US3778838A - Circular symmetric beam forming apparatus - Google Patents

Circular symmetric beam forming apparatus Download PDF

Info

Publication number
US3778838A
US3778838A US00311210A US3778838DA US3778838A US 3778838 A US3778838 A US 3778838A US 00311210 A US00311210 A US 00311210A US 3778838D A US3778838D A US 3778838DA US 3778838 A US3778838 A US 3778838A
Authority
US
United States
Prior art keywords
ground plane
slot
antenna
beam forming
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00311210A
Inventor
A Clavin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Raytheon Co
Original Assignee
Hughes Aircraft Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hughes Aircraft Co filed Critical Hughes Aircraft Co
Application granted granted Critical
Publication of US3778838A publication Critical patent/US3778838A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/29Combinations of different interacting antenna units for giving a desired directional characteristic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • H01Q13/18Resonant slot antennas the slot being backed by, or formed in boundary wall of, a resonant cavity ; Open cavity antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • H01Q25/04Multimode antennas

Definitions

  • An antenna having an X-section pattern that is circular symmetric, i.e., the antenna produces a beam having equal E and H plane patterns of the type required to achieve circular polarization over a large angular portion of the beam.
  • the antenna is implemented by no less than one slot in a ground plane across the bottom of a conductive cylindrical cup and mutually coupled to and straddled by two dipoles that are normal to the ground plane.
  • crossed slots are excited by a rotating electric field.
  • a slot in a ground plane is excited by a waveguide, for example.
  • Energy radiated from the slots parasitically excites dipoles straddling the slot out of phase with each other. When closely spaced the dipoles radiate very little; as spacing is increased the dipoles radiate more strongly until a drop off occurs when coupling to the slot falls off.
  • the relative phase between dipole radiation and slot radiation is controlled by the length of the dipoles. When short, the dipoles are capacitive and lead the driving voltage. When longer than at resonance, radiation from the dipoles lags the driving excitation. This effect, together with a cylindrical cup reflector, is used to control the antenna pattern.
  • the antenna can be excited by either coaxial or waveguide lines. Also, the dipoles can be driven and the slot parasitically excited.
  • FIG. 1 shows a perspective view of a slot excited embodiment of the present invention
  • FIG. 2 illustrates a cross-sectional view through the slot of the antenna of FIG. 1;
  • FIG. 3 illustrates a plan view of the reflector cup of the antenna of FIG. 1;
  • FIG. 4 shows a partially sectional schematic view of an antenna in accordance with the invention having driven dipoles and a parasitically excited slot
  • FIGS. 5 and 6 show a perspective and end view, respectively, of a circularly polarized version of the antenna of the invention
  • FIG. 7 illustrates E and H characteristics of the antenna of FIG. 1.
  • FIG. 8 illustrates the manner in which the E field patterns of the antenna of FIG. 1 combine to give the resultant E field.
  • the antenna includes a segment of rectangular waveguide 10 terminated at one extremity with a circular ground plane 11 having a slot 12 symmetrically disposed therein within the cross-section of waveguide segment 10 parallel to the broad side walls thereof.
  • the remaining extremity of waveguide segment 10 is blanked off by means of a conductive end plate 13 disposed transversely thereacross.
  • Coupling to the waveguide segment 10 is provided by a conductive probe 14 inserted through an aperture 15 centrally disposed in a broad sidewall thereof one-quarter wavelength from the inner surface of end plate 13.
  • a coaxial connector 16 attached to the broad sidewall of waveguide segment 10 about the aperture 15 has a center conductor 17 which connects to the probe 14.
  • dipoles 18, 19 are straddled across the slot 12 midway therealong and normal to ground plane 11.
  • a conductive cylinder 20 is disposed about the periphery of ground plane 11 to provide a reflector for the radiating slot 12 and coupled dipoles 18, 19.
  • a signal to be transmitted is applied through coaxial connector 16 to the probe 14 to excite the cavity formed by the waveguide segment 10, which, in turn, causes energy to be radiated from slot 12.
  • the energy radiated from slot 12 has an E-planc pattern 22, FIG. 8, which has a circular configuration.
  • the E-plane energy radiated by slot 12 parasitically excites dipoles l8, 19 out of phase.
  • the H-plane pattern of the dipoles 18, 19 vary approximately as cos 0 as shown by the patterns 23, 24, FIG. 8, for the dipoles 18, 19, respectively.
  • the amplitude of the dipole patterns 23, 24 is controlled by the spacing of the dipoles 18, 19 from the slot 12. When closely spaced, the dipoles l8, l9 radiate very little.
  • the relative phase between radiation from dipoles 18, 19 and radiation from slot 12 is controlled by the length of the dipoles 18, 19.
  • the dipoles 18, 19 are capacitive and lead the driving voltage.
  • radiation from the dipoles 18, 19 lags the driving excitation.
  • a length is selected for the dipoles 18, 19 to make the phase of the radiation therefrom differ by from that of the E-plane pattern from slot 12.
  • the H-plane patterns 23, 24 subtract, reducing the E-plane slot pattern 22 to a resultant pattern 25.
  • the dipoles 18, 19 are symmetric in the H- plane and, being out of phase, do not radiate in this plane. Thus, by appropriate adjustment of the spacing of the dipoles 18, 19 from the slot 12, the E-plane pattern for slot 12 is made substantially equal to the H- plane pattern therefor.
