US3806945A - Stripline antenna - Google Patents

Stripline antenna Download PDF

Info

Publication number
US3806945A
US3806945A US00366840A US36684073A US3806945A US 3806945 A US3806945 A US 3806945A US 00366840 A US00366840 A US 00366840A US 36684073 A US36684073 A US 36684073A US 3806945 A US3806945 A US 3806945A
Authority
US
United States
Prior art keywords
ground planes
slots
stripline
slot
radiating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00366840A
Inventor
D Proctor
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Department of Navy
Original Assignee
US Department of Navy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by US Department of Navy filed Critical US Department of Navy
Priority to US00366840A priority Critical patent/US3806945A/en
Application granted granted Critical
Publication of US3806945A publication Critical patent/US3806945A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • H01Q13/106Microstrip slot antennas

Definitions

  • a stripline slotradiator for use as a flush-mounted element of a multi-function, multi-frequency, array an- Cl 343/725 343/767 343/776 tenna structure.
  • a radiating slot is etched on opposite 333/84 M sides of both ground planes of stripline board. Radia- Ilft. Cl. tion from the central conductor Strip is restricted to [58] Field of Search 343/725, 729 767, 776, one Slot only by enclosing other Slot in a cavity 343/784 333/84 M whose sides are left open to preserve the TEM sup- [56] e e e ce Cited ported by the stripline.
  • multi-function, multifrequency antenna structures are currently being utilized to perform, for example, radar, EW and IFF functions.
  • Such structures comprise microwave antenna elements interlaced so as to have a common aperture and are of the type disclosed generally in U.S. Pat. No. 3,623,11 1.
  • Theoretical and physical considerations restrict the types of elements that can be used for interlacing. For example, printed circuit dipoles can protrude from the aperture and thereby seriously shadow other radiating elements.
  • Waveguide elements are cumbersome and expensive, especially in D-band and F-band.
  • Flush-mounted elements however offer several advantages which merit their use in such structures, as will become apparent hereinafter.
  • a stripline radiating element for use in multifunction, multi-frequency antenna arrays is disclosed.
  • the element is constructed from strip transmission line by symmetrically etching a slot, for radiation therefrom, in one of the two ground planes of the stripline.
  • a similar slot is formed in the opposite ground plane to achieve a balanced electrical condition in the stripline.
  • this slot is enclosed in a cavity to prevent radiation therefrom, whereby energy is radiated from the slot which is left open to the atmosphere.
  • the resulting element radiates substantially maximum power available, and can be readily interlaced with F-band, I-band, and other radiating elements in integrated array antenna structures.
  • Another object is to provide an antenna element comprising stripline having slots on both ground planes thereof, one of which is cavity backed to allow radiation from one slot only.
  • FIG. 1 is a cross-sectional view of conventional strip.-
  • FIG. 2 is a cross-sectional view of a D-band element embodying the inventive concept
  • FIG. 3 is a front view (not sectional) of the D-band element of FIG. 2;
  • FIG. 4 is a simplified illustration of a multi-frequency antenna array consisting of interlaced radiating elements, including the D-band element of FIG. 2.
  • the antenna structure can typically comprise an interlaced array 24 comprising. various radiating elements as shown in FIG. 4.
  • a D-band element 22 is interlaced with a plurality of F-band elements 26 in the array.
  • Another section of the array could contain I-band elements
  • the D-band portion will accommodate IFF functions whereas the F-band portion will provide coverage for a three-dimensional tracking.
  • the I-band array can be used to provide surface search, EW, or SATCOM coverage. It should be understood that the array of FIG. 4 is merely exemplary and that other arrays could be constructed in accordance with the concept to be disclosed herein.
  • the array of FIG 4 could be constructed consisting of 128 F-band elements arranged in eight rows of 16 elements each. Interlaced between the F-band elements would be twelve D-band elements arranged in two rows of six elements each. One section of the F-band array elements could be deleted and a module of 16 I-band elements inserted therefor.
  • stripline A strip transmission line sandwich, commonly called stripline, is shown in cross-section in FIG. 1.
  • the stripline comprises a flat conducting strip 10 located between and parallel to two conducting ground planes 12.
  • the stripline circuit is constructed by printing the conducting strip on one side of a section of a first, copper-clad, dielectric board. A slot for radiating energy is etched on the opposite side of the same board.
