US3789841A - Disposable guide wire - Google Patents

Disposable guide wire Download PDF

Info

Publication number
US3789841A
US3789841A US00180810A US3789841DA US3789841A US 3789841 A US3789841 A US 3789841A US 00180810 A US00180810 A US 00180810A US 3789841D A US3789841D A US 3789841DA US 3789841 A US3789841 A US 3789841A
Authority
US
United States
Prior art keywords
guide wire
coil spring
core wire
wire
inner core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00180810A
Inventor
W Antoshkiw
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Becton Dickinson and Co
Original Assignee
Becton Dickinson and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=22661848&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US3789841(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Becton Dickinson and Co filed Critical Becton Dickinson and Co
Application granted granted Critical
Publication of US3789841A publication Critical patent/US3789841A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • A61M25/09016Guide wires with mandrils
    • A61M25/09033Guide wires with mandrils with fixed mandrils, e.g. mandrils fixed to tip; Tensionable wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • A61M2025/09058Basic structures of guide wires
    • A61M2025/09083Basic structures of guide wires having a coil around a core

Definitions

  • catherization procedure is the percutaneous technique described in 1953 by Sven Ivar Seldinger.
  • an area of the skin is antiseptically prepared and a local anthestic is applied after which a nick is made in the skin over the site of a vessel to be catherized.
  • An arterial needle assembly, (inner needle, stylet) is then introduced into the vessel and its introduction is indicated by a back flow of blood to the inner needle.
  • the inner needle is then withdrawn and replaced with a guide wire which is then introduced through the cannula for a distance of approximately 6 to 10 inches.
  • External pressure is then applied to hold the guide wire in place while the cannula is withdrawn after which the guide wire is fed into the vessel to the selected area by fluoroscopy or some other similar technique. Considerable manipulation is required of the guide line to direct it to the desired area. Once the guide wire reaches the selected area, the catheter is passed over the guide wire to the selected area after which the guide wire is withdrawn from the catheter.
  • guide wires were formed of closely wound stainless steel forming a continuous coil spring having an inner bore which is sealed at the distal end with arounded cap or tip.
  • an inner core wire is placed within the coil bore, said wire terminating a short distance from the distal tip to provide flexibility at the distal tip and rigidity throughout the remainder of the wire.
  • the proximal portion having the core wire was too rigid while the distal tip was so flexible it was practically uncontrollable.
  • U. S. Pat. No. 3,528,406 taught the use of two core wires, one extending to the distal tip and the other terminating a distance therefrom.
  • Another embodiment taught by the previously mentioned patent included a heavy gauge core wire throughout the proximal portion, the heavy gauge wire being reduced to a uniform thinner diameter at the distal tip portion to provide greater flexibility.
  • All the devices heretofore provided had a coil spring extending throughout their entire length and were therefore subject to coil breakage or breakage of the core wire.
  • the coil spring and the core wire were not usually in contact and therefore did not provide mutual support for each other.
  • the coil spring did not provide for good torque transmission because the spring would tend to bend and turn rather than transmit torque from the proximal portion to the distal tip of the guide wire. This feature made manipulation more difficult and time consuming.
  • the coil spring also had many other disadvantages, one being the high friction presented between the coils of the spring and the inner surface of the vessel.
  • the spring coils tended to collect blood and were more difflcult to clean causing clot formation on the coils.
  • the spring also presented an electrical hazard during cardiovascular catheterization.
  • the present invention contemplates a flexible guide wire for use in vascular manipulations.
  • the guide wire is disposable and comprises a stainless steel core wire having a portion of uniform diameter and a tapered portion.
  • the uniform diameter portion is coated with a plastic jacket to form a proximal portion and the tapered portion is enclosed in a stainless steel coil spring to form a distal portion.
  • the spring is fixed at both ends to the inner core by soldering, the solder at the end forming a rounded distal tip.
  • the stainless steel spring closing the distal portion provides the required flexibility and resiliency while permitting introduction of the guide wire through a stainless steel cannula without the danger of skiving during introduction of the wire.
  • the danger of spring coil breakage is greatly reduced by reducing the spring length and by connecting it to the inner core at both ends.
  • the tapered core wire at the distal portion provides for uniform increase in flexibility between the proximal portion and the distal tip.
  • the use of the plastic jacket around the proximal portion of the center of core wire provides several advantages.
  • the use of the plastic jacket reduces the length of spring coil required and thereby greatly reduces the cost of the guide wire.
  • Stainless steel spring material is the most expensive component of the guide wire and elimination of substantial length of spring material greatly reduces the cost.
  • the plastic material provides a smooth low friction surface and thereby facilitates the movement of the guide wire through a vessel.
  • the plastic jacket is easier to clean than the spring coil and prevents clotting between the coils of the spring.
  • the plastic jacket is in direct contact with the inner core wire and therefore supports the wire and reduces the possibility of wire breakage while also providing for excellent torque transmission to the distal portion to facilitate manipulation of the guide wire.
  • Use of an insulated plastic jacket eliminates the electrical hazard which was present during cardiovascular catheterization when devices of the prior art were used.
  • the primary objective of the present invention is to provide a disposable guide wire that need not be cleaned and sterilized after each use.
  • Another objective of the present invention is to provide a guide wire having better manipulative characteristics than guide wires heretofore provided.
  • Another objective of the present invention is to provide a guide wire having a low coefficient of friction and good torque transmitting ability.
  • Another objective of the present invention is to provide a guide wire that prevents clot formation.
  • Another objective of the present invention is to provide a guide wire that is not prone to breakage.
  • FIG. 1 is a plan view of a flexible guide wire constructed in accordance with the present invention.
  • FIG. 2 is a sectional view taken along lines 22 of FIG. 1.
  • a stainless steel wire having a portion 12 of uniform thickness and a tapered portion 14. Portion 12 is covered by a jacket 16 made of a plastic material such as Teflon which has a smooth low friction outer surface.
  • the plastic coated portion 12 forms a proximal portion of a guide wire.
  • a stainless steel coil spring 18 extends over tapered portion 14 and is soldered or otherwise connected to wire 10 at a point indicated by numeral 20 which is adjacent the end of jacket 16. Spring 18 also connected by soldering or otherwise to the end of the tapered portion 14 to form a distal tip 22 having a rounded outer surface.
  • outer diameters of spring 18 and jacket 16 are substantially equal and vary from 0.021 to 0.047 of an inch. However, other diameters are contemplated and must be considered to be within the teachings of the present invention.
  • the guide wire may be manufactured from standard plastic coated stainless steel wire cut to any desired length such as 120 centimeters after which the plastic coating is stripped from the distal portion.
  • the distal portion is then tapered by either a grinding procedure or by the application of a tension force to neck down the distal portion.
  • the stainless steel spring is then positioned over the distal portion and soldered to the stainless steel core wire to form the disposable guide wire.
  • the flexible guide wire may be used following the standard techniques taught by Seldinger and as previously explained in the background of the invention.
  • the distal portion has a rounded tip 22 and an increased amount of flexibility provided by the tapered core wire 14 while the proximal portion has a greater degree of rigidity provided by the uniform diameter of the core wire and the plastic jacket 16.
  • the plastic jacket provides a smooth surface with a low coefficient of friction to facilitate insertion of the guide wire into a vessel while the Teflon jacket provides for excellent torque transmission making the guide wire exceptionally maneuverable.
  • the use of a plastic jacket eliminates the need for the coil spring to extend over the entire length of the guide wire and thus reduces the amount of spring material it required.
  • the cost of the guide wire is substantially reduced as a result of the reduced amount of extensive stainless steel spring material required for the guide wire.
  • the tendency towards clot formation is greatly reduced by the smooth surface of the plastic jacket.
  • the possibility of core wire breakage is greatly reduced by the use of the plastic jacket which is in contact with the proximal portion of the core wire and provides reinforcement.
  • the tendency towards spring coil breakage is also reduced by the use of a shorter spring than in those devices heretofore provided.
  • the plastic jacket also provides an additional advantage in that it eliminates the electrical hazard associated with devices of the prior art during cardiovascular catheterization.
  • a flexible guide wire comprising:
  • an elongated inner core wire having a proximal portion and a distal portion
  • a coil spring enclosing the distal portion and fixably attached thereto the coil spring including a proximal end and distal end;
  • a plastic jacket enclosing and engaging the proximal portion the jacket including a proximal end and a distal end, the jacket distal end terminating at the coil spring proximal end and being substantially equal in diameter to the coil spring such that the jacket forms an extension of the coil spring.
  • a flexible guide wire comprising:
  • an elongated inner core wire having a proximal portion and a tapered distal portion
  • a flexible guide wire comprising:
  • an elongated inner core wire having a proximal portion and a distal portion the proximal portion of the inner core wire being of uniform diameter and the distal portion is tapered;

Abstract

A stainless steel core wire has a tapered portion at one end and a portion of uniform thickness at another end. A Teflon jacket encloses the portion having uniform thickness to form a proximal end and a flexible stainless steel spring encloses the tapered portion forming a distal end. The spring is secured at both ends to the stainless steel core wire.