  • FIG. 7 there is illustrated an E-plane pattern 30 and an I-I-plane pattern 32 for a circular symmetric beam forming antenna of the type described in connection with FIGS. 1-3 wherein the dipoles 18, 19 have a height of three-eighths wavelength and a spacing of 0.22 wavelength, and the conductive cylinder 20 has a length of one-quarter wavelength and a diameter of 0.9 wavelength.
  • FIG. 4 there is shown a partially crosssectional schematic drawing of a circular symmetric beam forming antenna in accordance with the present invention wherein like reference numerals refer to like elements.
  • the dipoles l8, 19 are driven 180 out of phase by appropriate connections through coaxial lines 34, 36, respectively, from the outputs of a 180 hybrid 38 having an input 40.
  • the slot 12 in ground plane 11 is enclosed by a cavity 42 on the side thereof opposite from the dipoles 18, 19. Operation is the same as that of the antenna described in connection 3 with FIGS. 1-3 with the exception that the slot 12 is now parasitically excited by the dipoles 18, 19 through mutual coupling thereto rather than the dipoles l8, 19
  • Relative phase between the radiated energy from the dipoles 18, 19 and that from the siot 12 may be controlled by selecting the perimeter of slot 12, i.e., by controlling the, resonant length of slot 12.
  • the size of the cavity 42 should, of course, be sufficient to support oscillations at'the resonant frequency of the slot 12.
  • antenna 50 includes cylindrical waveguide section 51 intermediate a rectangularto-cylindrical conversion section 52 and a ground plane 53.
  • Ground plane 53 includes a centrally disposed slot 54 parallel to the broad sides of the rectangular waveguide portion of section 52 and a centrally disposed slot 55 that is normal to the slot 54.
  • a conductive cylinder 56 is disposed about the periphery of ground plane 5 3 in a directionextending away from the cylindrical wave guide section 51 thereby to form a cylindrical cup reflector for energy radiated from the slots 54, 55.
  • Dipoles 57, 58, S9 and 60 are erected within the cylindrical cup reflector equidistant from the center and normal to the ground plane 53 along the bisectors of the quadrants between the slots 54, 55.
  • a dielectric slab 62 constituting a one-quarter wave plate is disposed across a diameter and along a central portion of the cylindrical waveguide section 51 ata 45 angle with the slots 4.
  • a circular symmetric beam forming antenna comprising a ground plane; no less than one slot in said ground plane; first and second conductive posts disposed on one side of said ground plane on opposite sides of and mutually cou led to each of said no less than one slot; means disposed on the side opposite from said one side of said ground plane for providing a cavity including said no less than one slot in a side wall thereof; a conductive cylinder of a height less than that of said first and second conductive posts disposed symmetrically about said no less than one slot in contact with and on said side of said ground plane thereby to provide an antenna element; and means coupled to said antenna element for exciting said element with electromagnetic energy to be transmitted.
  • said ground plane constitutes first and second crossed orthogonal slots and said means coupled to said antenna element for exciting said element with energy to be transmitted includes cylindrical waveguide means for exciting said first and second crossed orthogonal slots with two TE orthogonal modes of a phase difference equal to thereby to provide a circularly polarized output from said antenna element.
  • a circuiar symmetric beam forming antenna comprising a section of rectangular waveguide; a ground plane having first and second sides, said ground plane being disposed transversely across one extremity of said section of rectangular waveguide, in contact with said first side, the portion of said ground plane enclosed by said waveguide having a centrally disposed slot parallel to the broad side walls of said waveguide; first and second conductive posts of substantial dipole length disposed on said second side of said ground plane on opposite sides of and mutually coupled to said slot; a conductive cylinder of a length less than the height of said first and second conductive posts disposed symmetrically about said slot in contact with said second side of said ground plane thereby to provide an antenna structure; and means for launching a fundamental mode electromagnetic wave in said section of rectangular waveguide whereby a circular symmetric beam is radiated by said antenna structure.
  • a circular symmetric beam forming antenna comprising a ground plane having a slot therein; a cavity in contact with one side of said ground plane whereby a portion of said ground plane provides a side wall for said cavity, said portion including said slot; first and second conductive posts of dipole length disposed through said ground plane from said one side thereof on opposite sides of said slot thereby to effect mutual coupling therewith; a conductive cylinder of a length less than said dipole length disposed symmetrically about said first and second conductive posts in contact with the side opposite said one side of said ground plane; and a 180 hybrid having an input and first and second outputs, said first and second outputs being connected to said first and second conductive posts, respectively, on said one side of said ground plane thereby to drive said first and second conductive posts in response to asignal applied tothe input of said hybrid with signals differing in phase by 180".
  • a conductive cylinder of a length less than said dipole length disposed symmetrically about said first, second, third and fourth conductive posts in contact with said second side of said ground plane; and means for launching a signal in the form of first and second orthogonal TE, modes out of phase along said cylindrical waveguide towards said first and second crossed orthogonal slots in said ground plane thereby to radiate a circularly polarized circular symmetric beam.