  • the first board is combined with a similar second board with the copper removed from one side.
  • the two boards are thermally bonded to form the finished stripline sandwich shown in FIG. 1.
  • Metal screws (not shown) are finally inserted to short the two ground planes together to prevent the generation of spurious and higher order modes. If the conducting strip is small relative to the ground planes, the electric field is almost entirely confined in the dielectric, and the mode propagated in the TEM mode. I f
  • FIG. 2 represents a cross-sectional view of a D-band radiating element comprising a stripline device as shown in FIG. 1, but having slots etched on both ground planes 14.
  • the slots 22 will radiate efficiently when the conductor 16 is properly excited by energy applied to the coaxial input 20.
  • the inner conductor of the coaxial input is connected to the strip 16 and the outer conductor is bonded to the ground plane 14.
  • a stripline in a sense, comprises a balanced circuit which supports the TEM mode. Accordingly, a slot is cut (etched) in both ground planes 14 to prevent unbalance; however, two slots permits radiation from both slots.
  • the opposite slot is enclosed in a cavity structure 26 as shown in FIG. 2.
  • the cavity 26 is approximately a quarter-wavelength ()t/4) long and approximately doubles the slot impedance.
  • the sides of the cavity are left open to preserve the TEM mode, and when the slot is filled with a dielectric, the slot length is increased.
  • the conductive strip 16 extends )t/4 above the slot 22 and the bottom length of the ground plane 14 below the slot 22.
  • FIG. 3 is a front view of the Dband radiating element of FIG. 2 (not sectional). In FIG. 3, the radiating slot 22 can be clearly seen. The center strip or conductor 16 is shown in dashed lines. From FIGS. 2 and 3, it can be seen that the device can be readily utilized in a flushmounted manner.
  • Each of the F-band elements 26 of FIG. 4 comprises a rectangular waveguide fed by a probe in a conventional manner.
  • the waveguide is cut off and terminated at one end in a metallic back plate so as to form a cavity.
  • the probe is introduced from the back wall to facilitate array assembly.
  • the depth of the rectangle and the two length dimensions and the diameter of the probe were adjusted empirically to obtain a matched input impedance for the coaxial line.
  • the width and height are chosen to support the TE dominant waveguide mode and to insure linear polarization.
  • stripline antennas for use in multi-function, multi-frequency antennas.
  • Such elements are lightweight, relatively inexpensive to manufacture, and can be readily flush-mounted in multi-frequency antenna arrays comprising interlaced radiating elements.
  • Stripline slot radiators as disclosed are practical to use and readily constructed for use at microwave frequencies. The simplicity of their design and their ease of flush-mounting make them ideal elements for integrated antenna arrays.
  • a microwave radiating element comprising stripline board means having radiating slots etched in both ground planes thereof in a symmetrical manner with respect to each other and said board, cavity means enclosing one of said slots, and means connected to said board for applying microwave energy to said board for radiation thereof from said slot.
  • ground planes comprise parallel, flat plates, rigidly supported with respect to each other, and being separated from each other by a dielectric material, and wherein said energy is applied to a conducting strip positioned and rigidly supported between said ground planes.
  • a D-band radiating element comprising a rectangular stripline block having two, parallel, flat ground planes, a layer of dielectric material sandwiched between said ground planes, a conducting strip symmetrically positioned between said planes, each of said planes having a radiating slot etched thereupon, said strip extending M4 above said slots and extending the length of said ground'planes below said slots, cavity means enclosing one of said slots, said cavity means being )t/4 long, and coaxial means for energizing said conducting strip to radiate energy from the unenclosed slot, said coaxial means including an inner conductor connected to said strip and an outer conductor connected to one of said ground planes.
  • An integrated function antenna array comprising a substantially rectangular unitary structure comprising a plurality of columns of end-fed rectangular waveguides, said columns being disposed and rigidly supported in a contiguous manner with respect to each other, said waveguides being flush-mounted with respect to the front end of said unitary structure, radiating element means comprising a substantially rectangular block of stripline having radiating slots symmetrically etched on both ground planes thereof, cavitybacked means attached to one of said slots, said radiating element means being interlaced in a symmetrical manner with respect to said waveguides, and coaxial means connected to said block for applying energy to be radiated therefrom.

