US3801467A - Apparatus for providing temperature gradients - Google Patents

Apparatus for providing temperature gradients Download PDF

Info

Publication number
US3801467A
US3801467A US00096319A US3801467DA US3801467A US 3801467 A US3801467 A US 3801467A US 00096319 A US00096319 A US 00096319A US 3801467D A US3801467D A US 3801467DA US 3801467 A US3801467 A US 3801467A
Authority
US
United States
Prior art keywords
thermally
block
receptacle member
heater
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00096319A
Inventor
A Nobe
T Nakae
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Kagaku Sangyo KK
Original Assignee
Tokyo Kagaku Sangyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Kagaku Sangyo KK filed Critical Tokyo Kagaku Sangyo KK
Application granted granted Critical
Publication of US3801467A publication Critical patent/US3801467A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/54Heating or cooling apparatus; Heat insulating devices using spatial temperature gradients
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/809Incubators or racks or holders for culture plates or containers

Definitions

  • SHtU 3 [1F 3 APPARATUS FOR PROVIDING TEMPERATURE GRADIENTS
  • This invention relates to apparatus for producing temperature-gradients to enable the study of a group of like specimens simultaneously at various temperatures.
  • the apparatus comprises a thermally-conductive metallic block in which a heating source is provided at one end and in which a cooling source is provided at the other end, the metallic block being designed to accept various types of specimen containers.
  • the types of specimens which may be studiedwith the apparatus embodying applicants invention are many and varied. Microorganisms often must be studied at many different temperatures within a certain range in order to simulate the natural conditions in which they live. Metals and alloys must be-tested to ascertain their resistance to corrosion by various fluids over a wide range of temperatures. In these exemplary cases, it is desirable from the experimental point of view that both the ongoing interaction between each specimen and its environment and the examination and recording of that interaction be carried out simultaneously. Moreover, the gradients of temperature must be regularly and consistently produced. It is also important that the temperature gradients are produced as quickly as possible. For improved results, the apparatus can vibrate the specimen-containing metallic block during the operation at the operators option.
  • the present invention overcomes the difficulties and disadvantages involved in the known method, and meets the requirements pointed out above.
  • an apparatus comprises a bar-like block of thermally-conductive material, such as pure aluminum, the block including a heating source at one end and a cooling source at the other end, and having its surfaces bored and grooved, so as to accept containers of the specimens to be studied.
  • FIG. 1 is an isometric view of an apparatus constructed as a preferred embodiment of the present invention
  • FIG. 2 is a plan view of a metallic block including a heating source at one end and a cooling source at the other end;
  • FIG. 3 is a side view of the apparatus shown in FIG. 1, the parts being broken away to reveal internal construction;
  • FIG. 4 is a vertical section taken along the line A-A shown in FIG. 3;
  • FIG. 5 is a graph showing the temperature gradients produced by apparatus embodying the present invention.
  • a bar-like block 1 of metal such as pure aluminum, is mounted on a bed 16, with its trunnions 14 supported in bearings 15 of the bed 16, so as to be capable of oscillating or swinging around the axis of rotation, about which the bearings 15 are disposed.
  • This can be accomplished by providing die block 1 with a crank (not shown) driven by an electric motor.
  • the block 1 is provided with grooves 2 and 3 in its axial direction, to accept Petri dishes of thermally-conductive material such as stainless-steel, in which microorganisms such as bacteria are placed for growing and examining purposes.
  • the grooves 3 are smaller than the grooves 2, and are particularly adapted for accepting fine tubes of glass in which microorganisms may be cultivated free from air. Microorganisms may also be directly placed in these grooves in admixture with gelatin, so that the microorganisms can freely move along the length of the grooves to attempt to find their optimum thermal condition.
  • the sides of the block are preferably bored transversely with respect to the axial direction, the bores being shown by the reference numeral 17, in which L-shaped test-tubes 4 are securely inserted with each open end directed upward (FIG. 3), ensuring that the content of the test-tubes is safely kept in. This will be of particular advantage when the block is vibrated in the above-mentioned manner.
  • the block 1 includes a heating source at one end and a cooling source at the other end.
