US3787679A - Train communication system - Google Patents

Train communication system Download PDF

Info

Publication number
US3787679A
US3787679A US00220991A US3787679DA US3787679A US 3787679 A US3787679 A US 3787679A US 00220991 A US00220991 A US 00220991A US 3787679D A US3787679D A US 3787679DA US 3787679 A US3787679 A US 3787679A
Authority
US
United States
Prior art keywords
train
transponder
receiver
signal
communication system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00220991A
Inventor
M Birkin
W Parkman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
British Railways Board
Original Assignee
British Railways Board
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by British Railways Board filed Critical British Railways Board
Application granted granted Critical
Publication of US3787679A publication Critical patent/US3787679A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L3/00Devices along the route for controlling devices on the vehicle or vehicle train, e.g. to release brake, to operate a warning signal
    • B61L3/02Devices along the route for controlling devices on the vehicle or vehicle train, e.g. to release brake, to operate a warning signal at selected places along the route, e.g. intermittent control simultaneous mechanical and electrical control
    • B61L3/08Devices along the route for controlling devices on the vehicle or vehicle train, e.g. to release brake, to operate a warning signal at selected places along the route, e.g. intermittent control simultaneous mechanical and electrical control controlling electrically
    • B61L3/12Devices along the route for controlling devices on the vehicle or vehicle train, e.g. to release brake, to operate a warning signal at selected places along the route, e.g. intermittent control simultaneous mechanical and electrical control controlling electrically using magnetic or electrostatic induction; using radio waves
    • B61L3/121Devices along the route for controlling devices on the vehicle or vehicle train, e.g. to release brake, to operate a warning signal at selected places along the route, e.g. intermittent control simultaneous mechanical and electrical control controlling electrically using magnetic or electrostatic induction; using radio waves using magnetic induction