Description

United States Patent Antoshkiw 45 F b, 5 1974 DISPOSABLE GUIDE WIRE 3,547,103 12/1970 Cook 128/205 R Inventor: William T. Antoshkiw y, NJ 3,612,058 10/1971 Ackerman 128/348 [73] Assignee: Becton, Dickinson 8!. Company, East Primary Examiner-Lucie H. Laudenslager Rutherford, NJ. Attorney, Agent, or Firm-Kane, Dalsimer, Kane, Sul- 22 Filed: Sept. 15, 1971 and [2]] Appl. No.: 180,810 57 ABSTRACT A stainless steel core wire has a tapered portion at one [52] U.S. Cl ..128/2.05 R end and a portion of uniform thickness at another end. [51] Int. Cl A61b 5/02 A Teflon jacket encloses the portion having uniform [58] Field of Search... 128/205 R, DIG. 9, 341, 348 thickness to form a proximal end and a flexible stainv less steel spring encloses the tapered portion forming a [56] References Cited distal end. The spring is secured at both ends to the UNITED STATES PATENTS stainless steel core wire. 3,452,740 7/1969 Muller 128/DIG. 9 UX 10 Claims, 2 Drawing Figures DISPOSABLE GUIDE WIRE BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to guide wires for vascular manipulations and more particularly to a disposable guide wire having added strength in the proximal portion and flexibility in the distal portion.
2. Description of the Prior Art The requirements for diagnostic studies of the vascular systems of the human body have increased considerably in recent years with the marked advances in the cardiac and vascular surgery. This increased requirement has led to extensive use of cardiac and vascular catheters that must be inserted over a relatively long distance into internal sites in the body. Extensive manipulation is required to maneuver a relatively long catheter into branch vessels that extend at sharp angles relative to the feeding direction of the catheter.
The most common catherization procedure is the percutaneous technique described in 1953 by Sven Ivar Seldinger. In the practice of this catherization procedure, an area of the skin is antiseptically prepared and a local anthestic is applied after which a nick is made in the skin over the site of a vessel to be catherized. An arterial needle assembly, (inner needle, stylet) is then introduced into the vessel and its introduction is indicated by a back flow of blood to the inner needle. The inner needle is then withdrawn and replaced with a guide wire which is then introduced through the cannula for a distance of approximately 6 to 10 inches. External pressure is then applied to hold the guide wire in place while the cannula is withdrawn after which the guide wire is fed into the vessel to the selected area by fluoroscopy or some other similar technique. Considerable manipulation is required of the guide line to direct it to the desired area. Once the guide wire reaches the selected area, the catheter is passed over the guide wire to the selected area after which the guide wire is withdrawn from the catheter.
Heretofore, guide wires were formed of closely wound stainless steel forming a continuous coil spring having an inner bore which is sealed at the distal end with arounded cap or tip. Usually an inner core wire is placed within the coil bore, said wire terminating a short distance from the distal tip to provide flexibility at the distal tip and rigidity throughout the remainder of the wire. In most cases, the proximal portion having the core wire was too rigid while the distal tip was so flexible it was practically uncontrollable.
In order to overcome the problems of the devices of the prior art, U. S. Pat. No. 3,528,406 taught the use of two core wires, one extending to the distal tip and the other terminating a distance therefrom. Another embodiment taught by the previously mentioned patent included a heavy gauge core wire throughout the proximal portion, the heavy gauge wire being reduced to a uniform thinner diameter at the distal tip portion to provide greater flexibility.
All the devices heretofore provided had a coil spring extending throughout their entire length and were therefore subject to coil breakage or breakage of the core wire. The coil spring and the core wire were not usually in contact and therefore did not provide mutual support for each other. The coil spring did not provide for good torque transmission because the spring would tend to bend and turn rather than transmit torque from the proximal portion to the distal tip of the guide wire. This feature made manipulation more difficult and time consuming.
The coil spring also had many other disadvantages, one being the high friction presented between the coils of the spring and the inner surface of the vessel. The spring coils tended to collect blood and were more difflcult to clean causing clot formation on the coils. The spring also presented an electrical hazard during cardiovascular catheterization.
SUMMARY OF THE INVENTION The present invention contemplates a flexible guide wire for use in vascular manipulations. The guide wire is disposable and comprises a stainless steel core wire having a portion of uniform diameter and a tapered portion. The uniform diameter portion is coated with a plastic jacket to form a proximal portion and the tapered portion is enclosed in a stainless steel coil spring to form a distal portion. The spring is fixed at both ends to the inner core by soldering, the solder at the end forming a rounded distal tip.
The stainless steel spring closing the distal portion provides the required flexibility and resiliency while permitting introduction of the guide wire through a stainless steel cannula without the danger of skiving during introduction of the wire. The danger of spring coil breakage is greatly reduced by reducing the spring length and by connecting it to the inner core at both ends. The tapered core wire at the distal portion provides for uniform increase in flexibility between the proximal portion and the distal tip.
The use of the plastic jacket around the proximal portion of the center of core wire provides several advantages. The use of the plastic jacket reduces the length of spring coil required and thereby greatly reduces the cost of the guide wire. Stainless steel spring material is the most expensive component of the guide wire and elimination of substantial length of spring material greatly reduces the cost. The plastic material provides a smooth low friction surface and thereby facilitates the movement of the guide wire through a vessel. The plastic jacket is easier to clean than the spring coil and prevents clotting between the coils of the spring. The plastic jacket is in direct contact with the inner core wire and therefore supports the wire and reduces the possibility of wire breakage while also providing for excellent torque transmission to the distal portion to facilitate manipulation of the guide wire. Use of an insulated plastic jacket eliminates the electrical hazard which was present during cardiovascular catheterization when devices of the prior art were used.
The primary objective of the present invention is to provide a disposable guide wire that need not be cleaned and sterilized after each use.
Another objective of the present invention is to provide a guide wire having better manipulative characteristics than guide wires heretofore provided.
Another objective of the present invention is to provide a guide wire having a low coefficient of friction and good torque transmitting ability.
Another objective of the present invention is to provide a guide wire that prevents clot formation.
Another objective of the present invention is to provide a guide wire that is not prone to breakage.
The foregoing objectives and advantages of the invention will appear more fully hereinafter from a consideration of the detailed description which follows, taken together with the accompanying drawing wherein one embodiment of the invention is illustrated by way of example. It is to be expressly understood, however, that the drawing is for illustrative purposes only and is not to be considered as defining the limits of the invention.
DESCRIPTION OF THE DRAWINGS FIG. 1 is a plan view of a flexible guide wire constructed in accordance with the present invention.
FIG. 2 is a sectional view taken along lines 22 of FIG. 1.
DESCRIPTION OF THE INVENTION Referring to the drawings, there is shown a stainless steel wire having a portion 12 of uniform thickness and a tapered portion 14. Portion 12 is covered by a jacket 16 made of a plastic material such as Teflon which has a smooth low friction outer surface. The plastic coated portion 12 forms a proximal portion of a guide wire.
A stainless steel coil spring 18 extends over tapered portion 14 and is soldered or otherwise connected to wire 10 at a point indicated by numeral 20 which is adjacent the end of jacket 16. Spring 18 also connected by soldering or otherwise to the end of the tapered portion 14 to form a distal tip 22 having a rounded outer surface.
The outer diameters of spring 18 and jacket 16 are substantially equal and vary from 0.021 to 0.047 of an inch. However, other diameters are contemplated and must be considered to be within the teachings of the present invention.
The guide wire may be manufactured from standard plastic coated stainless steel wire cut to any desired length such as 120 centimeters after which the plastic coating is stripped from the distal portion. The distal portion is then tapered by either a grinding procedure or by the application of a tension force to neck down the distal portion. The stainless steel spring is then positioned over the distal portion and soldered to the stainless steel core wire to form the disposable guide wire.
The flexible guide wire may be used following the standard techniques taught by Seldinger and as previously explained in the background of the invention. The distal portion has a rounded tip 22 and an increased amount of flexibility provided by the tapered core wire 14 while the proximal portion has a greater degree of rigidity provided by the uniform diameter of the core wire and the plastic jacket 16. The plastic jacket provides a smooth surface with a low coefficient of friction to facilitate insertion of the guide wire into a vessel while the Teflon jacket provides for excellent torque transmission making the guide wire exceptionally maneuverable.
The use of a plastic jacket eliminates the need for the coil spring to extend over the entire length of the guide wire and thus reduces the amount of spring material it required. The cost of the guide wire is substantially reduced as a result of the reduced amount of extensive stainless steel spring material required for the guide wire. Likewise, the tendency towards clot formation is greatly reduced by the smooth surface of the plastic jacket. The possibility of core wire breakage is greatly reduced by the use of the plastic jacket which is in contact with the proximal portion of the core wire and provides reinforcement. The tendency towards spring coil breakage is also reduced by the use of a shorter spring than in those devices heretofore provided. The plastic jacket also provides an additional advantage in that it eliminates the electrical hazard associated with devices of the prior art during cardiovascular catheterization.
It is to be understood that the teachings of the invention are not strictly limited to the materials recited above, but that other compatible materials may be used which are familiar to those skilled in the art.
What is claimed is:
1. A flexible guide wire, comprising:
an elongated inner core wire having a proximal portion and a distal portion;
a coil spring enclosing the distal portion and fixably attached thereto the coil spring including a proximal end and distal end; and
a plastic jacket enclosing and engaging the proximal portion the jacket including a proximal end and a distal end, the jacket distal end terminating at the coil spring proximal end and being substantially equal in diameter to the coil spring such that the jacket forms an extension of the coil spring.
2. A guide wire as described in claim 1, wherein the proximal portion is of uniform diameter.
3. A guide wire as described in claim 1, wherein the coil spring is attached to the inner core wire at both ends of the distal portion.
4. A guide wire as described in claim 1, wherein the inner core wire is made of stainless steel.
5. A guide wire as described in claim 1, wherein the coil spring is made of stainless steel.
6. A flexible guide wire, comprising:
an elongated inner core wire having a proximal portion and a tapered distal portion;
a coil spring enclosing the distal portion and fixably attached thereto; and
a plastic jacket enclosing and engaging the proximal portion.
7. A flexible guide wire, comprising:
an elongated inner core wire having a proximal portion and a distal portion the proximal portion of the inner core wire being of uniform diameter and the distal portion is tapered;
a coil spring enclosing the distal portion and fixably attached thereto; and
a plastic jacket enclosing and engaging the proximal portion.
8. A guide wire as described in claim 7, wherein the coil spring is attached to the inner core wire at both ends of the distal portion.
9. A guide wire as described in claim 8, wherein the inner core wire and the coil spring are formed of stainless steel.
10. A guide wire as described in claim 9, wherein the coil spring is attached to the inner core wire by soldering and the solder forms a distal tip at one end of the coil spring.