Abstract

A stripline slot radiator for use as a flush-mounted element of a multi-function, multi-frequency, array antenna structure. A radiating slot is etched on opposite sides of both ground planes of stripline board. Radiation from the central conductor strip is restricted to one slot only by enclosing the other slot in a cavity whose sides are left open to preserve the TEM supported by the stripline.

Description

United States Patent 91 Proctor Apr. 23, 1974 STRIPLINE ANTENNA Prima ExaminerEli Lieberman :PtSD,Clf. [75] Inventor Davld me an M Attorney, Agent, or Firm-R. S. Sciasc1a; G. J. Rubens; [73} Assignee: The United States of America as J W, M Lar represented by the Secretary of the Navy, Washington, DC.
[22] Filed: June 4, 1973 57 R C [21] App]. No.2 366,840
A stripline slotradiator for use as a flush-mounted element of a multi-function, multi-frequency, array an- Cl 343/725 343/767 343/776 tenna structure. A radiating slot is etched on opposite 333/84 M sides of both ground planes of stripline board. Radia- Ilft. Cl. tion from the central conductor Strip is restricted to [58] Field of Search 343/725, 729 767, 776, one Slot only by enclosing other Slot in a cavity 343/784 333/84 M whose sides are left open to preserve the TEM sup- [56] e e e ce Cited ported by the stripline.
UNITED STATES PATENTS 4 Claims, 4 Drawing Figures 3,665,480 5/1972 Fassett 343/769 I v l4 l8 4 i Z I 2 2 Z 2 26 v j /-J Z i Z i I I I I 7,111
I r I z i 2O STRIPLINE ANTENNA BACKGROUND OF THE INVENTION In an electronic system environment such as topside on naval ships, the performance of sensor and communication systems is increasingly being degraded by the number of antenna structures required to be located thereupon. Accordingly, multi-function, multifrequency antenna structures are currently being utilized to perform, for example, radar, EW and IFF functions. Such structures comprise microwave antenna elements interlaced so as to have a common aperture and are of the type disclosed generally in U.S. Pat. No. 3,623,11 1. Theoretical and physical considerations restrict the types of elements that can be used for interlacing. For example, printed circuit dipoles can protrude from the aperture and thereby seriously shadow other radiating elements. Waveguide elements are cumbersome and expensive, especially in D-band and F-band. Flush-mounted elements however offer several advantages which merit their use in such structures, as will become apparent hereinafter.
SUMMARY OF THE INVENTION A stripline radiating element for use in multifunction, multi-frequency antenna arrays is disclosed. The element is constructed from strip transmission line by symmetrically etching a slot, for radiation therefrom, in one of the two ground planes of the stripline. A similar slot is formed in the opposite ground plane to achieve a balanced electrical condition in the stripline. However, this slot is enclosed in a cavity to prevent radiation therefrom, whereby energy is radiated from the slot which is left open to the atmosphere. The resulting element radiates substantially maximum power available, and can be readily interlaced with F-band, I-band, and other radiating elements in integrated array antenna structures.
OBJECTS OF THE INVENTION It is the primary object of the present invention to provide a stripline radiating element which can be used in a flush-mounted manner as a component of an integrated structure function antenna structure.
Another object is to provide an antenna element comprising stripline having slots on both ground planes thereof, one of which is cavity backed to allow radiation from one slot only.
Other objects, advantages and novel features of the invention will become apparent from the following detailed description of the invention when considered in conjunction with the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view of conventional strip.-
line;
FIG. 2 is a cross-sectional view of a D-band element embodying the inventive concept;
FIG. 3 is a front view (not sectional) of the D-band element of FIG. 2; and, I
FIG. 4 is a simplified illustration of a multi-frequency antenna array consisting of interlaced radiating elements, including the D-band element of FIG. 2.
DESCRIPTION OF THE PREFERRED EMBODIMENT radiating element of a multi-function antenna array designed to operate in the D and Ffrequency bands. The antenna structure can typically comprise an interlaced array 24 comprising. various radiating elements as shown in FIG. 4. In the array shown, a D-band element 22 is interlaced with a plurality of F-band elements 26 in the array. Another section of the array could contain I-band elements The D-band portion will accommodate IFF functions whereas the F-band portion will provide coverage for a three-dimensional tracking. The I-band array can be used to provide surface search, EW, or SATCOM coverage. It should be understood that the array of FIG. 4 is merely exemplary and that other arrays could be constructed in accordance with the concept to be disclosed herein. For example, the array of FIG 4 could be constructed consisting of 128 F-band elements arranged in eight rows of 16 elements each. Interlaced between the F-band elements would be twelve D-band elements arranged in two rows of six elements each. One section of the F-band array elements could be deleted and a module of 16 I-band elements inserted therefor.
As previously stated, physical and theoretical considerations greatly restrict the choice of elements to be used in the D and F-band arrays, and stripline elements which can be flush-mounted in antenna arrays represents an ideal choice to reduce size, weight, and cost of such structures.