  • the cooling source consists of a chamber 5 through which water flows from an inlet 6 to an outlet 7.
  • the water is previously cooled to 0C by a refrigerator (not shown) mounted in the bed 16.
  • An anti-freezing agent is added to the water.
  • the temperature of the water is constantly monitored during the circulation in the chamber 5 by means of a thermostat.
  • An opening 8 is used for introducing both the water and the anti-freezing agent, and is normally closed by a plug 9.
  • an extension of block 1 can be provided at the underface of the cooling section, with the block extension submerged in a tank of constant-temperature water, thusmaintaining the end of block 1 at a predetermined low temperature.
  • the heating source consists of electric heaters 10 and 11 (FIG. 3) mounted in the end opposite to the cooling source.
  • the output of the heaters 10 and 11 is controlled by monitoring circuitry including a thermistor 12.
  • an automatic regulator of temperature can be fitted near the heating source.
  • the regulator includes a chamber lined with stainless-steel, an agitator and an electric heater, whereby the temperature in the heating section is kept within a certain range with a negligible margin of error.
  • the gradients of temperature produced by the disclosed apparatus embodying the present invention are shown in the graphs of this figure.
  • the block 1 of that apparatus is made of thermally-conductive material, such as aluminum and silver, but from an economy point of view pure aluminum is preferable. It has been demonstrated that, with a block 1 of pure aluminum, the variation of temperature is smooth and regular, as evidenced by straight line plots (1), (2) and (3) in FIG. 5.
  • the temperatures in plot (1) vary from -l0C to C, those in plot (2) vary from 0C to 60C, and those in plot (3) vary from 20C to 50C. These temperature gradients can be reproduced regularly and consistently, which is helpful for the execution of such experiments. This advantage of the present invention has been repeatedly demonstrated by the applicants.
  • the apparatus embodying the present invention provides temperature gradients automatically and within a variable predetermined range. Moreover, when desired, the specimens under scrutiny may be vibrated. Accordingly, experimenters are afforded great ease of operation.
  • the apparatus can accommodate many kinds of containers, thus enabling microorganisms to be successfully cultivated in either a liquid or a solid bed.
  • the temperature gradients are linear and repeatable, which is of particular advantage for growing microorganisms and examining chemical changes of metals at many different temperatures.
  • a further advantage is that culture growth and examination can be carried out at one time. Otherwise, scores of apparatus would be needed for the same work.
  • the apparatus embodying the applicants invention has many commercial applications, e.g., in the fields of fermentation, lactic-acid bacteria production, food manufacture, brewing, and various other chemical fields.
  • Apparatus operative to subject a plurality of specimens in a predetermined testing environment to a predetermined temperature gradient which comprises:
  • thermoly-conductive receptacle member having first and second ends
  • heater means positioned at said first end of said thermally-conductive receptacle member
  • cooling means positioned at said second end of said thermally-conductive receptacle member and operative'in cooperation with said heater means to establish a variable, predetermined temperature gradient along the length of said receptacle member between said heater means and said cooling means;
  • said member having receptacle means comprising a thermally-conductive block having a plurality of different openings therein for receiving a plurality of specimens in at least one testing environment for subjecting said plurality of specimens in said testing environment to said predetermined temperature, said openings comprising a plurality of bores for holding test tubes extending into a side of said block and a plurality of grooves extending into the top surface of said block.
  • thermoly-conductive receptacle members is rotatably mounted at said first and second ends.
  • Apparatus according to claim 2 further comprising means for imparting a predetermined type of motion to said thermally-conductive receptacle member.
  • said heater means comprises at least one electric heater mounted in said first end of said thermally-conductive receptacle member.
  • Apparatus according to claim 1 further including a thermistor mounted in close proximity to said heater means and associated with monitoring circuitry operative to regulate the output of said heater means.
  • cooling means comprises:
  • cooling means comprises:

Abstract

Apparatus for providing temperature-gradients, incorporating a block of thermally-conductive material provided with a heating source at one end and a cooling source at the other end, and adapted to subject a group of like specimens to different temperatures.