Abstract

An antenna is disclosed having an X-section pattern that is circular symmetric, i.e., the antenna produces a beam having equal E and H plane patterns of the type required to achieve circular polarization over a large angular portion of the beam. In general, the antenna is implemented by no less than one slot in a ground plane across the bottom of a conductive cylindrical cup and mutually coupled to and straddled by two dipoles that are normal to the ground plane. In a circularly polarized version of the invention, crossed slots are excited by a rotating electric field.

Description

United States Patent [191 Clavin Dec. 11, 1973 [5 CIRCULAR SYMMETRIC BEAM FORMING APPARATUS [75] Inventor: Alvin Clavin, Calabasa, Calif.
[22] Filed: Dec. 1, I972 [21] App]. No.: 311,210
[56] References Cited UNITED STATES PATENTS Fee 343/767 3,740,754 6/1973 Epis 343/789 Primary ExaminerEli Lieberman Att0rneyW. H. MacAllister, Jr. et a1.
[5 7 ABSTRACT An antenna is disclosed having an X-section pattern that is circular symmetric, i.e., the antenna produces a beam having equal E and H plane patterns of the type required to achieve circular polarization over a large angular portion of the beam. In general, the antenna is implemented by no less than one slot in a ground plane across the bottom of a conductive cylindrical cup and mutually coupled to and straddled by two dipoles that are normal to the ground plane. In a circularly polarized version of the invention, crossed slots are excited by a rotating electric field.
9 Claims, 8 Drawing Figures PAIENIED um I 1 ms SHEEI 3 BF 4 qq-mmo ammea CIRCULAR SYMMETRIC BEAM FORMING APPARATUS BACKGROUND OF THE INVENTION A circular symmetric beam having substantially equal E and H plane patterns is required in many applications such as feeds for circular apertures, or as data links. In U.S. Pat. No. 3,594,806, entitled Dipole Augmented Slot Raidating Elements, broadband posts were placed intermediate the slots of an array to produce equal E and H plane patterns of the elements and to reduce mutual coupling between array elements. Multiple slots in an array configuration without a cylindrical cup reflector were disclosed in this case. In U.S. Pat. No. 2,846,679, entitled Beam Forming Antenna, on the other hand, a dipole radiating element was disposed parallel to the bottom surface of a cylindrical cup reflector. In this device there is no slot radiating element mutually coupled to the dipole to equalize the E and H plane field intensity patterns.
SUMMARY OF THE INVENTION In accordance with the present invention, a slot in a ground plane is excited by a waveguide, for example. Energy radiated from the slots parasitically excites dipoles straddling the slot out of phase with each other. When closely spaced the dipoles radiate very little; as spacing is increased the dipoles radiate more strongly until a drop off occurs when coupling to the slot falls off. The relative phase between dipole radiation and slot radiation is controlled by the length of the dipoles. When short, the dipoles are capacitive and lead the driving voltage. When longer than at resonance, radiation from the dipoles lags the driving excitation. This effect, together with a cylindrical cup reflector, is used to control the antenna pattern. The antenna can be excited by either coaxial or waveguide lines. Also, the dipoles can be driven and the slot parasitically excited.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows a perspective view ofa slot excited embodiment of the present invention;
FIG. 2 illustrates a cross-sectional view through the slot of the antenna of FIG. 1;
FIG. 3 illustrates a plan view of the reflector cup of the antenna of FIG. 1;
FIG. 4 shows a partially sectional schematic view of an antenna in accordance with the invention having driven dipoles and a parasitically excited slot;
FIGS. 5 and 6 show a perspective and end view, respectively, of a circularly polarized version of the antenna of the invention;
FIG. 7 illustrates E and H characteristics of the antenna of FIG. 1; and
FIG. 8 illustrates the manner in which the E field patterns of the antenna of FIG. 1 combine to give the resultant E field.
DESCRIPTION Referring now to FIGS. 1-3 of the drawings, there is shown a preferred embodiment of the circular symmetric beam forming antenna of the present invention. More particularly, the antenna includes a segment of rectangular waveguide 10 terminated at one extremity with a circular ground plane 11 having a slot 12 symmetrically disposed therein within the cross-section of waveguide segment 10 parallel to the broad side walls thereof. The remaining extremity of waveguide segment 10 is blanked off by means of a conductive end plate 13 disposed transversely thereacross. Coupling to the waveguide segment 10 is provided by a conductive probe 14 inserted through an aperture 15 centrally disposed in a broad sidewall thereof one-quarter wavelength from the inner surface of end plate 13. A coaxial connector 16 attached to the broad sidewall of waveguide segment 10 about the aperture 15 has a center conductor 17 which connects to the probe 14.