Definitions

  • This invention relates to a train communication system in which trackside transponder devices containing coded information as to track gradient, speed restrictions etc, pass this information to receiver equipment on the train on receipt of an activating signal from a transmitter on the train.
  • the system is operative to declare a fault if a transponder, at an expected location [56 References Ci for said transponder, fails to respond to the activating UNITED STATES PATENTS signal so as to fail to pass information to the receiver 3,426,349 2/1969 Gareis 343/65 R equ'pmen 3,576,524 4/1971 Ogilvy 340/32 3 Claims, 3 Drawing Figures MAGNETIC wunxms DATA TAPE STUIIE STURE 23 OUTPUT TRANSPUNIIER IF NO FROM 22,23 [IR 2L PIISITIIJN
  • the present invention relates to a train communication system in which information is passed to a moving train from stationary points along the track.
  • train speed supervision requires geographical data, speed limits, gradient and some realtime data such as signal aspect.
  • the fixed data can be programmed onto active or passive devices which are placed in a pre-determined location and which if passive are activated when the train is in the immediate vicinity of the device.
  • a train communication system comprising one or more transponder devices adapted to be activated and to transmit data contained therein to a receiver carried on a passing train on reception of an activating signal from a transmitter on said train.
  • the transponder devices are preferably located at intervals determined so as to provide a required resolution to the data.
  • the system is arranged to declare a fault if a-transponder, at an expected location for said transpondenfails to respond to the activating signal.
  • FIG. 1 is a diagrammatic representation of a train communication system.
  • FIG. 2 is a representation of a length of railway track including a junction and showing the varying spacing between the passive trackside devices.
  • FIG. 3 is a block diagrammatic representation of a working embodiment of the present invention.
  • a train travels along a trackway 11.
  • the train carries an interrogating transmitter/receiver device 12 which has a transmitter/receiver coil arrangement 13.
  • passive encoded transponders 14 At spaced intervals along the track are positioned passive encoded transponders 14, As the train passes each of these transponders 14, a signal from the transmitter section of the device 12 activates the transponder and causes it to emit a signal containing its encoded information. This signal is picked up by the receiver section of the device 12 and information fed to the appropriate control devices on the train.
  • Such transponder systems are in themselves well known, and the transponder systems employed in the present invention may correspond, for example, to those described in prior British Pat. Nos. 1,068,145 and 1,187,130.
  • the transponders 14 contain fixed coded information in respect of constant situations such as speed limits, track gradient and other geographical information.
  • each of the transponders 14 could include the distance to the next of the transponders to be reached by the train. This would enable equipment mounted on the train and which was connected to an odometer to predict the position of the next transponder and hence to declare a fault condition if no transponder responded to interrogation by the transmitter/receiver 12 at that position.
  • a second way would be to provide a fail-safe trigger point, such as a permanent magnet for example, adjacent to each transponder 14 which would indicate to train mounted equipment that a transponder 14 had been reached. Failure of a transponder to respond to interrogation by the transmitter/receiver 12 after a triggering signal had been received would indicate a fault condition.
  • a fail-safe trigger point such as a permanent magnet for example
  • transponders 14 could be positioned at each location in groups of two or three, each programmed to give identical information. This would introduce a measure of redundancy as the chances of more than one transponder failing at the same time is very small.
  • the program would be advanced either continuously by being linked to an odometer, or in steps, the reception of a signal from each transponder causing the program to advance one step to provide information as to the location of the next transponder.
  • the spacing between adjacent transponders 14 is determined by the required resolution of data to be passed to the train.
  • active devices 15 may also be provided at intervals beside the track. These active devices transmit continuously updated real time-data to the train on information such as signal aspect.
  • the transponders 14 can be positioned and programmed in such a way that fine control over the shunting vehicle may be achieved.
  • FIG. 2 shows a junction area, in which 16 and 17 indicate examples at the different spacing used to achieve coarse and fine resolution respectively of the geographical data being passed to the train so as to more accurately control a shunting manoeuvre for example.
  • FIG. 3 depicts a working embodiment of the present invention in greater detail. If it is assumed that the train is traveling in the direction of the arrow A, a fail-safe triggering device 18, taking the form of a permanent magnet, positioned by the trackside in advance of the transponders 14, is detected by a permanent magnet detector 19 carried by the train. When the permanent magnet 18 is so detected, a signal from the detector 19 is passed as one input to a decision circuit 24 which is operative to check the presence of a transponder after the fail-safe trigger device 18 has been passed. More particularly, further movement of the train past magnet 18 enables the transponder interrogating transmitter/- receiver 12 to come into range of the first transponder 14.
  • a signal is sent from the interrogator 12 as a second input to the circuit 24. If no such second signal is received by the circuit 24 within a predetermined time interval, the circuit 24 provides an output to circuit 25 to declare a system failure and inhibit further output of train control data.
  • a signal is also sent from said detector 19 to a magnetic tape store 21 to prime the store 21.
  • Information as to the geographical position of each transponder 14 is contained in the store 21.
  • This information is passed to a working store 26, from which it is eventually passed to a decision circuit 22 when the actualposition of the train, as determined by its odometer 20, agrees with the predicted position of the transponder.
  • the actual train position and predicted transponder position are compared in a comparator 27, and when the two signals agree a signal is sent from comparator 27 to decision circuit 22.
  • the signal is also sent to the circuit 22 when a transponder is located by the interrogator circuit 12, to prevent a fault signal being sent to the circuit 25.
  • the odometer is also linked to the tape store 21 and to the working store 26 to advance these stores in step with the passage of the train.
  • the information carried in the transponder 14 is passed to the main store 21 where first-order checks are carried out.
  • the information, together with any information already in the store 21, such as predicted transponder position as described above, is passed to the working store 26 from which it is passed through an appropriate vehicle control system when appropriate.
  • P16. 3 includes an additional check as to transponder identity. This additional check is carried out by the circuit 23. The actual identity as determined by a signal from the interrogator 12 is compared with the predicted identity obtained from information contained in the store 21 and, provided the two identities match, no fault output is sent to the circuit 25.
  • Circuit 23 thus operates to'check the validity of the transponder.
  • Circuit 24 checks the presence of a transponder after the fail-safe trigger point (or magnet) 18 has been passed.
  • Circuit 25 declares a failure and inhibits train control data output unless all necessary conditions precedent to such control data output have been found to be present.
  • Circuit 26 is a working store into which data is temporarily placed after its extraction from the magnetic tape store 21, and before its validity has been checked.
  • a train communication system comprising a track having a train moving thereon, said train carrying a transmitter and a receiver, at least one transponder mounted adjacent the track, said transmitter being operative to transmit an activating signal for activating said transponder when said train passes said transponder, said transponder, when so activated, being operative to transmit data contained therein to the receiver carried on the passing train, a fail-safe triggering device associated with each transponder for transmitting a signal to said train operative to trigger said receiver on said train to render said receiver operative to accept said data from said transponder, and means responsive to the failure of a transponder to respond to the activating signal from said transmitter after reception by said receiver of a signal from said triggering device for declaring a fault, said last-named means including a pro gram device carried by said train to provide information regarding the expected location of each transponder whereby the failure of a transponder at the expected location to respond to the activating signal will result in a fault being declared.
  • said fail-safe triggering device comprises a permanent magnet located adjacent said transponder, and detector means carried by said train responsive to the presence of said permanent magnet.