Description

United States Patent Nobe et al.
[ Apr. 2, 1974 APPARATUS FOR PROVIDING TEMPERATURE GRADIENTS FOREIGN PATENTS OR APPLICATIONS Inventors: Akira Nobe, Tokyo; Toshitaka Nakae, Okayama, both of Japan OTHER PUBLICATIONS Landman, O. E. et al. Temperature Gradient Plates, Asslgnee? Tokyo g y" Kabushlkl Journal of Bacteriology, Vol. 83, pgs 463 to 469,
Kaisha, Tokyo, Japan 9 2 [22] Filed: 9, 1970 Oppenheimer, C. H. et al. Multiple Temperature Optima, Journal of Bacteriology, Vol. 80, pgs 21 to 24, [21] Appl. No.: 96,319 1960 52 US. Cl. 195/139, 195/127 R, 195/140, Prim? Davis 73/15 R, /47 Attorney, Agent, or Firm-Arnold Robmson; William 51 Int. Cl C12k 1/00 Lucas; Frank DeROSa [58] Field of Search 165/11, 14, 30, 48, 47,
' 165/58, 80; 73/15 R, H, DIG. 7; [571 ABSTRACT /127, 139, 140 Apparatus for providing temperature-gradients, incorporating a block of thermally-conductive material pro- [56] References Cited vided with a heating source at one end and a cooling UNITED STATES PATENTS source at the other end, and adapted '10 subject a 2 691 885 10/1954 Famham Jr 73,15 R group of like specimens to different temperatures. 3:0181563 1/1962 Dunlop 73/190 X 9 Claims, 5 Drawing Figures /5 A; 5 Z23, r 4 fififil W T fifii fi if I l- K F @131; 5 5O CI @5 3 '3 jai 6'5 O Q l l 44 /7 /2 /r Great Britain 73/15 R PATENTEDAPR 2 I974 SHEET 2 OF 3 PATENTEDAPR 2:914 3.801.467
SHtU 3 [1F 3 APPARATUS FOR PROVIDING TEMPERATURE GRADIENTS This invention relates to apparatus for producing temperature-gradients to enable the study of a group of like specimens simultaneously at various temperatures. The apparatus comprises a thermally-conductive metallic block in which a heating source is provided at one end and in which a cooling source is provided at the other end, the metallic block being designed to accept various types of specimen containers.
The types of specimens which may be studiedwith the apparatus embodying applicants invention are many and varied. Microorganisms often must be studied at many different temperatures within a certain range in order to simulate the natural conditions in which they live. Metals and alloys must be-tested to ascertain their resistance to corrosion by various fluids over a wide range of temperatures. In these exemplary cases, it is desirable from the experimental point of view that both the ongoing interaction between each specimen and its environment and the examination and recording of that interaction be carried out simultaneously. Moreover, the gradients of temperature must be regularly and consistently produced. It is also important that the temperature gradients are produced as quickly as possible. For improved results, the apparatus can vibrate the specimen-containing metallic block during the operation at the operators option.
It is well-known that microorganisms have been cultivated in a single container whose temperature is set by an associated heating device. With this known method,
. it is necessary to adjust the heating device very often,
or otherwise it is necessary to provide many containers, each with its own separate heating device. Even if such an arrangement is devised, it is nevertheless impossible to establish continuous gradients of temperature for the microorganism cultures. The present invention overcomes the difficulties and disadvantages involved in the known method, and meets the requirements pointed out above.
According to the present invention an apparatus comprises a bar-like block of thermally-conductive material, such as pure aluminum, the block including a heating source at one end and a cooling source at the other end, and having its surfaces bored and grooved, so as to accept containers of the specimens to be studied.
A better understanding of the present invention may be had by reference to the accompanying drawings, of which:
FIG. 1 is an isometric view of an apparatus constructed as a preferred embodiment of the present invention;
FIG. 2 is a plan view of a metallic block including a heating source at one end and a cooling source at the other end;
FIG. 3 is a side view of the apparatus shown in FIG. 1, the parts being broken away to reveal internal construction;
FIG. 4 is a vertical section taken along the line A-A shown in FIG. 3; and
FIG. 5 is a graph showing the temperature gradients produced by apparatus embodying the present invention.
Referring now to FIGS. 1, 2, 3 and 4, a bar-like block 1 of metal, such as pure aluminum, is mounted on a bed 16, with its trunnions 14 supported in bearings 15 of the bed 16, so as to be capable of oscillating or swinging around the axis of rotation, about which the bearings 15 are disposed. This can be accomplished by providing die block 1 with a crank (not shown) driven by an electric motor. The block 1 is provided with grooves 2 and 3 in its axial direction, to accept Petri dishes of thermally-conductive material such as stainless-steel, in which microorganisms such as bacteria are placed for growing and examining purposes. The grooves 3 are smaller than the grooves 2, and are particularly adapted for accepting fine tubes of glass in which microorganisms may be cultivated free from air. Microorganisms may also be directly placed in these grooves in admixture with gelatin, so that the microorganisms can freely move along the length of the grooves to attempt to find their optimum thermal condition. The sides of the block are preferably bored transversely with respect to the axial direction, the bores being shown by the reference numeral 17, in which L-shaped test-tubes 4 are securely inserted with each open end directed upward (FIG. 3), ensuring that the content of the test-tubes is safely kept in. This will be of particular advantage when the block is vibrated in the above-mentioned manner.
The block 1 includes a heating source at one end and a cooling source at the other end. The cooling source consists of a chamber 5 through which water flows from an inlet 6 to an outlet 7. The water is previously cooled to 0C by a refrigerator (not shown) mounted in the bed 16. An anti-freezing agent is added to the water. The temperature of the water is constantly monitored during the circulation in the chamber 5 by means of a thermostat. An opening 8 is used for introducing both the water and the anti-freezing agent, and is normally closed by a plug 9. Instead of using a chamber 5, an extension of block 1 can be provided at the underface of the cooling section, with the block extension submerged in a tank of constant-temperature water, thusmaintaining the end of block 1 at a predetermined low temperature.