Exterior to the waveguide segment 10, dipoles 18, 19 are straddled across the slot 12 midway therealong and normal to ground plane 11. Lastly, a conductive cylinder 20 is disposed about the periphery of ground plane 11 to provide a reflector for the radiating slot 12 and coupled dipoles 18, 19.
In operation, a signal to be transmitted is applied through coaxial connector 16 to the probe 14 to excite the cavity formed by the waveguide segment 10, which, in turn, causes energy to be radiated from slot 12. The energy radiated from slot 12 has an E-planc pattern 22, FIG. 8, which has a circular configuration. The E-plane energy radiated by slot 12 parasitically excites dipoles l8, 19 out of phase. The H-plane pattern of the dipoles 18, 19 vary approximately as cos 0 as shown by the patterns 23, 24, FIG. 8, for the dipoles 18, 19, respectively. The amplitude of the dipole patterns 23, 24 is controlled by the spacing of the dipoles 18, 19 from the slot 12. When closely spaced, the dipoles l8, l9 radiate very little. As spacing is increased, radiation increases until a drop-off occurs due to falling off of coupling with slot 12. The relative phase between radiation from dipoles 18, 19 and radiation from slot 12 is controlled by the length of the dipoles 18, 19. When short relative to resonant length, the dipoles 18, 19 are capacitive and lead the driving voltage. When longer than at resonance, radiation from the dipoles 18, 19 lags the driving excitation. A length is selected for the dipoles 18, 19 to make the phase of the radiation therefrom differ by from that of the E-plane pattern from slot 12. When this is the case, the H- plane patterns 23, 24 subtract, reducing the E-plane slot pattern 22 to a resultant pattern 25. The dipoles 18, 19 are symmetric in the H- plane and, being out of phase, do not radiate in this plane. Thus, by appropriate adjustment of the spacing of the dipoles 18, 19 from the slot 12, the E-plane pattern for slot 12 is made substantially equal to the H- plane pattern therefor.
Referring to FIG. 7, there is illustrated an E-plane pattern 30 and an I-I-plane pattern 32 for a circular symmetric beam forming antenna of the type described in connection with FIGS. 1-3 wherein the dipoles 18, 19 have a height of three-eighths wavelength and a spacing of 0.22 wavelength, and the conductive cylinder 20 has a length of one-quarter wavelength and a diameter of 0.9 wavelength.
Referring to FIG. 4 there is shown a partially crosssectional schematic drawing of a circular symmetric beam forming antenna in accordance with the present invention wherein like reference numerals refer to like elements. In this case, the dipoles l8, 19 are driven 180 out of phase by appropriate connections through coaxial lines 34, 36, respectively, from the outputs of a 180 hybrid 38 having an input 40. The slot 12 in ground plane 11 is enclosed by a cavity 42 on the side thereof opposite from the dipoles 18, 19. Operation is the same as that of the antenna described in connection 3 with FIGS. 1-3 with the exception that the slot 12 is now parasitically excited by the dipoles 18, 19 through mutual coupling thereto rather than the dipoles l8, 19
being parasitically driven by radiated energy from the slot 12. Relative phase between the radiated energy from the dipoles 18, 19 and that from the siot 12 may be controlled by selecting the perimeter of slot 12, i.e., by controlling the, resonant length of slot 12. The size of the cavity 42 should, of course, be sufficient to support oscillations at'the resonant frequency of the slot 12.
Referring to FIGS. and 6 there are shown two views of a circular symmetric beam forming antenna 50 for generating a circularly polarized beam. More particularly, antenna 50 includes cylindrical waveguide section 51 intermediate a rectangularto-cylindrical conversion section 52 and a ground plane 53. Ground plane 53 includes a centrally disposed slot 54 parallel to the broad sides of the rectangular waveguide portion of section 52 and a centrally disposed slot 55 that is normal to the slot 54. A conductive cylinder 56 is disposed about the periphery of ground plane 5 3 in a directionextending away from the cylindrical wave guide section 51 thereby to form a cylindrical cup reflector for energy radiated from the slots 54, 55. Dipoles 57, 58, S9 and 60 are erected within the cylindrical cup reflector equidistant from the center and normal to the ground plane 53 along the bisectors of the quadrants between the slots 54, 55. Lastly, a dielectric slab 62 constituting a one-quarter wave plate is disposed across a diameter and along a central portion of the cylindrical waveguide section 51 ata 45 angle with the slots 4. s5-
In operation, energy propagating in the rectangular waveguide in the TE mode is converted to the TE. mode in-the cylindrical waveguide section 51 by the rectangular-to-cylindrical conversion section 52 with the electric field normal to the slot 54. In traversing the one-quarter wave. plate 62, the energy in the incident TE mode is divided into two orthogonal TE modes which have a 90 phase difference. The two orthogonal TE modes excite the slots 54, 55 in a manner to generate a circularly polarized wave. The dipoles function in the same manner as the dipoles 18, 19 in the antenna of FIGS. 1-3.
