.680/0.025 27.2
Relationship B 0.4 50/0.025 18.0
EXAMPLE 5 There now follows, with reference to FIGS. 1 and 7 of the accompanying drawings, a description of the manufacture of a tennis racket according to a preferred embodiment of the invention from a length of steel alloy tubing of oval cross-section. The major axis (external dimension) of the cross-section was 0.71 1 inch and the minor axis (minimum external dimension) was 0.497 inch. The wall thickness of the tube was 0.018 inch. A length of this tube 5 feet 1 inch long was first grooved along a length of 21 inches situated symmetrically in the middle of the tube length. This groove was l/16 inch wide and 3/32 inch deep. The tube was filled with a molten bitumen supporting material which was allowed to solidify, and the tube was then bent into the shape of a racket frame so that the groove in the tu he now lay along the outer edge of the loop of the frame (A-FIG. 1). A series of holes were drilled in the loop, the edges of the holes then being deformed by indentation towards the interior of the tube to provide the stringing apertures. The bitumen support material was then melted and drained from the tube.
A bridge piece (C) having appropriate stringing apertures was prepared in a similar way to that described above and then brazed onto the frame loop to provide the head of the racket. Two braces (D) were brazed between the parallel ends (B) of the frame, the upper brace being in such a position that when the wooden handle was subsequently applied, the top of the upper brace coincided with the top of the handle.
The frame was electroplated with chromium and nickel and then two, like wooden handle pieces were glued together about the handle end of the frame and then bound with leather to provide the handle. The racket was completed by the insertion of nylon grommets into the stringing apertures and then strung in a conventional manner.
The racket frame of Example 5, before stringing, was subjected to distortion test 1, 2, 3 and 4, and the following results were obtained:
Test 1: 1.1 inches deflection.
Test 2: 2% degrees angular distortion.
Test 3: 1.2 inches deflection.
Test 4: 580 load deflection ratio.
ing uniformly throughout the length of said frame.
2. A frame according to claim 1, in which Relationship A is in the range 26 to'52.
3. A frame according to claim 1, in which Relationship B is in the range 13 to 28.
4. A tennis racket frame according to claim 1, which when subjected to distortion test 3 (as hereinbefore defined) shows a vertical displacement of not morethan 1% inches.
5. A tennis racket frame according toclaim l, which when subjected to distortion test 1 (as hereinbefore de- Maximum Minimum Maximum External External Wall Example Figure Dimension Dimension Thickness Relationship Relationship B A No. No.
- (inch) (inch) (inch) (major axis) (minor axis) 1 3 0.625 0.625 0.023 27.2 27.2 2 4 0.700 0.500 0.022 3 l .8 22.7 .1 5 0.580 0.350 01020 29.0 [715 4 6 (L680 0.450 0.025 27.2 NH) 5 7 0.7ll 0.497 0.018 39.5 27.6
We claim:
1. A tennis racket frame of greater than conventional rigidity having a head, a throat, a handle portion and a grip at the end of said handle portion, said frame com.- prising a steel tube having a uniform maximum wall thickness and a cross-section measured at right-angles to its longitudinal axis such that,
a. the ratio of the maximum external dimension of the tube cross-section throughout the frame on a first axis perpendicular to the plane containing the racket frame (i.e., the major axis of the crosssection) to said maximum wall thickness of the tube at said cross-section (Relationship A) is at least 26, and
b. the ratio of the external dimension of the tube cross-section throughout the frame on a second axis perpendicular to and passing through the midpoint of said first perpendicular axis (i.e., the minor axis of the cross-section) to said maximum wall thickness of the tube at said cross-section (Relationship B) is at least 13,
and said frame when subjected to distortion test 3 (as hereinbefore defined) shows a vertical displacement of not more than 1 inches, said ratios existfined) shows a vertical displacement 1% inches.
6. A tennis racket frame according to claim 1, which when subjected to distortion test 1 (as hereinbefore defined) shows a vertical displacement of not more than 1% inches.
7. A tennis racket frame according to claim 1, which when subjected to distortion test 2 (as hereinbefore defined) shows (under a torque of inch pound) an angular distortion of not more than 4.
8. A tennis racket frame according to claim 1, which when subjected to distortion test 2 (as hereinbefore defined) shows (under a torque of 150 inch pound) an angular distortion of not more than 3 degrees.
9. A tennis racket frame according to claim 1, which when subjected to distortion test 4 (as hereinbefore defined) shows a load deflection ratio greater than 450.
of not more than 10. A tennis racket frame according to claim 1, in which the tube is of circular cross-section.
l1. Atennis racket frame according to claim 1, in which the tube is of oval cross-section.
12. A tennis racket obtained by stringing a frame as claimed in claim 1.