A strip transmission line sandwich, commonly called stripline, is shown in cross-section in FIG. 1. As can be seen, the stripline comprises a flat conducting strip 10 located between and parallel to two conducting ground planes 12. Generally, the stripline circuit is constructed by printing the conducting strip on one side of a section of a first, copper-clad, dielectric board. A slot for radiating energy is etched on the opposite side of the same board.
The first board is combined with a similar second board with the copper removed from one side. The two boards are thermally bonded to form the finished stripline sandwich shown in FIG. 1. Metal screws (not shown) are finally inserted to short the two ground planes together to prevent the generation of spurious and higher order modes. If the conducting strip is small relative to the ground planes, the electric field is almost entirely confined in the dielectric, and the mode propagated in the TEM mode. I f
FIG. 2 represents a cross-sectional view of a D-band radiating element comprising a stripline device as shown in FIG. 1, but having slots etched on both ground planes 14. The slots 22 will radiate efficiently when the conductor 16 is properly excited by energy applied to the coaxial input 20. The inner conductor of the coaxial input is connected to the strip 16 and the outer conductor is bonded to the ground plane 14.
, A stripline, in a sense, comprises a balanced circuit which supports the TEM mode. Accordingly, a slot is cut (etched) in both ground planes 14 to prevent unbalance; however, two slots permits radiation from both slots.
Consequently, to confine radiation of energy to the slot 22 only, the opposite slot is enclosed in a cavity structure 26 as shown in FIG. 2. For D-band, the cavity 26 is approximately a quarter-wavelength ()t/4) long and approximately doubles the slot impedance. The sides of the cavity are left open to preserve the TEM mode, and when the slot is filled with a dielectric, the slot length is increased. The conductive strip 16 extends )t/4 above the slot 22 and the bottom length of the ground plane 14 below the slot 22.
FIG. 3 is a front view of the Dband radiating element of FIG. 2 (not sectional). In FIG. 3, the radiating slot 22 can be clearly seen. The center strip or conductor 16 is shown in dashed lines. From FIGS. 2 and 3, it can be seen that the device can be readily utilized in a flushmounted manner.
Each of the F-band elements 26 of FIG. 4 comprises a rectangular waveguide fed by a probe in a conventional manner. The waveguide is cut off and terminated at one end in a metallic back plate so as to form a cavity. The probe is introduced from the back wall to facilitate array assembly. The depth of the rectangle and the two length dimensions and the diameter of the probe were adjusted empirically to obtain a matched input impedance for the coaxial line. The width and height are chosen to support the TE dominant waveguide mode and to insure linear polarization.
It can be appreciated that apparatus and techniques have been disclosed for constructing stripline antennas for use in multi-function, multi-frequency antennas. Such elements are lightweight, relatively inexpensive to manufacture, and can be readily flush-mounted in multi-frequency antenna arrays comprising interlaced radiating elements. Stripline slot radiators as disclosed are practical to use and readily constructed for use at microwave frequencies. The simplicity of their design and their ease of flush-mounting make them ideal elements for integrated antenna arrays.
Obviously many modifications and variations of the present invention are possible in the light of the above teachings. It is therefore to be understood that within the scope of the appended claims the invention may be practiced otherwise than as specifically described.
What is claimed is:
I. A microwave radiating element comprising stripline board means having radiating slots etched in both ground planes thereof in a symmetrical manner with respect to each other and said board, cavity means enclosing one of said slots, and means connected to said board for applying microwave energy to said board for radiation thereof from said slot.
2. The element of claim 1 wherein said ground planes comprise parallel, flat plates, rigidly supported with respect to each other, and being separated from each other by a dielectric material, and wherein said energy is applied to a conducting strip positioned and rigidly supported between said ground planes.
3. A D-band radiating element comprising a rectangular stripline block having two, parallel, flat ground planes, a layer of dielectric material sandwiched between said ground planes, a conducting strip symmetrically positioned between said planes, each of said planes having a radiating slot etched thereupon, said strip extending M4 above said slots and extending the length of said ground'planes below said slots, cavity means enclosing one of said slots, said cavity means being )t/4 long, and coaxial means for energizing said conducting strip to radiate energy from the unenclosed slot, said coaxial means including an inner conductor connected to said strip and an outer conductor connected to one of said ground planes.
4. An integrated function antenna array comprising a substantially rectangular unitary structure comprising a plurality of columns of end-fed rectangular waveguides, said columns being disposed and rigidly supported in a contiguous manner with respect to each other, said waveguides being flush-mounted with respect to the front end of said unitary structure, radiating element means comprising a substantially rectangular block of stripline having radiating slots symmetrically etched on both ground planes thereof, cavitybacked means attached to one of said slots, said radiating element means being interlaced in a symmetrical manner with respect to said waveguides, and coaxial means connected to said block for applying energy to be radiated therefrom.
k i I 1