Whatis claimed is:
1. A circular symmetric beam forming antenna comprising a ground plane; no less than one slot in said ground plane; first and second conductive posts disposed on one side of said ground plane on opposite sides of and mutually cou led to each of said no less than one slot; means disposed on the side opposite from said one side of said ground plane for providing a cavity including said no less than one slot in a side wall thereof; a conductive cylinder of a height less than that of said first and second conductive posts disposed symmetrically about said no less than one slot in contact with and on said side of said ground plane thereby to provide an antenna element; and means coupled to said antenna element for exciting said element with electromagnetic energy to be transmitted.
2. The circular symmetric beam forming antenna as defined in clairnl wherein said means coupled to said antenna element for exciting said element with energy to be transmitted constitutes a 180 hybrid element having an input and first and second outputs, said first and second outputs being connectedto said first and second conductive posts, respectively, whereby a signal applied to said input excites said antenna element.
3. The circular symmetric beam forming antenna as defined in claim 1 wherein said means coupled to said antenna element for exciting said element with energy to be transmitted constitutes meansfor exciting said cavity thereby to excite said no less than one slot in a side wall thereof.
4. The circular symmetric beam forming antenna as defined in claim 1 wherein said no less than one slot in,
said ground plane constitutes first and second crossed orthogonal slots and said means coupled to said antenna element for exciting said element with energy to be transmitted includes cylindrical waveguide means for exciting said first and second crossed orthogonal slots with two TE orthogonal modes of a phase difference equal to thereby to provide a circularly polarized output from said antenna element.
5. The circular symmetric beam forming antenna as defined in claim 1 wherein the diameter of said conductive cylinder is less than one free space wavelength of said electromagnetic energy to be transmitted.
6. A circuiar symmetric beam forming antenna comprising a section of rectangular waveguide; a ground plane having first and second sides, said ground plane being disposed transversely across one extremity of said section of rectangular waveguide, in contact with said first side, the portion of said ground plane enclosed by said waveguide having a centrally disposed slot parallel to the broad side walls of said waveguide; first and second conductive posts of substantial dipole length disposed on said second side of said ground plane on opposite sides of and mutually coupled to said slot; a conductive cylinder of a length less than the height of said first and second conductive posts disposed symmetrically about said slot in contact with said second side of said ground plane thereby to provide an antenna structure; and means for launching a fundamental mode electromagnetic wave in said section of rectangular waveguide whereby a circular symmetric beam is radiated by said antenna structure.
7. The circular symemtric beam forming antennaas defined in claim 6 wherein said first and second conductive posts are of a length that differs from said dipole length to produce a phase difference in a signal radiated therefrom as compared to a driving signal radiated from said slot.
8. A circular symmetric beam forming antenna comprising a ground plane having a slot therein; a cavity in contact with one side of said ground plane whereby a portion of said ground plane provides a side wall for said cavity, said portion including said slot; first and second conductive posts of dipole length disposed through said ground plane from said one side thereof on opposite sides of said slot thereby to effect mutual coupling therewith; a conductive cylinder of a length less than said dipole length disposed symmetrically about said first and second conductive posts in contact with the side opposite said one side of said ground plane; and a 180 hybrid having an input and first and second outputs, said first and second outputs being connected to said first and second conductive posts, respectively, on said one side of said ground plane thereby to drive said first and second conductive posts in response to asignal applied tothe input of said hybrid with signals differing in phase by 180".
by said crossed slots; a conductive cylinder of a length less than said dipole length disposed symmetrically about said first, second, third and fourth conductive posts in contact with said second side of said ground plane; and means for launching a signal in the form of first and second orthogonal TE, modes out of phase along said cylindrical waveguide towards said first and second crossed orthogonal slots in said ground plane thereby to radiate a circularly polarized circular symmetric beam.