Claims (10)

1. A flexible guide wire, comprising: an elongated inner core wire having a proximal portion and a distal portion; a coil spring enclosing the distal portion and fixably attached thereto the coil spring including a proximal end and distal end; and a plastic jacket enclosing and engaging the proximal portion the jacket including a proximal end and a distal end, the jacket distal end terminating at the coil spring proximal end and being substantially equal in diameter to the coil spring such that the jacket forms an extension of the coil spring.
2. A guide wire as described in claim 1, wherein the proximal portion is of uniform diameter.
3. A guide wire as described in claim 1, wherein the coil spring is attached to the inner core wire at both ends of the distal portion.
4. A guide wire as described in claim 1, wherein the inner core wire is made of stainless steel.
5. A guide wire as described in claim 1, wherein the coil spring is made of stainless steel.
6. A flexible guide wire, comprising: an elongated inner core wire having a proximal portion and a tapered distal portion; a coil spring enclosing the distal portion and fixably attached thereto; and a plastic jacket enclosing and engaging the proximal portion.
7. A flexible guide wire, comprising: an elongated inner core wire having a proximal portion and a distal portion the proximal portion of the inner core wire being of uniform diameter and the distal portion is tapered; a coil spring enclosing the distal portion and fixably attached thereto; and a plastic jacket enclosing and engaging the proximal portion.
8. A guide wire as described in claim 7, wherein the coil spring is attached to the inner core wire at both ends of the distal portion.
9. A guide wire as described in claim 8, wherein the inner core wire and the coil spring are formed of stainless steel.
10. A guide wire as described in claim 9, wherein the coil spring is attached to the inner core wire by soldering and the solder forms a distal tip at one end of the coil spring.
US00180810A 1971-09-15 1971-09-15 Disposable guide wire Expired - Lifetime US3789841A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US18081071A 1971-09-15 1971-09-15

Publications (1)

Publication Number Publication Date
US3789841A true US3789841A (en) 1974-02-05

Family

ID=22661848

Family Applications (1)

Application Number Title Priority Date Filing Date
US00180810A Expired - Lifetime US3789841A (en) 1971-09-15 1971-09-15 Disposable guide wire

Country Status (1)

Country Link
US (1) US3789841A (en)