Claims (12)

1. A tennis racket frame of greater than conventional rigidity having a head, a throat, a handle portion and a grip at the end of said handle portion, said frame comPrising a steel tube having a uniform maximum wall thickness and a cross-section measured at right-angles to its longitudinal axis such that, a. the ratio of the maximum external dimension of the tube cross-section throughout the frame on a first axis perpendicular to the plane containing the racket frame (i.e., the major axis of the cross-section) to said maximum wall thickness of the tube at said cross-section (Relationship A) is at least 26, and b. the ratio of the external dimension of the tube cross-section throughout the frame on a second axis perpendicular to and passing through the midpoint of said first perpendicular axis (i.e., the minor axis of the cross-section) to said maximum wall thickness of the tube at said cross-section (Relationship B) is at least 13, and said frame when subjected to distortion test 3 (as hereinbefore defined) shows a vertical displacement of not more than 1 3/4 inches, said ratios existing uniformly throughout the length of said frame.
2. A frame according to claim 1, in which Relationship A is in the range 26 to 52.
3. A frame according to claim 1, in which Relationship B is in the range 13 to 28.
4. A tennis racket frame according to claim 1, which when subjected to distortion test 3 (as hereinbefore defined) shows a vertical displacement of not more than 1 1/4 inches.
5. A tennis racket frame according to claim 1, which when subjected to distortion test 1 (as hereinbefore defined) shows a vertical displacement of not more than 1 3/4 inches.
6. A tennis racket frame according to claim 1, which when subjected to distortion test 1 (as hereinbefore defined) shows a vertical displacement of not more than 1 1/4 inches.
7. A tennis racket frame according to claim 1, which when subjected to distortion test 2 (as hereinbefore defined) shows (under a torque of 150 inch pound) an angular distortion of not more than 4*.
8. A tennis racket frame according to claim 1, which when subjected to distortion test 2 (as hereinbefore defined) shows (under a torque of 150 inch pound) an angular distortion of not more than 3 degrees.
9. A tennis racket frame according to claim 1, which when subjected to distortion test 4 (as hereinbefore defined) shows a load deflection ratio greater than 450.
10. A tennis racket frame according to claim 1, in which the tube is of circular cross-section.
11. A tennis racket frame according to claim 1, in which the tube is of oval cross-section.
12. A tennis racket obtained by stringing a frame as claimed in claim 1.
US00286001A 1969-01-02 1972-09-05 Tennis rackets and frames therefor Expired - Lifetime US3809402A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US00286001A US3809402A (en) 1969-01-02 1972-09-05 Tennis rackets and frames therefor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB36769 1969-01-02
US88964269A 1969-12-31 1969-12-31
US00286001A US3809402A (en) 1969-01-02 1972-09-05 Tennis rackets and frames therefor

Publications (1)

Publication Number Publication Date
US3809402A true US3809402A (en) 1974-05-07

Family

ID=27253708

Family Applications (1)

Application Number Title Priority Date Filing Date
US00286001A Expired - Lifetime US3809402A (en) 1969-01-02 1972-09-05 Tennis rackets and frames therefor

Country Status (1)