Claims (9)

1. A circular symmetric beam forming antenna comprising a ground plane; no less than one slot in said ground plane; first and second conductive posts disposed on one side of said ground plane on opposite sides of and mutually coupled to each of said no less than one slot; means disposed on the side opposite from said one side of said ground plane for providing a cavity including said no less than one slot in a side wall thereof; a conductive cylinder of a height less than that of said first and second conductive posts disposed symmetrically about said no less than one slot in contact with and on said side of said ground plane thereby to provide an antenna element; and means coupled to said antenna element for exciting said element with electromagnetic energy to be transmitted.
2. The circular symmetric beam forming antenna as defined in claim 1 wherein said means coupled to said antenna element for exciting said element with energy to be transmitted constitutes a 180* hybrid element having an input and first and second outputs, said first and second outputs being connected to said first and second conductive posts, respectively, whereby a signal applied to said input excites said antenna element.
3. The circular symmetric beam forming antenna as defined in claim 1 wherein said means coupled to said antenna element for exciting said element with energy to be transmitted constitutes means for exciting said cavity thereby to excite said no less than one slot in a side wall thereof.
4. The circular symmetric beam forming antenna as defined in claim 1 wherein said no less than one slot in said ground plane constitutes first and second crossed orthogonal slots and said means coupled to said antenna element for exciting said element with energy to be transmitteD includes cylindrical waveguide means for exciting said first and second crossed orthogonal slots with two TE11 orthogonal modes of a phase difference equal to 90* thereby to provide a circularly polarized output from said antenna element.
5. The circular symmetric beam forming antenna as defined in claim 1 wherein the diameter of said conductive cylinder is less than one free space wavelength of said electromagnetic energy to be transmitted.
6. A circular symmetric beam forming antenna comprising a section of rectangular waveguide; a ground plane having first and second sides, said ground plane being disposed transversely across one extremity of said section of rectangular waveguide, in contact with said first side, the portion of said ground plane enclosed by said waveguide having a centrally disposed slot parallel to the broad side walls of said waveguide; first and second conductive posts of substantial dipole length disposed on said second side of said ground plane on opposite sides of and mutually coupled to said slot; a conductive cylinder of a length less than the height of said first and second conductive posts disposed symmetrically about said slot in contact with said second side of said ground plane thereby to provide an antenna structure; and means for launching a fundamental mode electromagnetic wave in said section of rectangular waveguide whereby a circular symmetric beam is radiated by said antenna structure.
7. The circular symemtric beam forming antenna as defined in claim 6 wherein said first and second conductive posts are of a length that differs from said dipole length to produce a 180* phase difference in a signal radiated therefrom as compared to a driving signal radiated from said slot.
8. A circular symmetric beam forming antenna comprising a ground plane having a slot therein; a cavity in contact with one side of said ground plane whereby a portion of said ground plane provides a side wall for said cavity, said portion including said slot; first and second conductive posts of dipole length disposed through said ground plane from said one side thereof on opposite sides of said slot thereby to effect mutual coupling therewith; a conductive cylinder of a length less than said dipole length disposed symmetrically about said first and second conductive posts in contact with the side opposite said one side of said ground plane; and a 180* hybrid having an input and first and second outputs, said first and second outputs being connected to said first and second conductive posts, respectively, on said one side of said ground plane thereby to drive said first and second conductive posts in response to a signal applied to the input of said hybrid with signals differing in phase by 180*.
9. A circularly polarized circular symmetric beam forming antenna comprising a section of cylindrical waveguide; a ground plane having first and second sides, said ground plane being disposed transversely across one extremity of said cylindrical waveguide with said first side thereof in contact therewith, said ground plane additionally having first and second crossed orthogonal slots centrally disposed within the area thereof enclosed by said cylindrical waveguide; first, second, third and fourth conductive posts of substantially dipole length disposed on said second side of said ground plane in respective quadrants thereof formed by said crossed slots; a conductive cylinder of a length less than said dipole length disposed symmetrically about said first, second, third and fourth conductive posts in contact with said second side of said ground plane; and means for launching a signal in the form of first and second orthogonal TE11 modes 90* out of phase along said cylindrical waveguide towards said first and second crossed orthogonal slots in said ground plane thereby to radiate a circularly polarized circular symmetric beam.
US00311210A 1972-12-01 1972-12-01 Circular symmetric beam forming apparatus Expired - Lifetime US3778838A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US31121072A 1972-12-01 1972-12-01