Abstract

This invention relates to a train communication system in which trackside transponder devices containing coded information as to track gradient, speed restrictions etc, pass this information to receiver equipment on the train on receipt of an activating signal from a transmitter on the train. The system is operative to declare a fault if a transponder, at an expected location for said transponder, fails to respond to the activating signal so as to fail to pass information to the receiver equipment.

Description

' United States Patent [191 Birkin et a1.
TRAIN COMMUNICATION SYSTEM lnventors:- Michael S. Birkin; William T.
Parkman, both of Derby, England Assignee: British Railways Board, London,
England Filed: Jan. 26, 1972 Appl. No.: 220,991
[ 1 Jan. 22, 1974 3,633,158 1/1972 HeibcI 343/615 SS 3,072,785 1/1963 Hailes .7 246/30 Primary Examiner-Gerald M. Forlenza Assistant Examiner-George H. Libman Attorney, Agent, or Firm-El1iot I. Pollock 57 ABSTRACT This invention relates to a train communication system in which trackside transponder devices containing coded information as to track gradient, speed restrictions etc, pass this information to receiver equipment on the train on receipt of an activating signal from a transmitter on the train. The system is operative to declare a fault if a transponder, at an expected location [56 References Ci for said transponder, fails to respond to the activating UNITED STATES PATENTS signal so as to fail to pass information to the receiver 3,426,349 2/1969 Gareis 343/65 R equ'pmen 3,576,524 4/1971 Ogilvy 340/32 3 Claims, 3 Drawing Figures MAGNETIC wunxms DATA TAPE STUIIE STURE 23 OUTPUT TRANSPUNIIER IF NO FROM 22,23 [IR 2L PIISITIIJN |5 CURREU DECLARE FAILURE TRANSPUNDER ANI] INHIBIT IIUTPIIT 27 IS IRANSPUNDER PRESENT [1 10mm IN CORRECT -22 EIINPARITIIII HAS IRANSPHNUER BEEN DETECTED AFTER MAGNET 21.
PERMANENT r19 TRANSPUNIJEII 12 A MAGNET mrmnsmn DETECTOR m M TRAIN-HORNE 13 EQUIPMENT Q Q Q Q TRAEKSIDE 11 M I 18 EQUIPMENT- PATENTEB JAN 2 2 I974 sum 1 or 2 FIG-.2
TRAIN COMMUNICATION SYSTEM The present invention relates to a train communication system in which information is passed to a moving train from stationary points along the track.
Implementation of train speed supervision requires geographical data, speed limits, gradient and some realtime data such as signal aspect. The fixed data can be programmed onto active or passive devices which are placed in a pre-determined location and which if passive are activated when the train is in the immediate vicinity of the device.
According to the present invention there is provided a train communication system comprising one or more transponder devices adapted to be activated and to transmit data contained therein to a receiver carried on a passing train on reception of an activating signal from a transmitter on said train. The transponder devices are preferably located at intervals determined so as to provide a required resolution to the data. The system is arranged to declare a fault if a-transponder, at an expected location for said transpondenfails to respond to the activating signal.
A preferred embodiment of the invention willnow be described with reference to the accompanying drawings in which:
FIG. 1 is a diagrammatic representation of a train communication system.
FIG. 2 is a representation of a length of railway track including a junction and showing the varying spacing between the passive trackside devices.
FIG. 3 is a block diagrammatic representation of a working embodiment of the present invention.
A train travels along a trackway 11. The train carries an interrogating transmitter/receiver device 12 which has a transmitter/receiver coil arrangement 13. At spaced intervals along the track are positioned passive encoded transponders 14, As the train passes each of these transponders 14, a signal from the transmitter section of the device 12 activates the transponder and causes it to emit a signal containing its encoded information. This signal is picked up by the receiver section of the device 12 and information fed to the appropriate control devices on the train. Such transponder systems are in themselves well known, and the transponder systems employed in the present invention may correspond, for example, to those described in prior British Pat. Nos. 1,068,145 and 1,187,130.
The transponders 14 contain fixed coded information in respect of constant situations such as speed limits, track gradient and other geographical information.
In order to provide a high integrity system it is necessary that any failure of any of the transponders is noted as a fault condition. This can be achieved in a variety of ways of which the following are given by way of example.
Firstly the information encoded within each of the transponders 14 could include the distance to the next of the transponders to be reached by the train. This would enable equipment mounted on the train and which was connected to an odometer to predict the position of the next transponder and hence to declare a fault condition if no transponder responded to interrogation by the transmitter/receiver 12 at that position.
A second way would be to provide a fail-safe trigger point, such as a permanent magnet for example, adjacent to each transponder 14 which would indicate to train mounted equipment that a transponder 14 had been reached. Failure of a transponder to respond to interrogation by the transmitter/receiver 12 after a triggering signal had been received would indicate a fault condition.
Thirdly the transponders 14 could be positioned at each location in groups of two or three, each programmed to give identical information. This would introduce a measure of redundancy as the chances of more than one transponder failing at the same time is very small.
Fourthly, the train mounted equipment could include a stored program, in the form of a magnetic tape for ex= ample, which would predict the position of each transponder. Failure of a transponder to respond at the predicted location would indicate a fault warning. The program would be advanced either continuously by being linked to an odometer, or in steps, the reception of a signal from each transponder causing the program to advance one step to provide information as to the location of the next transponder.