Country Link
US (1) US3809402A (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2382243A1 (en) * 1977-03-01 1978-09-29 Lafourcade Paul Tennis racket with filled tubular frame - has rectangular hollow section member bent into part head frame with two legs forming handle core
US4119313A (en) * 1975-07-12 1978-10-10 Dunlop Limited Games racquets
DE2817595A1 (en) * 1977-04-22 1978-11-09 Hitachi Ltd IGNITION SYSTEM FOR MULTICYLINDER PISTON COMBUSTION MACHINE
US4165071A (en) * 1976-01-05 1979-08-21 Frolow Jack L Tennis racket
US4176841A (en) * 1974-04-10 1979-12-04 Reinhold Sommer Tennis racket
US4192505A (en) * 1977-11-07 1980-03-11 Pepsico, Inc. Game racket
WO1980002510A1 (en) * 1979-05-17 1980-11-27 J Frolow Tennis racket
US4291574A (en) * 1976-01-05 1981-09-29 Frolow Jack L Tennis racket
US4299348A (en) * 1977-08-26 1981-11-10 Mansei Kogyo Kabushiki Kaisha Method of making a game racket
USRE31419E (en) * 1976-01-05 1983-10-18 Tennis racket
US4440392A (en) * 1978-03-07 1984-04-03 Dunlop Limited One piece molded games racket
US4664380A (en) * 1984-09-22 1987-05-12 Siegfried Kuebler Racket having thickened shaft portion
US4768786A (en) * 1986-10-17 1988-09-06 Siegfried Kuebler Tennis racket
US4919438A (en) * 1988-01-23 1990-04-24 Yonex Kabushiki Kaisha Tennis racket
US4936570A (en) * 1983-11-09 1990-06-26 Schwinn Bicycle Company Box beam bicycle type frame
US5014987A (en) * 1982-09-27 1991-05-14 Soong Tsai C Frame for sports racket
US5037098A (en) * 1988-04-06 1991-08-06 Prince Manufacturing, Inc. Tennis racquet with tapered profile frame
US5076583A (en) * 1990-08-21 1991-12-31 Sportstech Industries (U.S. Tech) Inc. Racket frame with circular cross section and variable thickness
US5540434A (en) * 1990-08-21 1996-07-30 Wilson Sporting Goods Co. Tennis racket
US5716304A (en) * 1996-05-07 1998-02-10 Greenmaster Industrial Corp. Elliptical frame structure for exercise bikes
US5810683A (en) * 1996-12-23 1998-09-22 Prince Sports Group, Inc. Morph frame for sports racquet
US20020155929A1 (en) * 1997-02-18 2002-10-24 Lull Andrew P. Exercise bicycle frame
US20020160887A1 (en) * 1997-02-18 2002-10-31 Patrick Warner Free wheel clutch mechanism for bicycle drive train
USD473273S1 (en) 2002-03-06 2003-04-15 Nautilus, Inc. Exercise bicycle handlebar
USD474252S1 (en) 1997-02-18 2003-05-06 Nautilus, Inc. Exercise bicycle frame
US6557679B1 (en) 1997-02-18 2003-05-06 Nautilus, Inc. Free wheel clutch mechanism for bicycle drive train
US20030224911A1 (en) * 1997-02-18 2003-12-04 Patrick Warner Free wheel clutch mechanism for bicycle drive train
US7172532B2 (en) 2001-01-19 2007-02-06 Nautilus, Inc. Exercise device tubing
US10328316B1 (en) 2018-03-12 2019-06-25 Wilson Sporting Goods Co. Racquet configured with increased flexibility in multiple directions with respect to a longitudinal axis

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB191116914A (en) * 1911-07-24 1912-05-23 Harold Cordrey Improvements in Tennis Racquets and the like.
US1486330A (en) * 1922-06-15 1924-03-11 American Magnesium Corp Tennis racket or the like
GB346001A (en) * 1930-01-01 1931-04-01 William Henry Clinkard Improvements in and relating to tennis and like racquets
US2164631A (en) * 1937-01-16 1939-07-04 Abell Rollin Racket
US2171223A (en) * 1937-12-02 1939-08-29 Roy H Robinson Racket for tennis and batting games and method of manufacturing same
US3086777A (en) * 1960-03-30 1963-04-23 Lacoste Jean Rene Racket for lawn-tennis and similar games
US3431626A (en) * 1966-06-13 1969-03-11 William C Carlton Method of making a racket frame
US3582073A (en) * 1968-06-20 1971-06-01 Midland Merchandise Corp Cast metal racquet with offcenter string guides