Publications (1)

Publication Number Publication Date
US3778838A true US3778838A (en) 1973-12-11

Family

ID=23205892

Family Applications (1)

Application Number Title Priority Date Filing Date
US00311210A Expired - Lifetime US3778838A (en) 1972-12-01 1972-12-01 Circular symmetric beam forming apparatus

Country Status (1)

Country Link
US (1) US3778838A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0014635A1 (en) * 1979-02-02 1980-08-20 Thomson-Csf Dipole fed open cavity antenna
EP0018476A1 (en) * 1979-04-27 1980-11-12 Ball Corporation Crossed slot cavity antenna
US4710775A (en) * 1985-09-30 1987-12-01 The Boeing Company Parasitically coupled, complementary slot-dipole antenna element
US6657599B2 (en) * 2001-05-31 2003-12-02 Eads Deutschland Gmbh Slot antenna
US6853343B2 (en) * 1999-03-12 2005-02-08 Harris Corporation Polarization plate
WO2008049778A1 (en) 2006-10-24 2008-05-02 Ste D'applications Technologiques De L'imagerie Micro-Onde Method of orthogonal-mode junction coupling with a medium to broad operating bandwidth, and coupler employing said method
US20120306710A1 (en) * 2009-10-29 2012-12-06 Elta Systems Ltd. Hardened wave-guide antenna
US9225070B1 (en) * 2012-10-01 2015-12-29 Lockheed Martin Corporation Cavity backed aperture coupled dielectrically loaded waveguide radiating element with even mode excitation and wide angle impedance matching
WO2016090463A1 (en) * 2014-12-09 2016-06-16 Communication Components Antenna Inc. Dipole antenna with beamforming ring
US10109917B2 (en) * 2015-09-30 2018-10-23 Raytheon Company Cupped antenna
US11101880B1 (en) * 2020-03-16 2021-08-24 Amazon Technologies, Inc. Wide/multiband waveguide adapter for communications systems
EP4210173A1 (en) * 2022-01-10 2023-07-12 TMY Technology Inc. Antenna device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3382501A (en) * 1965-09-22 1968-05-07 Hughes Aircraft Co Elliptically or circularly polarized antenna
US3740754A (en) * 1972-05-24 1973-06-19 Gte Sylvania Inc Broadband cup-dipole and cup-turnstile antennas