The four examples just described could be used either single or in any combination to provide a high integrity system.
The spacing between adjacent transponders 14 is determined by the required resolution of data to be passed to the train.
In addition to the passive transponders 14, active devices 15 may also be provided at intervals beside the track. These active devices transmit continuously updated real time-data to the train on information such as signal aspect.
In an area where shunting manoeuvre may be required, the transponders 14 can be positioned and programmed in such a way that fine control over the shunting vehicle may be achieved.
FIG. 2 shows a junction area, in which 16 and 17 indicate examples at the different spacing used to achieve coarse and fine resolution respectively of the geographical data being passed to the train so as to more accurately control a shunting manoeuvre for example.
FIG. 3 depicts a working embodiment of the present invention in greater detail. If it is assumed that the train is traveling in the direction of the arrow A, a fail-safe triggering device 18, taking the form of a permanent magnet, positioned by the trackside in advance of the transponders 14, is detected by a permanent magnet detector 19 carried by the train. When the permanent magnet 18 is so detected, a signal from the detector 19 is passed as one input to a decision circuit 24 which is operative to check the presence of a transponder after the fail-safe trigger device 18 has been passed. More particularly, further movement of the train past magnet 18 enables the transponder interrogating transmitter/- receiver 12 to come into range of the first transponder 14. As soon as a signal is received from a transponder, a signal is sent from the interrogator 12 as a second input to the circuit 24. If no such second signal is received by the circuit 24 within a predetermined time interval, the circuit 24 provides an output to circuit 25 to declare a system failure and inhibit further output of train control data.
On activation of the detector 19, a signal is also sent from said detector 19 to a magnetic tape store 21 to prime the store 21. Information as to the geographical position of each transponder 14 is contained in the store 21. This information is passed to a working store 26, from which it is eventually passed to a decision circuit 22 when the actualposition of the train, as determined by its odometer 20, agrees with the predicted position of the transponder. The actual train position and predicted transponder position are compared in a comparator 27, and when the two signals agree a signal is sent from comparator 27 to decision circuit 22. The signal is also sent to the circuit 22 when a transponder is located by the interrogator circuit 12, to prevent a fault signal being sent to the circuit 25.
The odometer is also linked to the tape store 21 and to the working store 26 to advance these stores in step with the passage of the train.
The information carried in the transponder 14 is passed to the main store 21 where first-order checks are carried out. The information, together with any information already in the store 21, such as predicted transponder position as described above, is passed to the working store 26 from which it is passed through an appropriate vehicle control system when appropriate.
P16. 3 includes an additional check as to transponder identity. This additional check is carried out by the circuit 23. The actual identity as determined by a signal from the interrogator 12 is compared with the predicted identity obtained from information contained in the store 21 and, provided the two identities match, no fault output is sent to the circuit 25.
Circuit 23 thus operates to'check the validity of the transponder. Circuit 24 checks the presence of a transponder after the fail-safe trigger point (or magnet) 18 has been passed. Circuit 25 declares a failure and inhibits train control data output unless all necessary conditions precedent to such control data output have been found to be present. Circuit 26 is a working store into which data is temporarily placed after its extraction from the magnetic tape store 21, and before its validity has been checked. We claim:
1. A train communication system comprising a track having a train moving thereon, said train carrying a transmitter and a receiver, at least one transponder mounted adjacent the track, said transmitter being operative to transmit an activating signal for activating said transponder when said train passes said transponder, said transponder, when so activated, being operative to transmit data contained therein to the receiver carried on the passing train, a fail-safe triggering device associated with each transponder for transmitting a signal to said train operative to trigger said receiver on said train to render said receiver operative to accept said data from said transponder, and means responsive to the failure of a transponder to respond to the activating signal from said transmitter after reception by said receiver of a signal from said triggering device for declaring a fault, said last-named means including a pro gram device carried by said train to provide information regarding the expected location of each transponder whereby the failure of a transponder at the expected location to respond to the activating signal will result in a fault being declared.
2. The train communication system of claim 1 wherein said system comprises a plurality of said transponders disposed in spaced relation to one another along the track, the spacing between adjacent transponders being such as to provide a required resolution of data.
3. The train communication system of claim 1 wherein said fail-safe triggering device comprises a permanent magnet located adjacent said transponder, and detector means carried by said train responsive to the presence of said permanent magnet.