Cited By (186)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4003369A (en) * 1975-04-22 1977-01-18 Medrad, Inc. Angiographic guidewire with safety core wire
EP0014424A1 (en) * 1979-02-08 1980-08-20 Toray Monofilament Company Limited Medical vascular guide wire and self-guiding type catheter
US4402307A (en) * 1980-10-31 1983-09-06 Datascope Corp. Balloon catheter with rotatable energy storing support member
DE3334174A1 (en) * 1982-09-22 1984-03-22 C.R. Bard, Inc., 07974 Murray Hill, N.J. STEERABLE GUIDE WIRE FOR BALLONDILATION
US4456017A (en) * 1982-11-22 1984-06-26 Cordis Corporation Coil spring guide with deflectable tip
JPS607862A (en) * 1983-06-27 1985-01-16 テルモ株式会社 Guide wire for catheter
JPS6063066A (en) * 1983-09-16 1985-04-11 テルモ株式会社 Guide wire for catheter
JPS6063065A (en) * 1983-09-16 1985-04-11 テルモ株式会社 Guide wire for catheter
JPS60168466A (en) * 1983-11-10 1985-08-31 アドヴアンスド カ−デイオヴアスキユラ− システムズ インコ−ポレ−テツド Guide wire for catheter
US4548206A (en) * 1983-07-21 1985-10-22 Cook, Incorporated Catheter wire guide with movable mandril
US4554929A (en) * 1983-07-13 1985-11-26 Advanced Cardiovascular Systems, Inc. Catheter guide wire with short spring tip and method of using the same
EP0200430A1 (en) * 1985-04-18 1986-11-05 Advanced Cardiovascular Systems, Inc. Torsional guide wire with attenuated diameter
EP0200919A1 (en) * 1985-05-04 1986-11-12 ANGIOMED Aktiengesellschaft Guide wire
DE3528876A1 (en) * 1985-08-12 1987-02-19 Schubert Werner Guiding wire
EP0223179A2 (en) * 1985-11-21 1987-05-27 Sarcem Sa Remotely controlled catheter guide
US4721117A (en) * 1986-04-25 1988-01-26 Advanced Cardiovascular Systems, Inc. Torsionally stabilized guide wire with outer jacket
US4757827A (en) * 1987-02-17 1988-07-19 Versaflex Delivery Systems Inc. Steerable guidewire with deflectable tip
US4811743A (en) * 1987-04-21 1989-03-14 Cordis Corporation Catheter guidewire
US4813434A (en) * 1987-02-17 1989-03-21 Medtronic Versaflex, Inc. Steerable guidewire with deflectable tip
US4815478A (en) * 1987-02-17 1989-03-28 Medtronic Versaflex, Inc. Steerable guidewire with deflectable tip
US4830023A (en) * 1987-11-27 1989-05-16 Medi-Tech, Incorporated Medical guidewire
WO1989006985A1 (en) * 1988-01-27 1989-08-10 Advanced Biomedical Devices, Inc. Steerable guidewire for vascular system
US4867174A (en) * 1987-11-18 1989-09-19 Baxter Travenol Laboratories, Inc. Guidewire for medical use
US4867173A (en) * 1986-06-30 1989-09-19 Meadox Surgimed A/S Steerable guidewire
WO1989010088A1 (en) * 1988-04-18 1989-11-02 Target Therapeutics Catheter guide wire
EP0340304A1 (en) * 1987-01-07 1989-11-08 Terumo Kabushiki Kaisha Guide wire for catheters and method of manufacturing same
US4922924A (en) * 1989-04-27 1990-05-08 C. R. Bard, Inc. Catheter guidewire with varying radiopacity
US4925445A (en) * 1983-09-16 1990-05-15 Fuji Terumo Co., Ltd. Guide wire for catheter
US4934380A (en) * 1987-11-27 1990-06-19 Boston Scientific Corporation Medical guidewire
US4971490A (en) * 1988-03-01 1990-11-20 National Standard Company Flexible guide wire with improved mounting arrangement for coil spring tip
US4976690A (en) * 1989-08-10 1990-12-11 Scimed Life Systems, Inc. Variable stiffness angioplasty catheter
US4984581A (en) * 1988-10-12 1991-01-15 Flexmedics Corporation Flexible guide having two-way shape memory alloy
US4991588A (en) * 1986-07-21 1991-02-12 Pfizer Hospital Products Group, Inc. Doppler guide wire
JPH0351060A (en) * 1989-06-29 1991-03-05 Cook Inc Wire guide
EP0157862B1 (en) * 1983-10-04 1991-03-20 MÄRZ, Peter, Dr. Guiding mandrel for catheter and similar instruments and manufacturing process thereof
US5003918A (en) * 1989-12-28 1991-04-02 Interventional Technologies, Inc. Apparatus for manufacturing atherectomy torque tubes
US5054501A (en) * 1990-05-16 1991-10-08 Brigham & Women's Hospital Steerable guide wire for cannulation of tubular or vascular organs
US5059176A (en) * 1989-12-21 1991-10-22 Winters R Edward Vascular system steerable guidewire with inflatable balloon
US5067489A (en) * 1988-08-16 1991-11-26 Flexmedics Corporation Flexible guide with safety tip
US5095915A (en) * 1990-03-19 1992-03-17 Target Therapeutics Guidewire with flexible distal tip
US5102390A (en) * 1985-05-02 1992-04-07 C. R. Bard, Inc. Microdilatation probe and system for performing angioplasty in highly stenosed blood vessels
USRE33911E (en) * 1983-07-13 1992-05-05 Advanced Cardiovascular Systems, Inc. Catheter guide wire with short spring tip and method of using the same
US5111829A (en) * 1989-06-28 1992-05-12 Boston Scientific Corporation Steerable highly elongated guidewire
WO1992008501A1 (en) * 1990-11-09 1992-05-29 Medtronic, Inc. Fixed wire catheter and unitary guidewire
US5147317A (en) * 1990-06-04 1992-09-15 C.R. Bard, Inc. Low friction varied radiopacity guidewire
US5171383A (en) * 1987-01-07 1992-12-15 Terumo Kabushiki Kaisha Method of manufacturing a differentially heat treated catheter guide wire
US5176149A (en) * 1990-12-28 1993-01-05 Nivarox-Far S.A. Catheter guide support
US5190546A (en) * 1983-10-14 1993-03-02 Raychem Corporation Medical devices incorporating SIM alloy elements
US5207229A (en) * 1989-12-21 1993-05-04 Advanced Biomedical Devices, Inc. Flexibility steerable guidewire with inflatable balloon
US5234003A (en) * 1992-02-20 1993-08-10 Cook Incorporated Flexible tip wire guide
US5238004A (en) * 1990-04-10 1993-08-24 Boston Scientific Corporation High elongation linear elastic guidewire
US5243988A (en) * 1991-03-13 1993-09-14 Scimed Life Systems, Inc. Intravascular imaging apparatus and methods for use and manufacture
US5243996A (en) * 1992-01-03 1993-09-14 Cook, Incorporated Small-diameter superelastic wire guide
US5287858A (en) * 1992-09-23 1994-02-22 Pilot Cardiovascular Systems, Inc. Rotational atherectomy guidewire
US5295493A (en) * 1992-03-19 1994-03-22 Interventional Technologies, Inc. Anatomical guide wire
US5313967A (en) * 1992-07-24 1994-05-24 Medtronic, Inc. Helical guidewire
US5333620A (en) * 1991-10-30 1994-08-02 C. R. Bard, Inc. High performance plastic coated medical guidewire
USRE34695E (en) * 1986-04-25 1994-08-16 Advanced Cardiovascular Systems, Inc. Torsionally stabilized guide wire with outer jacket
US5345945A (en) * 1990-08-29 1994-09-13 Baxter International Inc. Dual coil guidewire with radiopaque distal tip
US5353798A (en) * 1991-03-13 1994-10-11 Scimed Life Systems, Incorporated Intravascular imaging apparatus and methods for use and manufacture
US5368035A (en) * 1988-03-21 1994-11-29 Boston Scientific Corporation Ultrasound imaging guidewire
US5377690A (en) * 1993-02-09 1995-01-03 C. R. Bard, Inc. Guidewire with round forming wire
US5396902A (en) * 1993-02-03 1995-03-14 Medtronic, Inc. Steerable stylet and manipulative handle assembly
US5402799A (en) * 1993-06-29 1995-04-04 Cordis Corporation Guidewire having flexible floppy tip
US5409015A (en) * 1993-05-11 1995-04-25 Target Therapeutics, Inc. Deformable tip super elastic guidewire
US5438997A (en) * 1991-03-13 1995-08-08 Sieben; Wayne Intravascular imaging apparatus and methods for use and manufacture
US5443443A (en) * 1984-05-14 1995-08-22 Surgical Systems & Instruments, Inc. Atherectomy system
US5488959A (en) * 1993-12-27 1996-02-06 Cordis Corporation Medical guidewire and welding process
US5498250A (en) * 1994-05-18 1996-03-12 Scimed Life Systems, Inc. Catheter guide wire with multiple radiopacity
US5546948A (en) * 1990-08-21 1996-08-20 Boston Scientific Corporation Ultrasound imaging guidewire
US5551444A (en) * 1995-05-31 1996-09-03 Radius Medical Technologies, Inc. Flexible guidewire with radiopaque outer coil and non-radiopaque inner coil
US5596996A (en) * 1995-03-30 1997-01-28 Medtronic, Inc. High support nitinol tube guidewire with plastic plug transition
US5662119A (en) * 1991-08-28 1997-09-02 Medtronic Inc. Steerable stylet and manipulative handle assembly
US5664580A (en) * 1995-01-31 1997-09-09 Microvena Corporation Guidewire having bimetallic coil
US5673707A (en) * 1994-09-23 1997-10-07 Boston Scientific Corporation Enhanced performance guidewire
US5682894A (en) * 1996-04-26 1997-11-04 Orr; Gregory C. Guide wire
EP0820782A2 (en) 1996-07-26 1998-01-28 Target Therapeutics, Inc. Micro-braided catheter guidewire
US5746701A (en) * 1995-09-14 1998-05-05 Medtronic, Inc. Guidewire with non-tapered tip
US5749837A (en) * 1993-05-11 1998-05-12 Target Therapeutics, Inc. Enhanced lubricity guidewire
US5769796A (en) * 1993-05-11 1998-06-23 Target Therapeutics, Inc. Super-elastic composite guidewire
US5772609A (en) * 1993-05-11 1998-06-30 Target Therapeutics, Inc. Guidewire with variable flexibility due to polymeric coatings
US5830155A (en) * 1995-10-27 1998-11-03 Cordis Corporation Guidewire assembly
US5836892A (en) * 1995-10-30 1998-11-17 Cordis Corporation Guidewire with radiopaque markers
US5851206A (en) * 1990-03-13 1998-12-22 The Regents Of The University Of California Method and apparatus for endovascular thermal thrombosis and thermal cancer treatment
US5865768A (en) * 1996-09-30 1999-02-02 Medtronic, Inc. Guide wire
EP0914803A1 (en) 1990-03-13 1999-05-12 The Regents Of The University Of California Endovascular electrolytically detachable guidewire tip
US5916178A (en) * 1995-03-30 1999-06-29 Medtronic, Inc. Steerable high support guidewire with thin wall nitinol tube
US5925059A (en) * 1993-04-19 1999-07-20 Target Therapeutics, Inc. Detachable embolic coil assembly
US5951568A (en) * 1998-03-19 1999-09-14 Schatz; Richard A. Over the wire single operator catheter with wire stabilizer
US5957865A (en) * 1997-09-25 1999-09-28 Merit Medical Systems, Inc. Flexible catheter guidewire
DE19607595C2 (en) * 1996-02-29 2000-01-20 Epflex Feinwerktech Gmbh Guide wire core, in particular for a surgical instrument
USRE36628E (en) * 1987-01-07 2000-03-28 Terumo Kabushiki Kaisha Method of manufacturing a differentially heat treated catheter guide wire
EP1005837A2 (en) 1992-02-24 2000-06-07 The Regents Of The University Of California Endovascular electrolytically detachable wire for thrombus formation
US6099485A (en) * 1996-08-27 2000-08-08 C. R. Bard, Inc. Torquable, low mass medical guidewire
US6099546A (en) * 1993-04-19 2000-08-08 Target Therapeutics, Inc. Detachable embolic coil assembly using interlocking hooks and slots
US6139510A (en) * 1994-05-11 2000-10-31 Target Therapeutics Inc. Super elastic alloy guidewire