The heating source consists of electric heaters 10 and 11 (FIG. 3) mounted in the end opposite to the cooling source. The output of the heaters 10 and 11 is controlled by monitoring circuitry including a thermistor 12. For superior results, an automatic regulator of temperature can be fitted near the heating source. Preferably, the regulator includes a chamber lined with stainless-steel, an agitator and an electric heater, whereby the temperature in the heating section is kept within a certain range with a negligible margin of error.
Referring now specifically to FIG. 5, the gradients of temperature produced by the disclosed apparatus embodying the present invention are shown in the graphs of this figure. As pointed out earlier, the block 1 of that apparatus is made of thermally-conductive material, such as aluminum and silver, but from an economy point of view pure aluminum is preferable. It has been demonstrated that, with a block 1 of pure aluminum, the variation of temperature is smooth and regular, as evidenced by straight line plots (1), (2) and (3) in FIG. 5. The temperatures in plot (1) vary from -l0C to C, those in plot (2) vary from 0C to 60C, and those in plot (3) vary from 20C to 50C. These temperature gradients can be reproduced regularly and consistently, which is helpful for the execution of such experiments. This advantage of the present invention has been repeatedly demonstrated by the applicants.
In summary, the apparatus embodying the present invention provides temperature gradients automatically and within a variable predetermined range. Moreover, when desired, the specimens under scrutiny may be vibrated. Accordingly, experimenters are afforded great ease of operation. The apparatus can accommodate many kinds of containers, thus enabling microorganisms to be successfully cultivated in either a liquid or a solid bed. The temperature gradients are linear and repeatable, which is of particular advantage for growing microorganisms and examining chemical changes of metals at many different temperatures. A further advantage is that culture growth and examination can be carried out at one time. Otherwise, scores of apparatus would be needed for the same work. The apparatus embodying the applicants invention has many commercial applications, e.g., in the fields of fermentation, lactic-acid bacteria production, food manufacture, brewing, and various other chemical fields.
The advantages of the present invention, as well as certain changes and modifications of the disclosed embodiments thereof, will be readily apparent to those skilled in the art. It is the applicants intention to cover all those changes and modifications which could be made to the embodiments of the invention herein chosen for the purposes of the disclosure without departing from the spirit and scope of the invention.
What we claim is:
1. Apparatus operative to subject a plurality of specimens in a predetermined testing environment to a predetermined temperature gradient which comprises:
1. a thermally-conductive receptacle member having first and second ends;
2. means for mounting said thermally-conductive receptacle member at opposite ends thereof;
3. heater means positioned at said first end of said thermally-conductive receptacle member;
4. cooling means positioned at said second end of said thermally-conductive receptacle member and operative'in cooperation with said heater means to establish a variable, predetermined temperature gradient along the length of said receptacle member between said heater means and said cooling means; and
5. said member having receptacle means comprising a thermally-conductive block having a plurality of different openings therein for receiving a plurality of specimens in at least one testing environment for subjecting said plurality of specimens in said testing environment to said predetermined temperature, said openings comprising a plurality of bores for holding test tubes extending into a side of said block and a plurality of grooves extending into the top surface of said block.
2. Apparatus according to claim 1 wherein said thermally-conductive receptacle members is rotatably mounted at said first and second ends.
3. Apparatus according to claim 2 further comprising means for imparting a predetermined type of motion to said thermally-conductive receptacle member.
4. Apparatus according to claim 1 wherein said plurality of grooves extend from said first end to said second end to receive specimen material, and said plurality of grooves comprises at least two grooves of different dimensions.
5. Apparatus according to claim 1 wherein said plurality of bores extends from said first end to said second end to receive said tubes containing specimen material.
6. Apparatus according to claim 1 wherein said heater means comprises at least one electric heater mounted in said first end of said thermally-conductive receptacle member.
7. Apparatus according to claim 1 further including a thermistor mounted in close proximity to said heater means and associated with monitoring circuitry operative to regulate the output of said heater means.
8. Apparatus according to claim 1 wherein said cooling means comprises:
1. a chamber formed in said thermally-conductive receptacle member in proximity with said second end thereof, said chamber having an inlet port and an outlet port; and
2. means for circulating cooling fluid through said chamber by means of said inlet and outlet ports and for maintaining said cooling fluid at a predetermined low temperature.
9. Apparatus according to claim 1 wherein said cooling means comprises:
1. a block extension of said thermally-conductive receptacle member;
2. a tank of water in which said block extension is submerged; and
3. means for maintaining said tank of water at a predetermined low temperature.
UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION 3,801,467 Dated April 2, 1974 Akira Nobe and Toshitaka Nakae Patent No.
Inventor(s) It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
In Column 1 before [52] insert:
-=-= Foreign Application Priority Data December 24, 1969 Japan .103462/69-- Signed and sealed this 17th day of September 1974.
(SEAL) Attest:
C. MARSHALL DANN U5COMM-DC 60376-P69 h u 5 GOVERNMENT PRINTING OFHCE: I959 0-366-J.'M
F ORM PO-1050 (10-69)