Claims (3)

1. A train communication system comprising a track having a train moving thereon, said train carrying a transmitter and a receiver, at least one transponder mounted adjacent the track, said transmitter being operative to transmit an activating signal for activating said transponder when said train passes said transponder, said transponder, when so activated, being operative to transmit data contained therein to the receiver carried on the passing train, a fail-safe triggering device associated with each transponder for transmitting a signal to said train operative to trigger said receiver on said train to render said receiver operative to accept said data from said transponder, and means responsive to the failure of a transponder to respond to the activating signal from said transmitter after reception by said receiver of a signal from said triggering device for declaring a fault, said last-named means including a program device carried by said train to provide information regarding the expected location of each transponder whereby the failure of a transponder at the expected location to respond to the activating signal will result in a fault being declared.
2. The train communication system of claim 1 wherein said system comprises a plurality of said transponders disposed in spaced relation to one another along the track, the spacing between adjacent transponders being such as to provide a required resolution of data.
3. The train communication system of claim 1 wherein said fail-safe triggering device comprises a permanent magnet located adjacent said transponder, and detector means carried by said train responsive to the presence of said permanent magnet.
US00220991A 1972-01-26 1972-01-26 Train communication system Expired - Lifetime US3787679A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US22099172A 1972-01-26 1972-01-26