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3382501A (en) * 1965-09-22 1968-05-07 Hughes Aircraft Co Elliptically or circularly polarized antenna
US3740754A (en) * 1972-05-24 1973-06-19 Gte Sylvania Inc Broadband cup-dipole and cup-turnstile antennas

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0014635A1 (en) * 1979-02-02 1980-08-20 Thomson-Csf Dipole fed open cavity antenna
FR2448230A1 (en) * 1979-02-02 1980-08-29 Thomson Csf RADIANT SOURCE WITH OPEN CAVITY EXCITED BY A DIPOLE
EP0018476A1 (en) * 1979-04-27 1980-11-12 Ball Corporation Crossed slot cavity antenna
US4710775A (en) * 1985-09-30 1987-12-01 The Boeing Company Parasitically coupled, complementary slot-dipole antenna element
US6853343B2 (en) * 1999-03-12 2005-02-08 Harris Corporation Polarization plate
US6657599B2 (en) * 2001-05-31 2003-12-02 Eads Deutschland Gmbh Slot antenna
WO2008049778A1 (en) 2006-10-24 2008-05-02 Ste D'applications Technologiques De L'imagerie Micro-Onde Method of orthogonal-mode junction coupling with a medium to broad operating bandwidth, and coupler employing said method
EP2092595A1 (en) * 2006-10-24 2009-08-26 STE D'Applications Technologiques De L'Imagerie Micro-Onde Method of orthogonal-mode junction coupling with a medium to broad operating bandwidth, and coupler employing said method
US20120306710A1 (en) * 2009-10-29 2012-12-06 Elta Systems Ltd. Hardened wave-guide antenna
US8508421B2 (en) * 2009-10-29 2013-08-13 Elta Systems Ltd. Hardened wave-guide antenna
US9225070B1 (en) * 2012-10-01 2015-12-29 Lockheed Martin Corporation Cavity backed aperture coupled dielectrically loaded waveguide radiating element with even mode excitation and wide angle impedance matching
WO2016090463A1 (en) * 2014-12-09 2016-06-16 Communication Components Antenna Inc. Dipole antenna with beamforming ring
US10553962B2 (en) 2014-12-09 2020-02-04 Communication Components Antenna Inc. Dipole antenna with beamforming ring
US10109917B2 (en) * 2015-09-30 2018-10-23 Raytheon Company Cupped antenna
US11101880B1 (en) * 2020-03-16 2021-08-24 Amazon Technologies, Inc. Wide/multiband waveguide adapter for communications systems
EP4210173A1 (en) * 2022-01-10 2023-07-12 TMY Technology Inc. Antenna device
US11862851B2 (en) 2022-01-10 2024-01-02 Tmy Technology Inc. Antenna device

Similar Documents

Publication Publication Date Title
US9960495B1 (en) Integrated single-piece antenna feed and circular polarizer
US3389394A (en) Multiple frequency antenna
US5940036A (en) Broadband circularly polarized dielectric resonator antenna
US3665480A (en) Annular slot antenna with stripline feed
US3713167A (en) Omni-steerable cardioid antenna
US7243610B2 (en) Plasma device and plasma generating method
US3778838A (en) Circular symmetric beam forming apparatus
JPH03107203A (en) Plane antenna
US3852762A (en) Scanning lens antenna
US3348228A (en) Circular dipole antenna array
US3864687A (en) Coaxial horn antenna
US3500419A (en) Dual frequency,dual polarized cassegrain antenna
US2965898A (en) Antenna
US3653054A (en) Symmetrical trough waveguide antenna array
US3938159A (en) Dual frequency feed horn using notched fins for phase and amplitude control
US2556046A (en) Directional antenna system
US3680142A (en) Circularly polarized antenna
US2597144A (en) Electromagnetic wave control structure
US2759183A (en) Antenna arrays
JP3060871B2 (en) antenna
US3680138A (en) Cross-mode reflector for the front element of an array antenna
US6222492B1 (en) Dual coaxial feed for tracking antenna
US3573835A (en) Impedance matched open-ended waveguide array
US2591695A (en) High-frequency radiator apparatus and resonator
GB762415A (en) Improvements in or relating to aerials