Claims (15)

  1. 2. means for mounting said thermally-conductive receptacle member at opposite ends thereof;
  2. 2. Apparatus according to claim 1 wherein said thermally-conductive receptacle members is rotatably mounted at said first and second ends.
  3. 2. means for circulating cooling fluid through said chamber by means of said inlet and outlet ports and for maintaining said cooling fluid at a predetermined low temperature.
  4. 2. a tank of water in which said block extension is submerged; and
  5. 3. means for maintaining said tank of water at a predetermined low temperature.
  6. 3. Apparatus according to claim 2 further comprising means for imparting a predetermined type of motion to said thermally-conductive receptacle member.
  7. 3. heater means positioned at said first end of said thermally-conductive receptacle member;
  8. 4. cooling means positioned at said second end of said thermally-conductive receptacle member and operative in cooperation with said heater means to establish a variable, predetermined temperature gradient along the length of said receptacle member between said heater means and said cooling means; and
  9. 4. Apparatus according to claim 1 wherein said plurality of grooves extend from said first end to said second end to receive specimen material, and said plurality of grooves comprises at least two grooves of different dimensions.
  10. 5. Apparatus according to claim 1 wherein said plurality of bores extends from said first end to said second end to receive said tubes containing specimen material.
  11. 5. said member having receptacle means comprising a thermally-conductive block having a plurality of different openings therein for receiving a plurality of specimens in at least one testing environment for subjecting said plurality of specimens in said testing environment to said predetermined temperature, said openings comprising a plurality of bores for holding test tubes extending into a side of said block and a plurality of grooves extending into the top surface of said block.
  12. 6. Apparatus according to claim 1 wherein said heater means comprises at least one electric heater mounted in said first end of said thermally-conductive receptacle member.
  13. 7. Apparatus according to claim 1 further including a thermistor mounted in close proximity to said heater means and associated with monitoring circuitry operative to regulate the output of said heater means.
  14. 8. Apparatus according to claim 1 wherein said cooling means comprises:
  15. 9. Apparatus according to claim 1 wherein said cooling means comprises:
US00096319A 1969-12-24 1970-12-09 Apparatus for providing temperature gradients Expired - Lifetime US3801467A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10346269 1969-12-24

Publications (1)

Publication Number Publication Date
US3801467A true US3801467A (en) 1974-04-02

Family

ID=14354669

Family Applications (1)