Publications (1)

Publication Number Publication Date
US3787679A true US3787679A (en) 1974-01-22

Family

ID=22825881

Family Applications (1)

Application Number Title Priority Date Filing Date
US00220991A Expired - Lifetime US3787679A (en) 1972-01-26 1972-01-26 Train communication system

Country Status (1)

Country Link
US (1) US3787679A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3921127A (en) * 1973-12-07 1975-11-18 Thomson Csf Vehicle danger indicating system
US4185265A (en) * 1977-06-09 1980-01-22 Cincinnati Electronics Corporation Vehicular magnetic coded signalling apparatus
US4361202A (en) * 1979-06-15 1982-11-30 Michael Minovitch Automated road transportation system
EP0145464A2 (en) * 1983-12-09 1985-06-19 Westinghouse Brake And Signal Holdings Limited Vehicle control system
US4538781A (en) * 1981-10-03 1985-09-03 British Railways Board Control system for controlling the passage of vehicles
FR2574037A1 (en) * 1984-11-30 1986-06-06 Thomson Csf DEVICE AND METHOD FOR CONTROLLING GUIDE VEHICLES
US4655421A (en) * 1983-02-21 1987-04-07 Walter Jaeger Method for the transmission of informations and/or instructions
US4864306A (en) * 1986-06-23 1989-09-05 Wiita Floyd L Railway anticollision apparatus and method
EP0496650A1 (en) * 1991-01-24 1992-07-29 Automatismes Controles Et Etudes Electroniques Automatic stopping and speed control device and vehicle driving aid, especially for rail vehicles
US5415369A (en) * 1993-09-29 1995-05-16 Rockwell International Corporation Railroad in-cab signaling with automatic train stop enforcement utilizing radio frequency digital transmissions
GB2356277A (en) * 1999-11-13 2001-05-16 Intelligent Cab Systems Ltd Train protection
EP1232926A1 (en) * 2001-02-14 2002-08-21 Siemens Schweiz AG Train safety system
EP1813499A2 (en) * 2006-01-23 2007-08-01 Siemens Aktiengesellschaft System, in particular a railway system, with vehicles moving along a route and method for safe control of the vehicles
US20080068164A1 (en) * 2006-09-12 2008-03-20 International Business Machines Corporation System and method for sensing and controlling spacing between railroad trains

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3072785A (en) * 1960-04-21 1963-01-08 Gen Railway Signal Co Remote control system for vehicles
US3426349A (en) * 1967-04-04 1969-02-04 Gen Electric Vehicle locating system
US3576524A (en) * 1967-06-26 1971-04-27 British Railways Board Systems for transmitting information to moving trains
US3633158A (en) * 1969-03-05 1972-01-04 Minnesota Mining & Mfg Transceiver-transponder-type communications system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3072785A (en) * 1960-04-21 1963-01-08 Gen Railway Signal Co Remote control system for vehicles
US3426349A (en) * 1967-04-04 1969-02-04 Gen Electric Vehicle locating system
US3576524A (en) * 1967-06-26 1971-04-27 British Railways Board Systems for transmitting information to moving trains
US3633158A (en) * 1969-03-05 1972-01-04 Minnesota Mining & Mfg Transceiver-transponder-type communications system