Claims (4)

1. A microwave radiating element comprising stripline board means having radiating slots etched in both ground planes thereof in a symmetrical manner with respect to each other and said board, cavity means enclosing one of said slots, and means connected to said board for applying microwave energy to said board for radiation thereof from said slot.
2. The element of claim 1 wherein said ground planes comprise parallel, flat plates, rigidly supported with respect to each other, and being separated from each other by a dielectric material, and wherein said energy is applied to a conducting strip positioned and rigidly supported between said ground planes.
3. A D-band radiating element comprising a rectangular stripline block having two, parallel, flat ground planes, a layer of dielectric material sandwiched between said ground planes, a conducting strip symmetrically positioned between said planes, each of said planes having a radiating slot etched thereupon, said strip extending lambda /4 above said slots and extending the length of said ground planes below said slots, cavity means enclosing one of said slots, said cavity means being lambda /4 long, and coaxial means for energizing said conducting strip to radiate energy from the unenclosed slot, said coaxial means including an inner conductor connected to said strip and an outer conductor connected to one of said ground planes.
4. An integrated function antenna array comprising a substantially rectangular unitary structure comprising a plurality of columns of end-fed rectangular waveguides, said columns being disposed and rigidly supported in a contiguous manner with respect to each other, said waveguides being flush-mounted with respect to the front end of said unitary structure, radiating element means comprising a substantially rectangular block of stripline having radiating slots symmetrically etched on both ground planes thereof, cavity-backed means attached to one of said slots, said radiating element means being interlaced in a symmetrical manner with respect to said waveguides, and coaxial means connected to said block for applying energy to be radiated therefrom.
US00366840A 1973-06-04 1973-06-04 Stripline antenna Expired - Lifetime US3806945A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US00366840A US3806945A (en) 1973-06-04 1973-06-04 Stripline antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00366840A US3806945A (en) 1973-06-04 1973-06-04 Stripline antenna