USRE37117E1 (en) 1992-09-22 2001-03-27 Target Therapeutics, Inc. Detachable embolic coil assembly using interlocking clasps and method of use
US6488637B1 (en) 1996-04-30 2002-12-03 Target Therapeutics, Inc. Composite endovascular guidewire
US20030055332A1 (en) * 2001-09-14 2003-03-20 Wolfgang Daum MRI compatible guidewire
US20030139689A1 (en) * 2001-11-19 2003-07-24 Leonid Shturman High torque, low profile intravascular guidewire system
US20030139763A1 (en) * 2001-03-06 2003-07-24 Duerig Thomas W. Total occlusion guidewire device
US6673025B1 (en) 1993-12-01 2004-01-06 Advanced Cardiovascular Systems, Inc. Polymer coated guidewire
US20040024348A1 (en) * 2001-08-24 2004-02-05 Redding Bruce K. Substance delivery device
US6755794B2 (en) * 2000-04-25 2004-06-29 Synovis Life Technologies, Inc. Adjustable stylet
US20040236397A1 (en) * 1999-04-05 2004-11-25 The Spectranetics Corporation Lead locking device and method
US20050043585A1 (en) * 2003-01-03 2005-02-24 Arindam Datta Reticulated elastomeric matrices, their manufacture and use in implantable devices
US20050054950A1 (en) * 2003-09-05 2005-03-10 Scimed Life Systems, Inc. Medical device coil
US20050054951A1 (en) * 2003-09-05 2005-03-10 Scimed Life Systems, Inc. Medical device coil
US20060089569A1 (en) * 2004-10-26 2006-04-27 Soukup Thomas M Articulator with adjustable stiffness distal portion
US20060116714A1 (en) * 2004-11-26 2006-06-01 Ivan Sepetka Coupling and release devices and methods for their assembly and use
US20060173382A1 (en) * 2005-01-31 2006-08-03 John Schreiner Guidewire with superelastic core
US20060184105A1 (en) * 2005-02-15 2006-08-17 Townsend Gregory L Thin wall catheter and method of placing same
US20060271067A1 (en) * 2005-05-24 2006-11-30 C.R. Bard, Inc. Laser-resistant surgical devices
US20070123927A1 (en) * 2005-11-30 2007-05-31 Farnan Robert C Embolic device delivery system
US20070135733A1 (en) * 2005-12-09 2007-06-14 Soukup Thomas M Handle and articulator system and method
US20070249964A1 (en) * 1997-06-04 2007-10-25 Advanced Cardiovascular Systems, Inc. Polymer coated guide wire
US20080146967A1 (en) * 1997-06-04 2008-06-19 Richardson Mark T Polymer coated guidewire
US20080281350A1 (en) * 2006-12-13 2008-11-13 Biomerix Corporation Aneurysm Occlusion Devices
US20090043191A1 (en) * 2007-07-12 2009-02-12 Volcano Corporation Oct-ivus catheter for concurrent luminal imaging
US20090082851A1 (en) * 2007-09-25 2009-03-26 Cook Incorporated Variable stiffness wire guide
US20090275862A1 (en) * 2008-04-30 2009-11-05 Cook Incorporated Guidewire and method of making same
US20100030251A1 (en) * 2006-05-24 2010-02-04 Mayo Foundation For Medical Education And Research Devices and methods for crossing chronic total occlusions
WO2010078544A1 (en) 2009-01-05 2010-07-08 Vance Products Incorporated D/B/A Cook Urological Incorporated Medical guide wire and method of forming thereof
US7763077B2 (en) 2003-12-24 2010-07-27 Biomerix Corporation Repair of spinal annular defects and annulo-nucleoplasty regeneration
US7803395B2 (en) 2003-05-15 2010-09-28 Biomerix Corporation Reticulated elastomeric matrices, their manufacture and use in implantable devices
US7883474B1 (en) 1993-05-11 2011-02-08 Target Therapeutics, Inc. Composite braided guidewire
US20110184530A1 (en) * 2004-05-17 2011-07-28 Biomerix Corporation High performance reticulated elastomeric matrix preparation, properties, reinforcement, and use in surgical devices, tissue augmentation and/or tissue repair
USRE42625E1 (en) 1990-03-13 2011-08-16 The Regents Of The University Of California Endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
USRE42662E1 (en) 1990-03-13 2011-08-30 The Regents Of The University Of California Endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
USRE42756E1 (en) 1990-03-13 2011-09-27 The Regents Of The University Of California Endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
US8308658B2 (en) 2007-04-13 2012-11-13 Neometrics, Inc. Medical guidewire
US9017246B2 (en) 2010-11-19 2015-04-28 Boston Scientific Scimed, Inc. Biliary catheter systems including stabilizing members
US9286673B2 (en) 2012-10-05 2016-03-15 Volcano Corporation Systems for correcting distortions in a medical image and methods of use thereof
US9292918B2 (en) 2012-10-05 2016-03-22 Volcano Corporation Methods and systems for transforming luminal images
US9301687B2 (en) 2013-03-13 2016-04-05 Volcano Corporation System and method for OCT depth calibration
US9307926B2 (en) 2012-10-05 2016-04-12 Volcano Corporation Automatic stent detection
US9324141B2 (en) 2012-10-05 2016-04-26 Volcano Corporation Removal of A-scan streaking artifact
US9360630B2 (en) 2011-08-31 2016-06-07 Volcano Corporation Optical-electrical rotary joint and methods of use
US9367965B2 (en) 2012-10-05 2016-06-14 Volcano Corporation Systems and methods for generating images of tissue
US9383263B2 (en) 2012-12-21 2016-07-05 Volcano Corporation Systems and methods for narrowing a wavelength emission of light
US9478940B2 (en) 2012-10-05 2016-10-25 Volcano Corporation Systems and methods for amplifying light
US9486143B2 (en) 2012-12-21 2016-11-08 Volcano Corporation Intravascular forward imaging device
US9596993B2 (en) 2007-07-12 2017-03-21 Volcano Corporation Automatic calibration systems and methods of use
US9612105B2 (en) 2012-12-21 2017-04-04 Volcano Corporation Polarization sensitive optical coherence tomography system
US9622706B2 (en) 2007-07-12 2017-04-18 Volcano Corporation Catheter for in vivo imaging
US9709379B2 (en) 2012-12-20 2017-07-18 Volcano Corporation Optical coherence tomography system that is reconfigurable between different imaging modes
US9730613B2 (en) 2012-12-20 2017-08-15 Volcano Corporation Locating intravascular images
US9770172B2 (en) 2013-03-07 2017-09-26 Volcano Corporation Multimodal segmentation in intravascular images
US9858668B2 (en) 2012-10-05 2018-01-02 Volcano Corporation Guidewire artifact removal in images
US9867530B2 (en) 2006-08-14 2018-01-16 Volcano Corporation Telescopic side port catheter device with imaging system and method for accessing side branch occlusions
US10058284B2 (en) 2012-12-21 2018-08-28 Volcano Corporation Simultaneous imaging, monitoring, and therapy
US10070827B2 (en) 2012-10-05 2018-09-11 Volcano Corporation Automatic image playback
US10166003B2 (en) 2012-12-21 2019-01-01 Volcano Corporation Ultrasound imaging with variable line density
US10191220B2 (en) 2012-12-21 2019-01-29 Volcano Corporation Power-efficient optical circuit
US10219887B2 (en) 2013-03-14 2019-03-05 Volcano Corporation Filters with echogenic characteristics
US10226597B2 (en) 2013-03-07 2019-03-12 Volcano Corporation Guidewire with centering mechanism
US10238367B2 (en) 2012-12-13 2019-03-26 Volcano Corporation Devices, systems, and methods for targeted cannulation
US10258240B1 (en) 2014-11-24 2019-04-16 Vascular Imaging Corporation Optical fiber pressure sensor
US10292677B2 (en) 2013-03-14 2019-05-21 Volcano Corporation Endoluminal filter having enhanced echogenic properties
US10327645B2 (en) 2013-10-04 2019-06-25 Vascular Imaging Corporation Imaging techniques using an imaging guidewire
US10332228B2 (en) 2012-12-21 2019-06-25 Volcano Corporation System and method for graphical processing of medical data
US10413317B2 (en) 2012-12-21 2019-09-17 Volcano Corporation System and method for catheter steering and operation
US10420530B2 (en) 2012-12-21 2019-09-24 Volcano Corporation System and method for multipath processing of image signals
US10426590B2 (en) 2013-03-14 2019-10-01 Volcano Corporation Filters with echogenic characteristics
US10506934B2 (en) 2012-05-25 2019-12-17 Phyzhon Health Inc. Optical fiber pressure sensor
US10537255B2 (en) 2013-11-21 2020-01-21 Phyzhon Health Inc. Optical fiber pressure sensor
US10568586B2 (en) 2012-10-05 2020-02-25 Volcano Corporation Systems for indicating parameters in an imaging data set and methods of use
US10595820B2 (en) 2012-12-20 2020-03-24 Philips Image Guided Therapy Corporation Smooth transition catheters
US10638939B2 (en) 2013-03-12 2020-05-05 Philips Image Guided Therapy Corporation Systems and methods for diagnosing coronary microvascular disease
US10724082B2 (en) 2012-10-22 2020-07-28 Bio-Rad Laboratories, Inc. Methods for analyzing DNA
US10758207B2 (en) 2013-03-13 2020-09-01 Philips Image Guided Therapy Corporation Systems and methods for producing an image from a rotational intravascular ultrasound device
US10835718B2 (en) 2016-03-28 2020-11-17 Becton, Dickinson And Company Cannula with light-emitting optical fiber
US10850046B2 (en) 2016-03-28 2020-12-01 Becton, Dickinson And Company Cannula locator device
CN112023226A (en) * 2020-11-04 2020-12-04 上海心玮医疗科技有限公司 Adjustable curved seal wire
US10942022B2 (en) 2012-12-20 2021-03-09 Philips Image Guided Therapy Corporation Manual calibration of imaging system
US10939826B2 (en) 2012-12-20 2021-03-09 Philips Image Guided Therapy Corporation Aspirating and removing biological material
US10993694B2 (en) 2012-12-21 2021-05-04 Philips Image Guided Therapy Corporation Rotational ultrasound imaging catheter with extended catheter body telescope
US11026591B2 (en) 2013-03-13 2021-06-08 Philips Image Guided Therapy Corporation Intravascular pressure sensor calibration
US11040140B2 (en) 2010-12-31 2021-06-22 Philips Image Guided Therapy Corporation Deep vein thrombosis therapeutic methods
US11141063B2 (en) 2010-12-23 2021-10-12 Philips Image Guided Therapy Corporation Integrated system architectures and methods of use
US11154313B2 (en) 2013-03-12 2021-10-26 The Volcano Corporation Vibrating guidewire torquer and methods of use
US11272845B2 (en) 2012-10-05 2022-03-15 Philips Image Guided Therapy Corporation System and method for instant and automatic border detection
US11406498B2 (en) 2012-12-20 2022-08-09 Philips Image Guided Therapy Corporation Implant delivery system and implants
US11446073B2 (en) * 2019-08-26 2022-09-20 DePuy Synthes Products, Inc. Flexible shaft support rod
US11452533B2 (en) 2019-01-10 2022-09-27 Abbott Cardiovascular Systems Inc. Guide wire tip having roughened surface
US11478150B2 (en) 2016-03-28 2022-10-25 Becton, Dickinson And Company Optical fiber sensor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3452740A (en) * 1966-05-31 1969-07-01 Us Catheter & Instr Corp Spring guide manipulator
US3547103A (en) * 1965-10-29 1970-12-15 William A Cook Coil spring guide
US3612058A (en) * 1968-04-17 1971-10-12 Electro Catheter Corp Catheter stylets