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB191116914A (en) * 1911-07-24 1912-05-23 Harold Cordrey Improvements in Tennis Racquets and the like.
US1486330A (en) * 1922-06-15 1924-03-11 American Magnesium Corp Tennis racket or the like
GB346001A (en) * 1930-01-01 1931-04-01 William Henry Clinkard Improvements in and relating to tennis and like racquets
US2164631A (en) * 1937-01-16 1939-07-04 Abell Rollin Racket
US2171223A (en) * 1937-12-02 1939-08-29 Roy H Robinson Racket for tennis and batting games and method of manufacturing same
US3086777A (en) * 1960-03-30 1963-04-23 Lacoste Jean Rene Racket for lawn-tennis and similar games
US3431626A (en) * 1966-06-13 1969-03-11 William C Carlton Method of making a racket frame
US3582073A (en) * 1968-06-20 1971-06-01 Midland Merchandise Corp Cast metal racquet with offcenter string guides

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4176841A (en) * 1974-04-10 1979-12-04 Reinhold Sommer Tennis racket
US4119313A (en) * 1975-07-12 1978-10-10 Dunlop Limited Games racquets
USRE31419E (en) * 1976-01-05 1983-10-18 Tennis racket
US4165071A (en) * 1976-01-05 1979-08-21 Frolow Jack L Tennis racket
US4291574A (en) * 1976-01-05 1981-09-29 Frolow Jack L Tennis racket
FR2382243A1 (en) * 1977-03-01 1978-09-29 Lafourcade Paul Tennis racket with filled tubular frame - has rectangular hollow section member bent into part head frame with two legs forming handle core
DE2817595A1 (en) * 1977-04-22 1978-11-09 Hitachi Ltd IGNITION SYSTEM FOR MULTICYLINDER PISTON COMBUSTION MACHINE
US4299348A (en) * 1977-08-26 1981-11-10 Mansei Kogyo Kabushiki Kaisha Method of making a game racket
US4192505A (en) * 1977-11-07 1980-03-11 Pepsico, Inc. Game racket
US4440392A (en) * 1978-03-07 1984-04-03 Dunlop Limited One piece molded games racket
WO1980002510A1 (en) * 1979-05-17 1980-11-27 J Frolow Tennis racket
US5014987A (en) * 1982-09-27 1991-05-14 Soong Tsai C Frame for sports racket
US4936570A (en) * 1983-11-09 1990-06-26 Schwinn Bicycle Company Box beam bicycle type frame
US4664380A (en) * 1984-09-22 1987-05-12 Siegfried Kuebler Racket having thickened shaft portion
US4768786A (en) * 1986-10-17 1988-09-06 Siegfried Kuebler Tennis racket
US4919438A (en) * 1988-01-23 1990-04-24 Yonex Kabushiki Kaisha Tennis racket
US5037098A (en) * 1988-04-06 1991-08-06 Prince Manufacturing, Inc. Tennis racquet with tapered profile frame
US5076583A (en) * 1990-08-21 1991-12-31 Sportstech Industries (U.S. Tech) Inc. Racket frame with circular cross section and variable thickness
US5540434A (en) * 1990-08-21 1996-07-30 Wilson Sporting Goods Co. Tennis racket
US5716304A (en) * 1996-05-07 1998-02-10 Greenmaster Industrial Corp. Elliptical frame structure for exercise bikes
US5810683A (en) * 1996-12-23 1998-09-22 Prince Sports Group, Inc. Morph frame for sports racquet
USD474252S1 (en) 1997-02-18 2003-05-06 Nautilus, Inc. Exercise bicycle frame
US7413530B2 (en) 1997-02-18 2008-08-19 Nautilus, Inc. Frame for an exercise bicycle
US7591765B2 (en) 1997-02-18 2009-09-22 Nautilus, Inc. Free wheel clutch mechanism for bicycle drive train
US20020155929A1 (en) * 1997-02-18 2002-10-24 Lull Andrew P. Exercise bicycle frame
US6557679B1 (en) 1997-02-18 2003-05-06 Nautilus, Inc. Free wheel clutch mechanism for bicycle drive train
US6641507B1 (en) 1997-02-18 2003-11-04 Nautilus, Inc. Free wheel clutch mechanism for bicyclic drive train
US20030224911A1 (en) * 1997-02-18 2003-12-04 Patrick Warner Free wheel clutch mechanism for bicycle drive train
US20050221962A1 (en) * 1997-02-18 2005-10-06 Nautilus, Inc. Free wheel clutch mechanism for bicycle drive train
US20070004564A9 (en) * 1997-02-18 2007-01-04 Patrick Warner Free wheel clutch mechanism for bicycle drive train
US7569001B2 (en) 1997-02-18 2009-08-04 Nautilus, Inc. Free wheel clutch mechanism for bicycle drive train
US7175570B2 (en) 1997-02-18 2007-02-13 Nautilus, Inc. Exercise bicycle frame
US7488275B2 (en) 1997-02-18 2009-02-10 Nautilus, Inc. Free wheel clutch mechanism for bicycle drive train
US20020160887A1 (en) * 1997-02-18 2002-10-31 Patrick Warner Free wheel clutch mechanism for bicycle drive train
US7364533B2 (en) 2001-01-19 2008-04-29 Nautilus, Inc. Adjustment assembly for exercise device
US7226393B2 (en) 2001-01-19 2007-06-05 Nautilus, Inc. Exercise bicycle
US7172532B2 (en) 2001-01-19 2007-02-06 Nautilus, Inc. Exercise device tubing
US7771325B2 (en) 2001-01-19 2010-08-10 Nautilus, Inc. Exercise bicycle
USD473273S1 (en) 2002-03-06 2003-04-15 Nautilus, Inc. Exercise bicycle handlebar
EP3539623A1 (en) * 2018-03-12 2019-09-18 Wilson Sporting Goods Co. Racquet configured with increased flexibility in multiple directions with respect to a longitudinal axis
US10328316B1 (en) 2018-03-12 2019-06-25 Wilson Sporting Goods Co. Racquet configured with increased flexibility in multiple directions with respect to a longitudinal axis
JP2019155060A (en) * 2018-03-12 2019-09-19 ウィルソン・スポーティング・グッズ・カンパニーWilson Sporting Goods Company Racquet configured with increased flexibility in multiple directions with respect to longitudinal axis
US10646753B2 (en) 2018-03-12 2020-05-12 Wilson Sporting Goods Co. Racquet configured with increased flexibility in multiple directions with respect to a longitudinal axis
US10653924B2 (en) 2018-03-12 2020-05-19 Wilson Sporting Goods Co. Racquet configured with increased flexibility in multiple directions with respect to a longitudinal axis
US10751581B2 (en) 2018-03-12 2020-08-25 Wilson Sporting Goods Co. Racquet configured with increased flexibility in multiple directions with respect to a longitudinal axis
US10946253B2 (en) 2018-03-12 2021-03-16 Wilson Sporting Goods Co. Racquet configured with increased flexibility in multiple directions with respect to a longitudinal axis
EP4059579A1 (en) * 2018-03-12 2022-09-21 Wilson Sporting Goods Co. Racquet configured with increased flexibility in multiple directions with respect to a longitudinal axis
US11541282B2 (en) 2018-03-12 2023-01-03 Wilson Sporting Goods Co. Racquet configured with increased flexibility in multiple directions with respect to a longitudinal axis