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3921127A (en) * 1973-12-07 1975-11-18 Thomson Csf Vehicle danger indicating system
US4185265A (en) * 1977-06-09 1980-01-22 Cincinnati Electronics Corporation Vehicular magnetic coded signalling apparatus
US4361202A (en) * 1979-06-15 1982-11-30 Michael Minovitch Automated road transportation system
US4538781A (en) * 1981-10-03 1985-09-03 British Railways Board Control system for controlling the passage of vehicles
US4655421A (en) * 1983-02-21 1987-04-07 Walter Jaeger Method for the transmission of informations and/or instructions
EP0145464A3 (en) * 1983-12-09 1987-04-22 Westinghouse Brake And Signal Holdings Limited Vehicle control system
EP0145464A2 (en) * 1983-12-09 1985-06-19 Westinghouse Brake And Signal Holdings Limited Vehicle control system
US4768740A (en) * 1983-12-09 1988-09-06 Westinghouse Brake And Signal Company Limited Vehicle tracking system
FR2574037A1 (en) * 1984-11-30 1986-06-06 Thomson Csf DEVICE AND METHOD FOR CONTROLLING GUIDE VEHICLES
US4713663A (en) * 1984-11-30 1987-12-15 Thomson-Csf Guided vehicle control process and apparatus
EP0187069A1 (en) * 1984-11-30 1986-07-09 Thomson-Csf Device and method for the control of guided vehicles
US4864306A (en) * 1986-06-23 1989-09-05 Wiita Floyd L Railway anticollision apparatus and method
EP0496650A1 (en) * 1991-01-24 1992-07-29 Automatismes Controles Et Etudes Electroniques Automatic stopping and speed control device and vehicle driving aid, especially for rail vehicles
FR2672026A1 (en) * 1991-01-24 1992-07-31 Aigle Azur Concept DEVICE FOR AUTOMATICALLY CONTROLLING STOP SPEED AND ASSISTING THE DRIVING OF THE VEHICLE, IN PARTICULAR RAILWAY.
US5294081A (en) * 1991-01-24 1994-03-15 Aigle Azur Concept Automatic control system for a railway vehicle's speed and stopping
US5415369A (en) * 1993-09-29 1995-05-16 Rockwell International Corporation Railroad in-cab signaling with automatic train stop enforcement utilizing radio frequency digital transmissions
GB2356277A (en) * 1999-11-13 2001-05-16 Intelligent Cab Systems Ltd Train protection
EP1232926A1 (en) * 2001-02-14 2002-08-21 Siemens Schweiz AG Train safety system
EP1813499A2 (en) * 2006-01-23 2007-08-01 Siemens Aktiengesellschaft System, in particular a railway system, with vehicles moving along a route and method for safe control of the vehicles
EP1813499A3 (en) * 2006-01-23 2007-10-31 Siemens Aktiengesellschaft System, in particular a railway system, with vehicles moving along a route and method for safe control of the vehicles
US20080068164A1 (en) * 2006-09-12 2008-03-20 International Business Machines Corporation System and method for sensing and controlling spacing between railroad trains

Similar Documents

Publication Publication Date Title
US3787679A (en) Train communication system
US3805056A (en) Vehicle program control systems
CA1244927A (en) Vehicle control system
US3888437A (en) Vehicle control systems
US3937432A (en) Train control
US4456997A (en) Facility for fail-safe data transmission between trackside equipment of a guideway and vehicles moving therealong
US3268727A (en) Computer control for transit system
US3819932A (en) Multi-computer automatic vehicle control system
SE441315B (en) DEVICE FOR INDICATING SOME DISTANCE BETWEEN REAL VEHICLES
KR950700188A (en) Railroad Signal System
US4965583A (en) Collision avoidance system for automatically controlled vehicles moving at short headways
US20230022877A1 (en) Method and monitoring system for determining a position of a rail vehicle
US3700886A (en) Communication systems between a trackway and vehicles
US3774025A (en) Vehicle control system
US5613654A (en) Device for releasing the opening of the doors of rail vehicles
GB1316561A (en) Train communication system
GB936592A (en) Improvements in or relating to signalling systems
JPS60257703A (en) Vehicle protecting system
WO2006136783A1 (en) Safety arrangement
EP0479529A2 (en) Vehicle control system
US5294081A (en) Automatic control system for a railway vehicle's speed and stopping
DE102008060185A1 (en) Collision Warning and Collision Warning System
US3359416A (en) Continuous rail track circuits
GB2248512A (en) Vehicle control system
JP3246924B2 (en) Train position detection device