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3547103A (en) * 1965-10-29 1970-12-15 William A Cook Coil spring guide
US3452740A (en) * 1966-05-31 1969-07-01 Us Catheter & Instr Corp Spring guide manipulator
US3612058A (en) * 1968-04-17 1971-10-12 Electro Catheter Corp Catheter stylets

Cited By (238)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4003369A (en) * 1975-04-22 1977-01-18 Medrad, Inc. Angiographic guidewire with safety core wire
US4080706A (en) * 1975-04-22 1978-03-28 Medrad, Inc. Method of manufacturing catheter guidewire
EP0014424A1 (en) * 1979-02-08 1980-08-20 Toray Monofilament Company Limited Medical vascular guide wire and self-guiding type catheter
US4402307A (en) * 1980-10-31 1983-09-06 Datascope Corp. Balloon catheter with rotatable energy storing support member
JPS5977866A (en) * 1982-09-22 1984-05-04 シ−・ア−ル・バ−ド・インコ−ポレ−テツド Guide wire
FR2533130A1 (en) * 1982-09-22 1984-03-23 Bard Inc C R GUIDING GUIDE WIRE FOR BALLOON EXPANSION CATHETERS
DE3334174A1 (en) * 1982-09-22 1984-03-22 C.R. Bard, Inc., 07974 Murray Hill, N.J. STEERABLE GUIDE WIRE FOR BALLONDILATION
JPH045467B2 (en) * 1982-09-22 1992-01-31
US4545390A (en) * 1982-09-22 1985-10-08 C. R. Bard, Inc. Steerable guide wire for balloon dilatation procedure
US4456017A (en) * 1982-11-22 1984-06-26 Cordis Corporation Coil spring guide with deflectable tip
JPS607862A (en) * 1983-06-27 1985-01-16 テルモ株式会社 Guide wire for catheter
JPH0224548B2 (en) * 1983-06-27 1990-05-29 Terumo Corp
US4554929A (en) * 1983-07-13 1985-11-26 Advanced Cardiovascular Systems, Inc. Catheter guide wire with short spring tip and method of using the same
USRE33911E (en) * 1983-07-13 1992-05-05 Advanced Cardiovascular Systems, Inc. Catheter guide wire with short spring tip and method of using the same
US4548206A (en) * 1983-07-21 1985-10-22 Cook, Incorporated Catheter wire guide with movable mandril
US4925445A (en) * 1983-09-16 1990-05-15 Fuji Terumo Co., Ltd. Guide wire for catheter
JPS6063066A (en) * 1983-09-16 1985-04-11 テルモ株式会社 Guide wire for catheter
JPH0224549B2 (en) * 1983-09-16 1990-05-29 Terumo Corp
JPH0224550B2 (en) * 1983-09-16 1990-05-29 Terumo Corp
JPS6063065A (en) * 1983-09-16 1985-04-11 テルモ株式会社 Guide wire for catheter
EP0157862B1 (en) * 1983-10-04 1991-03-20 MÄRZ, Peter, Dr. Guiding mandrel for catheter and similar instruments and manufacturing process thereof
US5597378A (en) * 1983-10-14 1997-01-28 Raychem Corporation Medical devices incorporating SIM alloy elements
US6306141B1 (en) 1983-10-14 2001-10-23 Medtronic, Inc. Medical devices incorporating SIM alloy elements
US5190546A (en) * 1983-10-14 1993-03-02 Raychem Corporation Medical devices incorporating SIM alloy elements
JPS60168466A (en) * 1983-11-10 1985-08-31 アドヴアンスド カ−デイオヴアスキユラ− システムズ インコ−ポレ−テツド Guide wire for catheter
JPH0425024B2 (en) * 1983-11-10 1992-04-28 Advanced Cardiovascular System
US4538622A (en) * 1983-11-10 1985-09-03 Advanced Cardiovascular Systems, Inc. Guide wire for catheters
US5443443A (en) * 1984-05-14 1995-08-22 Surgical Systems & Instruments, Inc. Atherectomy system
EP0200430A1 (en) * 1985-04-18 1986-11-05 Advanced Cardiovascular Systems, Inc. Torsional guide wire with attenuated diameter
US5102390A (en) * 1985-05-02 1992-04-07 C. R. Bard, Inc. Microdilatation probe and system for performing angioplasty in highly stenosed blood vessels
EP0200919A1 (en) * 1985-05-04 1986-11-12 ANGIOMED Aktiengesellschaft Guide wire
DE3528876A1 (en) * 1985-08-12 1987-02-19 Schubert Werner Guiding wire
US4732163A (en) * 1985-11-21 1988-03-22 Sarcem S.A. Remote controlled guide for a catheter
EP0223179A2 (en) * 1985-11-21 1987-05-27 Sarcem Sa Remotely controlled catheter guide
EP0223179A3 (en) * 1985-11-21 1987-10-21 Sarcem Sa Remotely controlled catheter guide
USRE34695E (en) * 1986-04-25 1994-08-16 Advanced Cardiovascular Systems, Inc. Torsionally stabilized guide wire with outer jacket
US4721117A (en) * 1986-04-25 1988-01-26 Advanced Cardiovascular Systems, Inc. Torsionally stabilized guide wire with outer jacket
US4867173A (en) * 1986-06-30 1989-09-19 Meadox Surgimed A/S Steerable guidewire
US4991588A (en) * 1986-07-21 1991-02-12 Pfizer Hospital Products Group, Inc. Doppler guide wire
EP0340304A1 (en) * 1987-01-07 1989-11-08 Terumo Kabushiki Kaisha Guide wire for catheters and method of manufacturing same
US5171383A (en) * 1987-01-07 1992-12-15 Terumo Kabushiki Kaisha Method of manufacturing a differentially heat treated catheter guide wire
EP0340304A4 (en) * 1987-01-07 1990-01-26 Terumo Corp Guide wire for catheters and method of manufacturing same.
USRE36628E (en) * 1987-01-07 2000-03-28 Terumo Kabushiki Kaisha Method of manufacturing a differentially heat treated catheter guide wire
US4813434A (en) * 1987-02-17 1989-03-21 Medtronic Versaflex, Inc. Steerable guidewire with deflectable tip
US4815478A (en) * 1987-02-17 1989-03-28 Medtronic Versaflex, Inc. Steerable guidewire with deflectable tip
US4757827A (en) * 1987-02-17 1988-07-19 Versaflex Delivery Systems Inc. Steerable guidewire with deflectable tip
US4811743A (en) * 1987-04-21 1989-03-14 Cordis Corporation Catheter guidewire
US4867174A (en) * 1987-11-18 1989-09-19 Baxter Travenol Laboratories, Inc. Guidewire for medical use
US4830023A (en) * 1987-11-27 1989-05-16 Medi-Tech, Incorporated Medical guidewire
US4934380A (en) * 1987-11-27 1990-06-19 Boston Scientific Corporation Medical guidewire
US4873983A (en) * 1988-01-27 1989-10-17 Advanced Biomedical Devices, Inc. Steerable guidewire for vascular system
WO1989006985A1 (en) * 1988-01-27 1989-08-10 Advanced Biomedical Devices, Inc. Steerable guidewire for vascular system
US4971490A (en) * 1988-03-01 1990-11-20 National Standard Company Flexible guide wire with improved mounting arrangement for coil spring tip
US5368035A (en) * 1988-03-21 1994-11-29 Boston Scientific Corporation Ultrasound imaging guidewire
WO1989010088A1 (en) * 1988-04-18 1989-11-02 Target Therapeutics Catheter guide wire
US4884579A (en) * 1988-04-18 1989-12-05 Target Therapeutics Catheter guide wire
AU624383B2 (en) * 1988-04-18 1992-06-11 Target Therapeutics, Inc. Catheter guide wire
US5067489A (en) * 1988-08-16 1991-11-26 Flexmedics Corporation Flexible guide with safety tip
US4984581A (en) * 1988-10-12 1991-01-15 Flexmedics Corporation Flexible guide having two-way shape memory alloy
US4922924A (en) * 1989-04-27 1990-05-08 C. R. Bard, Inc. Catheter guidewire with varying radiopacity
US5111829A (en) * 1989-06-28 1992-05-12 Boston Scientific Corporation Steerable highly elongated guidewire
JPH0351060A (en) * 1989-06-29 1991-03-05 Cook Inc Wire guide
JPH0445189B2 (en) * 1989-06-29 1992-07-24 Kutsuku Inc
US4976690A (en) * 1989-08-10 1990-12-11 Scimed Life Systems, Inc. Variable stiffness angioplasty catheter
US5059176A (en) * 1989-12-21 1991-10-22 Winters R Edward Vascular system steerable guidewire with inflatable balloon
US5207229A (en) * 1989-12-21 1993-05-04 Advanced Biomedical Devices, Inc. Flexibility steerable guidewire with inflatable balloon
US5003918A (en) * 1989-12-28 1991-04-02 Interventional Technologies, Inc. Apparatus for manufacturing atherectomy torque tubes
US5851206A (en) * 1990-03-13 1998-12-22 The Regents Of The University Of California Method and apparatus for endovascular thermal thrombosis and thermal cancer treatment
EP1329196A1 (en) 1990-03-13 2003-07-23 The Regents of the University of California Endovascular electrolytically detachable guidewire tip
EP0914803A1 (en) 1990-03-13 1999-05-12 The Regents Of The University Of California Endovascular electrolytically detachable guidewire tip
US5919187A (en) * 1990-03-13 1999-07-06 The Regents Of The University Of California Method and apparatus for endovascular thermal thrombosis and thermal cancer treatment
USRE42625E1 (en) 1990-03-13 2011-08-16 The Regents Of The University Of California Endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
USRE42662E1 (en) 1990-03-13 2011-08-30 The Regents Of The University Of California Endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
USRE42756E1 (en) 1990-03-13 2011-09-27 The Regents Of The University Of California Endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
US5599492A (en) * 1990-03-19 1997-02-04 Target Therapeutics, Inc. Method for making a guidewire with a flexible distal tip
US5095915A (en) * 1990-03-19 1992-03-17 Target Therapeutics Guidewire with flexible distal tip
US5238004A (en) * 1990-04-10 1993-08-24 Boston Scientific Corporation High elongation linear elastic guidewire
WO1991017698A1 (en) * 1990-05-16 1991-11-28 Brigham And Women's Hospital Steerable guide wire for tubular cannulation
US5054501A (en) * 1990-05-16 1991-10-08 Brigham & Women's Hospital Steerable guide wire for cannulation of tubular or vascular organs
US5147317A (en) * 1990-06-04 1992-09-15 C.R. Bard, Inc. Low friction varied radiopacity guidewire
US5546948A (en) * 1990-08-21 1996-08-20 Boston Scientific Corporation Ultrasound imaging guidewire
US5345945A (en) * 1990-08-29 1994-09-13 Baxter International Inc. Dual coil guidewire with radiopaque distal tip
WO1992008501A1 (en) * 1990-11-09 1992-05-29 Medtronic, Inc. Fixed wire catheter and unitary guidewire
US5176149A (en) * 1990-12-28 1993-01-05 Nivarox-Far S.A. Catheter guide support
US5243988A (en) * 1991-03-13 1993-09-14 Scimed Life Systems, Inc. Intravascular imaging apparatus and methods for use and manufacture
US5438997A (en) * 1991-03-13 1995-08-08 Sieben; Wayne Intravascular imaging apparatus and methods for use and manufacture
US5353798A (en) * 1991-03-13 1994-10-11 Scimed Life Systems, Incorporated Intravascular imaging apparatus and methods for use and manufacture
US5662119A (en) * 1991-08-28 1997-09-02 Medtronic Inc. Steerable stylet and manipulative handle assembly
US5873842A (en) * 1991-08-28 1999-02-23 Medtronic, Inc. Steerable stylet and manipulative handle assembly
US5333620A (en) * 1991-10-30 1994-08-02 C. R. Bard, Inc. High performance plastic coated medical guidewire
US5243996A (en) * 1992-01-03 1993-09-14 Cook, Incorporated Small-diameter superelastic wire guide
US5234003A (en) * 1992-02-20 1993-08-10 Cook Incorporated Flexible tip wire guide
EP1323385A2 (en) 1992-02-24 2003-07-02 The Regents of The University of California Endovascular electrolytically detachable wire for thrombus formation
EP1005837A2 (en) 1992-02-24 2000-06-07 The Regents Of The University Of California Endovascular electrolytically detachable wire for thrombus formation
US5295493A (en) * 1992-03-19 1994-03-22 Interventional Technologies, Inc. Anatomical guide wire
US5313967A (en) * 1992-07-24 1994-05-24 Medtronic, Inc. Helical guidewire
USRE37117E1 (en) 1992-09-22 2001-03-27 Target Therapeutics, Inc. Detachable embolic coil assembly using interlocking clasps and method of use
US5415170A (en) * 1992-09-23 1995-05-16 Pilot Cardiovascular Systems, Inc. Rotational atherectomy guidewire
US5287858A (en) * 1992-09-23 1994-02-22 Pilot Cardiovascular Systems, Inc. Rotational atherectomy guidewire
US5396902A (en) * 1993-02-03 1995-03-14 Medtronic, Inc. Steerable stylet and manipulative handle assembly
US5377690A (en) * 1993-02-09 1995-01-03 C. R. Bard, Inc. Guidewire with round forming wire
US6099546A (en) * 1993-04-19 2000-08-08 Target Therapeutics, Inc. Detachable embolic coil assembly using interlocking hooks and slots
US5925059A (en) * 1993-04-19 1999-07-20 Target Therapeutics, Inc. Detachable embolic coil assembly
US5409015A (en) * 1993-05-11 1995-04-25 Target Therapeutics, Inc. Deformable tip super elastic guidewire
US5636642A (en) * 1993-05-11 1997-06-10 Target Therapeutics, Inc. Deformable tip super elastic guidewire
US5769796A (en) * 1993-05-11 1998-06-23 Target Therapeutics, Inc. Super-elastic composite guidewire
US5749837A (en) * 1993-05-11 1998-05-12 Target Therapeutics, Inc. Enhanced lubricity guidewire
US7883474B1 (en) 1993-05-11 2011-02-08 Target Therapeutics, Inc. Composite braided guidewire
US5772609A (en) * 1993-05-11 1998-06-30 Target Therapeutics, Inc. Guidewire with variable flexibility due to polymeric coatings
US5402799A (en) * 1993-06-29 1995-04-04 Cordis Corporation Guidewire having flexible floppy tip
US6673025B1 (en) 1993-12-01 2004-01-06 Advanced Cardiovascular Systems, Inc. Polymer coated guidewire
US5488959A (en) * 1993-12-27 1996-02-06 Cordis Corporation Medical guidewire and welding process
US6139510A (en) * 1994-05-11 2000-10-31 Target Therapeutics Inc. Super elastic alloy guidewire
US5498250A (en) * 1994-05-18 1996-03-12 Scimed Life Systems, Inc. Catheter guide wire with multiple radiopacity
US5673707A (en) * 1994-09-23 1997-10-07 Boston Scientific Corporation Enhanced performance guidewire
US5664580A (en) * 1995-01-31 1997-09-09 Microvena Corporation Guidewire having bimetallic coil
US5916178A (en) * 1995-03-30 1999-06-29 Medtronic, Inc. Steerable high support guidewire with thin wall nitinol tube
US5596996A (en) * 1995-03-30 1997-01-28 Medtronic, Inc. High support nitinol tube guidewire with plastic plug transition
US5551444A (en) * 1995-05-31 1996-09-03 Radius Medical Technologies, Inc. Flexible guidewire with radiopaque outer coil and non-radiopaque inner coil