Similar Documents

Publication Publication Date Title
US3809402A (en) Tennis rackets and frames therefor
EP0429533B1 (en) Sports racket
US3999756A (en) Tennis racket
US5547426A (en) Progressive golf club having a diagonally balanced slot back
US3647211A (en) Plastic tennis racket having predetermined cross sections effecting flexibility
US4165071A (en) Tennis racket
US4192505A (en) Game racket
US3814423A (en) Racquet construction and method of making same
US4333650A (en) String load apportioned racket
US5071124A (en) Badminton racquet
US20140274495A1 (en) Tennis racket
JPH04244175A (en) Tennis racket
US5368295A (en) Tennis racket
GB2056288A (en) Long string racket
US5346212A (en) Racket for ball games and string portion or string therefor
US4903967A (en) Racket frame having holes for tailoring frame stiffness
US20010031676A1 (en) Racket strung in double diagonal stringing pattern with frame markings and method
US4367874A (en) Tennis racquet and method of making same
GB190914397A (en) Improvements in Tennis Racquets, Bats or the like.
JPH0515617A (en) Tennis racket frame
JP3446166B2 (en) racket
EP0714681A1 (en) Aerodynamic tennis racquet
JP2726229B2 (en) racket
JPH03170174A (en) Tennis racket, its frame and netting of said frame with string
JP3114650B2 (en) Racket frame