Publications (1)

Publication Number Publication Date
US3806945A true US3806945A (en) 1974-04-23

Family

ID=23444785

Family Applications (1)

Application Number Title Priority Date Filing Date
US00366840A Expired - Lifetime US3806945A (en) 1973-06-04 1973-06-04 Stripline antenna

Country Status (1)

Country Link
US (1) US3806945A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2719205A1 (en) * 1976-05-03 1977-11-17 Raytheon Co ANTENNA SYSTEM, IN PARTICULAR FOR IFF RADAR SYSTEMS
US4242685A (en) * 1979-04-27 1980-12-30 Ball Corporation Slotted cavity antenna
US4983986A (en) * 1987-11-23 1991-01-08 The General Electric Company, P.L.C. Slot antenna
FR2654555A1 (en) * 1989-11-14 1991-05-17 Thomson Csf RADIANT SLOT GUIDE NOT INCLINED WITH EXCITATION BY RADIANT PATTERN.

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3665480A (en) * 1969-01-23 1972-05-23 Raytheon Co Annular slot antenna with stripline feed

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3665480A (en) * 1969-01-23 1972-05-23 Raytheon Co Annular slot antenna with stripline feed

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2719205A1 (en) * 1976-05-03 1977-11-17 Raytheon Co ANTENNA SYSTEM, IN PARTICULAR FOR IFF RADAR SYSTEMS
US4242685A (en) * 1979-04-27 1980-12-30 Ball Corporation Slotted cavity antenna
US4983986A (en) * 1987-11-23 1991-01-08 The General Electric Company, P.L.C. Slot antenna
FR2654555A1 (en) * 1989-11-14 1991-05-17 Thomson Csf RADIANT SLOT GUIDE NOT INCLINED WITH EXCITATION BY RADIANT PATTERN.
EP0439970A1 (en) * 1989-11-14 1991-08-07 Thomson-Csf Slotted wave guide radiator with non-inclined slots excited by conductive printed patterns
US5170174A (en) * 1989-11-14 1992-12-08 Thomson-Csf Patch-excited non-inclined radiating slot waveguide

Similar Documents

Publication Publication Date Title
US4170013A (en) Stripline patch antenna
US4315266A (en) Spiral slotted phased antenna array
JP3288059B2 (en) Feeder for radiating element operating with two polarizations
US3818490A (en) Dual frequency array
US4263598A (en) Dual polarized image antenna
US4162499A (en) Flush-mounted piggyback microstrip antenna
US6731241B2 (en) Dual-polarization common aperture antenna with rectangular wave-guide fed centered longitudinal slot array and micro-stripline fed air cavity back transverse series slot array
EP3311449B1 (en) Efficient planar phased array antenna assembly
US4724443A (en) Patch antenna with a strip line feed element
US5070340A (en) Broadband microstrip-fed antenna
US4450449A (en) Patch array antenna
EP0704929A2 (en) Multiple beam antenna system for simultaneously receiving multiple satellite signals
US4087822A (en) Radio frequency antenna having microstrip feed network and flared radiating aperture
JPH0671171B2 (en) Wideband antenna
WO2021162818A1 (en) Dual band frequency selective radiator array
GB2299898A (en) Antenna
US4051476A (en) Parabolic horn antenna with microstrip feed
US3806945A (en) Stripline antenna
US2962716A (en) Antenna array
EP0542447B1 (en) Flat plate antenna
US2946055A (en) Parasitic dipole slot antenna
US3775771A (en) Flush mounted backfire circularly polarized antenna
JP3364829B2 (en) Antenna device
US11469520B2 (en) Dual band dipole radiator array
US6239766B1 (en) Radiation shielding device