US5746701A (en) * 1995-09-14 1998-05-05 Medtronic, Inc. Guidewire with non-tapered tip
US5830155A (en) * 1995-10-27 1998-11-03 Cordis Corporation Guidewire assembly
US5836892A (en) * 1995-10-30 1998-11-17 Cordis Corporation Guidewire with radiopaque markers
DE19607595C2 (en) * 1996-02-29 2000-01-20 Epflex Feinwerktech Gmbh Guide wire core, in particular for a surgical instrument
US5682894A (en) * 1996-04-26 1997-11-04 Orr; Gregory C. Guide wire
US6488637B1 (en) 1996-04-30 2002-12-03 Target Therapeutics, Inc. Composite endovascular guidewire
EP1287846A2 (en) 1996-04-30 2003-03-05 Target Therapeutics, Inc. Composite endovascular guidewire
EP0820782A2 (en) 1996-07-26 1998-01-28 Target Therapeutics, Inc. Micro-braided catheter guidewire
US5827201A (en) * 1996-07-26 1998-10-27 Target Therapeutics, Inc. Micro-braided guidewire
US6099485A (en) * 1996-08-27 2000-08-08 C. R. Bard, Inc. Torquable, low mass medical guidewire
US5865768A (en) * 1996-09-30 1999-02-02 Medtronic, Inc. Guide wire
US7494474B2 (en) 1997-06-04 2009-02-24 Advanced Cardiovascular Systems, Inc. Polymer coated guidewire
US20080146967A1 (en) * 1997-06-04 2008-06-19 Richardson Mark T Polymer coated guidewire
US20070249964A1 (en) * 1997-06-04 2007-10-25 Advanced Cardiovascular Systems, Inc. Polymer coated guide wire
US7455646B2 (en) 1997-06-04 2008-11-25 Advanced Cardiovascular Systems, Inc. Polymer coated guide wire
US5957865A (en) * 1997-09-25 1999-09-28 Merit Medical Systems, Inc. Flexible catheter guidewire
US5951568A (en) * 1998-03-19 1999-09-14 Schatz; Richard A. Over the wire single operator catheter with wire stabilizer
US20040236397A1 (en) * 1999-04-05 2004-11-25 The Spectranetics Corporation Lead locking device and method
US8428747B2 (en) 1999-04-05 2013-04-23 The Spectranetics Corp. Lead locking device and method
US6755794B2 (en) * 2000-04-25 2004-06-29 Synovis Life Technologies, Inc. Adjustable stylet
US8961555B2 (en) 2001-03-06 2015-02-24 Cordis Corporation Total occlusion guidewire device
US8556926B2 (en) 2001-03-06 2013-10-15 Cordis Corporation Total occlusion guidewire device
US8118827B2 (en) 2001-03-06 2012-02-21 Cordis Corporation Total occlusion guidewire device
US8968350B2 (en) 2001-03-06 2015-03-03 Cordis Corporation Total occlusion guidewire device
US20030139763A1 (en) * 2001-03-06 2003-07-24 Duerig Thomas W. Total occlusion guidewire device
US20040024348A1 (en) * 2001-08-24 2004-02-05 Redding Bruce K. Substance delivery device
US20030055332A1 (en) * 2001-09-14 2003-03-20 Wolfgang Daum MRI compatible guidewire
US20030139689A1 (en) * 2001-11-19 2003-07-24 Leonid Shturman High torque, low profile intravascular guidewire system
US20050043585A1 (en) * 2003-01-03 2005-02-24 Arindam Datta Reticulated elastomeric matrices, their manufacture and use in implantable devices
US7803395B2 (en) 2003-05-15 2010-09-28 Biomerix Corporation Reticulated elastomeric matrices, their manufacture and use in implantable devices
US20050054951A1 (en) * 2003-09-05 2005-03-10 Scimed Life Systems, Inc. Medical device coil
US7540845B2 (en) 2003-09-05 2009-06-02 Boston Scientific Scimed, Inc Medical device coil
US20050054950A1 (en) * 2003-09-05 2005-03-10 Scimed Life Systems, Inc. Medical device coil
US7833175B2 (en) 2003-09-05 2010-11-16 Boston Scientific Scimed, Inc. Medical device coil
US7763077B2 (en) 2003-12-24 2010-07-27 Biomerix Corporation Repair of spinal annular defects and annulo-nucleoplasty regeneration
US20110184530A1 (en) * 2004-05-17 2011-07-28 Biomerix Corporation High performance reticulated elastomeric matrix preparation, properties, reinforcement, and use in surgical devices, tissue augmentation and/or tissue repair
US20060089569A1 (en) * 2004-10-26 2006-04-27 Soukup Thomas M Articulator with adjustable stiffness distal portion
US20060116714A1 (en) * 2004-11-26 2006-06-01 Ivan Sepetka Coupling and release devices and methods for their assembly and use
US20060173382A1 (en) * 2005-01-31 2006-08-03 John Schreiner Guidewire with superelastic core
US20060184105A1 (en) * 2005-02-15 2006-08-17 Townsend Gregory L Thin wall catheter and method of placing same
US20060271067A1 (en) * 2005-05-24 2006-11-30 C.R. Bard, Inc. Laser-resistant surgical devices
US20070123927A1 (en) * 2005-11-30 2007-05-31 Farnan Robert C Embolic device delivery system
US20070135733A1 (en) * 2005-12-09 2007-06-14 Soukup Thomas M Handle and articulator system and method
US7892186B2 (en) 2005-12-09 2011-02-22 Heraeus Materials S.A. Handle and articulator system and method
US20100030251A1 (en) * 2006-05-24 2010-02-04 Mayo Foundation For Medical Education And Research Devices and methods for crossing chronic total occlusions
US9867530B2 (en) 2006-08-14 2018-01-16 Volcano Corporation Telescopic side port catheter device with imaging system and method for accessing side branch occlusions
US20080281350A1 (en) * 2006-12-13 2008-11-13 Biomerix Corporation Aneurysm Occlusion Devices
US8308658B2 (en) 2007-04-13 2012-11-13 Neometrics, Inc. Medical guidewire
US11350906B2 (en) 2007-07-12 2022-06-07 Philips Image Guided Therapy Corporation OCT-IVUS catheter for concurrent luminal imaging
US9596993B2 (en) 2007-07-12 2017-03-21 Volcano Corporation Automatic calibration systems and methods of use
US20090043191A1 (en) * 2007-07-12 2009-02-12 Volcano Corporation Oct-ivus catheter for concurrent luminal imaging
US10219780B2 (en) 2007-07-12 2019-03-05 Volcano Corporation OCT-IVUS catheter for concurrent luminal imaging
US9622706B2 (en) 2007-07-12 2017-04-18 Volcano Corporation Catheter for in vivo imaging
US20090082851A1 (en) * 2007-09-25 2009-03-26 Cook Incorporated Variable stiffness wire guide
US8241230B2 (en) 2007-09-25 2012-08-14 Cook Medical Technologies Llc Variable stiffness wire guide
US20090275862A1 (en) * 2008-04-30 2009-11-05 Cook Incorporated Guidewire and method of making same
WO2010078544A1 (en) 2009-01-05 2010-07-08 Vance Products Incorporated D/B/A Cook Urological Incorporated Medical guide wire and method of forming thereof
US9017246B2 (en) 2010-11-19 2015-04-28 Boston Scientific Scimed, Inc. Biliary catheter systems including stabilizing members
US11141063B2 (en) 2010-12-23 2021-10-12 Philips Image Guided Therapy Corporation Integrated system architectures and methods of use
US11040140B2 (en) 2010-12-31 2021-06-22 Philips Image Guided Therapy Corporation Deep vein thrombosis therapeutic methods
US9360630B2 (en) 2011-08-31 2016-06-07 Volcano Corporation Optical-electrical rotary joint and methods of use
US11172833B2 (en) 2012-05-25 2021-11-16 Phyzhon Health Inc. Optical fiber pressure sensor guidewire
US10506934B2 (en) 2012-05-25 2019-12-17 Phyzhon Health Inc. Optical fiber pressure sensor
US9478940B2 (en) 2012-10-05 2016-10-25 Volcano Corporation Systems and methods for amplifying light
US9286673B2 (en) 2012-10-05 2016-03-15 Volcano Corporation Systems for correcting distortions in a medical image and methods of use thereof
US9292918B2 (en) 2012-10-05 2016-03-22 Volcano Corporation Methods and systems for transforming luminal images
US11272845B2 (en) 2012-10-05 2022-03-15 Philips Image Guided Therapy Corporation System and method for instant and automatic border detection
US11890117B2 (en) 2012-10-05 2024-02-06 Philips Image Guided Therapy Corporation Systems for indicating parameters in an imaging data set and methods of use
US11510632B2 (en) 2012-10-05 2022-11-29 Philips Image Guided Therapy Corporation Systems for indicating parameters in an imaging data set and methods of use
US9858668B2 (en) 2012-10-05 2018-01-02 Volcano Corporation Guidewire artifact removal in images
US9324141B2 (en) 2012-10-05 2016-04-26 Volcano Corporation Removal of A-scan streaking artifact
US9307926B2 (en) 2012-10-05 2016-04-12 Volcano Corporation Automatic stent detection
US10070827B2 (en) 2012-10-05 2018-09-11 Volcano Corporation Automatic image playback
US11864870B2 (en) 2012-10-05 2024-01-09 Philips Image Guided Therapy Corporation System and method for instant and automatic border detection
US10568586B2 (en) 2012-10-05 2020-02-25 Volcano Corporation Systems for indicating parameters in an imaging data set and methods of use
US9367965B2 (en) 2012-10-05 2016-06-14 Volcano Corporation Systems and methods for generating images of tissue
US10724082B2 (en) 2012-10-22 2020-07-28 Bio-Rad Laboratories, Inc. Methods for analyzing DNA
US10238367B2 (en) 2012-12-13 2019-03-26 Volcano Corporation Devices, systems, and methods for targeted cannulation
US10939826B2 (en) 2012-12-20 2021-03-09 Philips Image Guided Therapy Corporation Aspirating and removing biological material
US11406498B2 (en) 2012-12-20 2022-08-09 Philips Image Guided Therapy Corporation Implant delivery system and implants
US11892289B2 (en) 2012-12-20 2024-02-06 Philips Image Guided Therapy Corporation Manual calibration of imaging system
US9709379B2 (en) 2012-12-20 2017-07-18 Volcano Corporation Optical coherence tomography system that is reconfigurable between different imaging modes
US9730613B2 (en) 2012-12-20 2017-08-15 Volcano Corporation Locating intravascular images
US11141131B2 (en) 2012-12-20 2021-10-12 Philips Image Guided Therapy Corporation Smooth transition catheters
US10942022B2 (en) 2012-12-20 2021-03-09 Philips Image Guided Therapy Corporation Manual calibration of imaging system
US10595820B2 (en) 2012-12-20 2020-03-24 Philips Image Guided Therapy Corporation Smooth transition catheters
US10332228B2 (en) 2012-12-21 2019-06-25 Volcano Corporation System and method for graphical processing of medical data
US10420530B2 (en) 2012-12-21 2019-09-24 Volcano Corporation System and method for multipath processing of image signals
US10993694B2 (en) 2012-12-21 2021-05-04 Philips Image Guided Therapy Corporation Rotational ultrasound imaging catheter with extended catheter body telescope
US11786213B2 (en) 2012-12-21 2023-10-17 Philips Image Guided Therapy Corporation System and method for multipath processing of image signals
US10413317B2 (en) 2012-12-21 2019-09-17 Volcano Corporation System and method for catheter steering and operation
US10191220B2 (en) 2012-12-21 2019-01-29 Volcano Corporation Power-efficient optical circuit
US9383263B2 (en) 2012-12-21 2016-07-05 Volcano Corporation Systems and methods for narrowing a wavelength emission of light
US9612105B2 (en) 2012-12-21 2017-04-04 Volcano Corporation Polarization sensitive optical coherence tomography system
US9486143B2 (en) 2012-12-21 2016-11-08 Volcano Corporation Intravascular forward imaging device
US10058284B2 (en) 2012-12-21 2018-08-28 Volcano Corporation Simultaneous imaging, monitoring, and therapy
US11253225B2 (en) 2012-12-21 2022-02-22 Philips Image Guided Therapy Corporation System and method for multipath processing of image signals
US10166003B2 (en) 2012-12-21 2019-01-01 Volcano Corporation Ultrasound imaging with variable line density
US9770172B2 (en) 2013-03-07 2017-09-26 Volcano Corporation Multimodal segmentation in intravascular images
US10226597B2 (en) 2013-03-07 2019-03-12 Volcano Corporation Guidewire with centering mechanism
US11154313B2 (en) 2013-03-12 2021-10-26 The Volcano Corporation Vibrating guidewire torquer and methods of use
US10638939B2 (en) 2013-03-12 2020-05-05 Philips Image Guided Therapy Corporation Systems and methods for diagnosing coronary microvascular disease
US9301687B2 (en) 2013-03-13 2016-04-05 Volcano Corporation System and method for OCT depth calibration
US10758207B2 (en) 2013-03-13 2020-09-01 Philips Image Guided Therapy Corporation Systems and methods for producing an image from a rotational intravascular ultrasound device
US11026591B2 (en) 2013-03-13 2021-06-08 Philips Image Guided Therapy Corporation Intravascular pressure sensor calibration
US10219887B2 (en) 2013-03-14 2019-03-05 Volcano Corporation Filters with echogenic characteristics
US10292677B2 (en) 2013-03-14 2019-05-21 Volcano Corporation Endoluminal filter having enhanced echogenic properties
US10426590B2 (en) 2013-03-14 2019-10-01 Volcano Corporation Filters with echogenic characteristics
US11298026B2 (en) 2013-10-04 2022-04-12 Phyzhon Health Inc. Imaging techniques using an imaging guidewire
US10327645B2 (en) 2013-10-04 2019-06-25 Vascular Imaging Corporation Imaging techniques using an imaging guidewire
US11696692B2 (en) 2013-11-21 2023-07-11 Phyzhon Health Inc. Optical fiber pressure sensor
US10537255B2 (en) 2013-11-21 2020-01-21 Phyzhon Health Inc. Optical fiber pressure sensor
US10258240B1 (en) 2014-11-24 2019-04-16 Vascular Imaging Corporation Optical fiber pressure sensor
US10850046B2 (en) 2016-03-28 2020-12-01 Becton, Dickinson And Company Cannula locator device
US11478150B2 (en) 2016-03-28 2022-10-25 Becton, Dickinson And Company Optical fiber sensor
US10835718B2 (en) 2016-03-28 2020-11-17 Becton, Dickinson And Company Cannula with light-emitting optical fiber
US11452533B2 (en) 2019-01-10 2022-09-27 Abbott Cardiovascular Systems Inc. Guide wire tip having roughened surface
US11446073B2 (en) * 2019-08-26 2022-09-20 DePuy Synthes Products, Inc. Flexible shaft support rod
CN112023226A (en) * 2020-11-04 2020-12-04 上海心玮医疗科技有限公司 Adjustable curved seal wire