Application Number Title Priority Date Filing Date
US00096319A Expired - Lifetime US3801467A (en) 1969-12-24 1970-12-09 Apparatus for providing temperature gradients

Country Status (4)

Country Link
US (1) US3801467A (en)
DE (1) DE2063607A1 (en)
FR (1) FR2073836A5 (en)
GB (1) GB1323309A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3869912A (en) * 1974-03-08 1975-03-11 Goodrich Co B F Method and apparatus for determining transformation temperatures
US3875794A (en) * 1974-03-08 1975-04-08 Goodrich Co B F Apparatus for determining transformation temperatures
US3934646A (en) * 1973-07-30 1976-01-27 Nalco Chemical Company Constant temperature cold-end corrosion probe
US4384193A (en) * 1981-06-09 1983-05-17 Immulok, Inc. Incubating device for specimen mounted on glass slides in immunoassays
US4840771A (en) * 1986-09-22 1989-06-20 Becton Dickinson & Company Incubator for reagents
US4892638A (en) * 1986-11-04 1990-01-09 Hitachi, Ltd. Instrument for determination of the base sequence of DNA
US5066377A (en) * 1986-07-04 1991-11-19 Diagen Institute fur molekularbiologische Diagnostik GmbH Method and device for producing a controllable and reproducible temperature gradient and use thereof
US5240857A (en) * 1989-03-06 1993-08-31 Biodata Oy Temperature-gradient incubator for studying temperature-dependent phenomena
WO1995011294A1 (en) * 1993-10-20 1995-04-27 Stratagene Thermal cycler including a temperature gradient block
US5446263A (en) * 1988-11-03 1995-08-29 Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V. Device for setting the temperature of a sample selectively to different values
US5576218A (en) * 1994-01-11 1996-11-19 Abbott Laboratories Method for thermal cycling nucleic acid assays
US5720554A (en) * 1994-11-18 1998-02-24 European Gas Turbines Limited Apparatus and method for the calibration of thermal paint
US6025189A (en) * 1997-05-14 2000-02-15 3M Innovative Properties Company Apparatus for reading a plurality of biological indicators
US20030064508A1 (en) * 2001-09-20 2003-04-03 3-Dimensional Pharmaceuticals, Inc. Conductive microtiter plate
US20030096396A1 (en) * 2000-12-12 2003-05-22 Kohn Heinz Gerhard Laboratory device for tempering reaction samples
US6767512B1 (en) * 1996-11-08 2004-07-27 Eppendorf Ag Temperature-regulating block with temperature-regulating devices
US20050196873A1 (en) * 2000-12-12 2005-09-08 Eppendorf Ag. Laboratory tempering device for tempering at different temperatures
US20160108301A1 (en) * 2014-10-16 2016-04-21 Hudson Gencheng Shou High-efficiency coolant for electronic systems

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI77055C (en) * 1987-05-15 1989-01-10 Limitek Oy Thermal gradient-incubator
DE8814398U1 (en) * 1988-11-17 1989-02-16 Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften Ev, 3400 Goettingen, De
CN111060549A (en) * 2019-09-30 2020-04-24 中国人民解放军96901部队24分队 Gradient temperature load loading device and method for accelerated aging of material
CN111420624A (en) * 2020-03-20 2020-07-17 安徽大学 Parallel synthesis device for sol-gel