Similar Documents

Publication Publication Date Title
US3789841A (en) Disposable guide wire
EP0597341B1 (en) Catheter
US5129890A (en) Hydrophilically coated flexible wire guide
US3749086A (en) Spring guide with flexible distal tip
US4498482A (en) Transvenous pacing lead having improved stylet
US5376083A (en) Steerable infusion guide wire
US3612058A (en) Catheter stylets
US4991602A (en) Flexible guide wire with safety tip
US5067489A (en) Flexible guide with safety tip
US4932419A (en) Multi-filar, cross-wound coil for medical devices
US5065769A (en) Small diameter guidewires of multi-filar, cross-wound coils
US4368730A (en) Intravenous catheter
US5228453A (en) Catheter guide wire
US4650472A (en) Apparatus and method for effecting percutaneous catheterization of a blood vessel using a small gauge introducer needle
US4887606A (en) Apparatus for use in cannulation of blood vessels
US4579127A (en) Mandrel for hose type catheters and body probes
US3528406A (en) Flexible spring guide tip for insertion of vascular catheters
US6142975A (en) Guidewire having braided wire over drawn tube construction
US4841976A (en) Steerable catheter guide
EP0132387B1 (en) Catheter wire guide with movable mandril
US5871444A (en) Electrode catheter
GB1520448A (en) Medical instrument for locating and removing occulsive objects
JPH05507857A (en) Guidewire with flexible distal tip
US6059767A (en) Steerable unitary infusion catheter/guide wire incorporating detachable infusion port assembly
WO1992019151A1 (en) Catheter guide wire