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3934646A (en) * 1973-07-30 1976-01-27 Nalco Chemical Company Constant temperature cold-end corrosion probe
US3875794A (en) * 1974-03-08 1975-04-08 Goodrich Co B F Apparatus for determining transformation temperatures
US3869912A (en) * 1974-03-08 1975-03-11 Goodrich Co B F Method and apparatus for determining transformation temperatures
US4384193A (en) * 1981-06-09 1983-05-17 Immulok, Inc. Incubating device for specimen mounted on glass slides in immunoassays
US5066377A (en) * 1986-07-04 1991-11-19 Diagen Institute fur molekularbiologische Diagnostik GmbH Method and device for producing a controllable and reproducible temperature gradient and use thereof
US4840771A (en) * 1986-09-22 1989-06-20 Becton Dickinson & Company Incubator for reagents
US4892638A (en) * 1986-11-04 1990-01-09 Hitachi, Ltd. Instrument for determination of the base sequence of DNA
US5446263A (en) * 1988-11-03 1995-08-29 Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V. Device for setting the temperature of a sample selectively to different values
US5240857A (en) * 1989-03-06 1993-08-31 Biodata Oy Temperature-gradient incubator for studying temperature-dependent phenomena
US20030157563A1 (en) * 1993-10-20 2003-08-21 Strategene Thermal cycler including a temperature gradient block
US6962821B2 (en) 1993-10-20 2005-11-08 Stratagene California Thermal cycler including a temperature gradient block
US5779981A (en) * 1993-10-20 1998-07-14 Stratagene Thermal cycler including a temperature gradient block
US5525300A (en) * 1993-10-20 1996-06-11 Stratagene Thermal cycler including a temperature gradient block
US6054263A (en) * 1993-10-20 2000-04-25 Stratagene Thermal cycler including a temperature gradient block
US20060105460A1 (en) * 1993-10-20 2006-05-18 Stratagene California Thermal cycler including a temperature gradient block
WO1995011294A1 (en) * 1993-10-20 1995-04-27 Stratagene Thermal cycler including a temperature gradient block
US5576218A (en) * 1994-01-11 1996-11-19 Abbott Laboratories Method for thermal cycling nucleic acid assays
US5720554A (en) * 1994-11-18 1998-02-24 European Gas Turbines Limited Apparatus and method for the calibration of thermal paint
US7074367B2 (en) * 1996-11-08 2006-07-11 D-Eppendorf Ag Thermostated block with heat-regulating devices
US6767512B1 (en) * 1996-11-08 2004-07-27 Eppendorf Ag Temperature-regulating block with temperature-regulating devices
US20040258568A1 (en) * 1996-11-08 2004-12-23 Eppendorf Ag Thermostated block with heat-regulating devices
US6025189A (en) * 1997-05-14 2000-02-15 3M Innovative Properties Company Apparatus for reading a plurality of biological indicators
US20050196873A1 (en) * 2000-12-12 2005-09-08 Eppendorf Ag. Laboratory tempering device for tempering at different temperatures
US6872570B2 (en) * 2000-12-12 2005-03-29 Eppendorf Ag Laboratory method for tempering reaction samples
US20030096396A1 (en) * 2000-12-12 2003-05-22 Kohn Heinz Gerhard Laboratory device for tempering reaction samples
US20030064508A1 (en) * 2001-09-20 2003-04-03 3-Dimensional Pharmaceuticals, Inc. Conductive microtiter plate
US20160108301A1 (en) * 2014-10-16 2016-04-21 Hudson Gencheng Shou High-efficiency coolant for electronic systems

Also Published As

Publication number Publication date
GB1323309A (en) 1973-07-11
FR2073836A5 (en) 1971-10-01
DE2063607A1 (en) 1971-07-22

Similar Documents

Publication Publication Date Title
US3801467A (en) Apparatus for providing temperature gradients
US5451524A (en) In vitro chamber for human organ tissue samples
US5224536A (en) Thermostatting device
US5360741A (en) DNA hybridization incubator
PT80797A (en) Apparatus for treating specimens at low temperature
US5380662A (en) Hybridization incubator with rotisserie mechanism
CN211453100U (en) Constant temperature oscillation device for sample pretreatment
CN107955780A (en) A kind of medical Incubators for bacteria culture
Cooper et al. The importance of the temperature during the early hours of incubation of agar plates in assays
US3445342A (en) Fermentation apparatus
Patching et al. Chapter II The Effects and Control of Temperature
US5240857A (en) Temperature-gradient incubator for studying temperature-dependent phenomena
US5028541A (en) Flow-through cell cultivation system
US5089385A (en) Method of culturing cells in a flow-through cell cultivation system
Ričica Technique of continuous laboratory cultivations
EP0380768B1 (en) Multiplate subculture solid media devices
US4332906A (en) Vessel for growing cells
CN207918856U (en) A kind of medical Incubators for bacteria culture
CN215668022U (en) Isothermal amplification instrument with centrifugal device
CN211936984U (en) Low-temperature water bath kettle
Van Hemert The “Bilthoven Unit” for submerged cultivation of microorganisms
US5733775A (en) Temperature control device
JPH1189553A (en) Incubator block
IL34569A (en) Apparatus for the growth of living cells on a large scale
DE2657209A1 (en) Bio:culturing process, esp. for diploid fibroblasts - in which optimum conditions are maintained by pH control