US3771081A - Interpole trip system for multi-pole circuit breaker - Google Patents

Interpole trip system for multi-pole circuit breaker Download PDF

Info

Publication number
US3771081A
US3771081A US00275508A US3771081DA US3771081A US 3771081 A US3771081 A US 3771081A US 00275508 A US00275508 A US 00275508A US 3771081D A US3771081D A US 3771081DA US 3771081 A US3771081 A US 3771081A
Authority
US
United States
Prior art keywords
latch
circuit breaker
operating
cradle
mechanisms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00275508A
Inventor
A Strobel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Energy and Automation Inc
ITE Imperial Corp
Original Assignee
ITE Imperial Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ITE Imperial Corp filed Critical ITE Imperial Corp
Application granted granted Critical
Publication of US3771081A publication Critical patent/US3771081A/en
Assigned to SIEMENS-ALLIS, INC., A DE CORP. reassignment SIEMENS-ALLIS, INC., A DE CORP. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: GOULD, INC., A DE CORP., ITE INDUSTRIES, LIMITED, A FEDERAL CORP. OF CANADA
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H71/00Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
    • H01H71/10Operating or release mechanisms
    • H01H71/1009Interconnected mechanisms

Definitions

  • the instant invention provides a trip system that consists of independent latching, tripping and sensing means for each pole, complete with primary and secondary latches.
  • the common or interpole trip feature is obtained by means of a tripper bar that does not supportany latches. This tripper bar is actuated by the forces of an operating mechanism acting through a lever system only after any one of the primary latches is fully disengaged.
  • a primary object of the instant invention is to provide a novel interpole tripping system for a multipole circuit breaker having individual spring powered contact operating mechanisms for each pole thereof.
  • Another object is to provide a multipole circuit breaker in which each pole is provided with an identical mechanism for contact operation, complete with'a latch system, tripping means and overload sensing devices connected so that each of these mechanisms is separately and independently operable.
  • Still another object is to provide a compact molding case circuit breaker of very high current rating with an interpole trip system so constructed that overload sensing devices in each pole are required to overcome forces of only a single primary latch during automatic tripping operation.
  • FIG. 1 is a plan view of a circuit breaker constructed in accordance with teachings of the instant invention.
  • FIG. 2 is a longitudinal cross-section taken through line 2-2 of FIG. 1, looking in the direction of arrows 2-2 and including a handle operating mechanism, not shown in FIG. 1.
  • FIG. 3 is an exploded perspective of one overcenter toggle mechanism and selected elements connected thereto.
  • FIG. 4 is an exploded perspective of the movable contact structure for one phase.
  • FIG. 5 is an enlarged plan view showing a fragmentary portion of the circuit breaker operating mechanisms including elements of the interpole trip system and system to prevent contact closing prior to latching of all operating mechanisms.
  • FIG-6 is a cross-section taken through line 66 of FIG. 5 looking in the direction of arrows 6- 6, showing the elements of the interpole trip system with other elements eliminated for the sake of brevity.
  • FIG. 7 is across-section taken through lines 7--7 of FIG. 5 looking in the direction of arrows 7-7, showing the elements of the system to prevent contact closing prior to latching the contact operating mechanisms of all poles, eliminated for the sake of brevity.
  • Three phase molded case circuit breaker 25 of FIGS. 1 and 2 includes an individual overcenter spring-powered toggle operating mechanism.
  • Prior art examples of circuit breakers having more than a single operating mechanism for all phases are disclosed in US. Pat. Nos. 2,067,935 and Circuit breaker 25 includes a molded housing constructed of base 26 and removable cover 27 joined along line 28 and provided with longitudinal internal partitions 31, 32 which divide housing 26, 27 into three longitudinally extending compartments, one for each phase of circuit breaker 25.
  • Cover 27 is provided with aperture 29 through which stubby bifurcated extension 33 of operating handle means 30 extends.
  • Each section of handle extension 33 receives an individual pin 34 extending upwardly from the web portion of inverted generally U-shaped operating yoke member 35 of the center phase.
  • Operating members 35 of the outer phases are each secured .to handle means 30 by a pair of screws 152.
  • auxiliary latch 53 Under normal operating conditions plate 51, secured to web 40a of cradle 40, is in engagement with forward latching surface 52 of auxiliary latch 53.
  • the latter is loosely mounted to pivot rod 55 extending between the spaced arm of mechanism frame 36 and slightly outboard thereof.
  • the coiled end sections of torsion spring member 56 are wound about pivot rod 55, with the ends of these sections bearing against rod 57 and auxiliary latch 53 to bias the latter counterclockwise against stop rod 58.
  • the ends of rods 57 and 58 are supported by the arms of frame 36.
  • Leaf spring 73 secured to auxiliary latch 53 bears against pivot rod 55 biasing latch 53, so that rod 55 will normally lie at the central portion of V-shaped notch 74 of primary latch 53.
  • Rear latch tip 54 engages latch tip 63 at the U-shaped forward arm of primary latch 65, whose rear latch tip 64 is engaged by latch plate 67 mounted on one leg of L-shaped carrier 66.
  • Primary latch 65 is pivotally mounted to trip unit frame 60 at stub shaft 69, and the carrier is pivoted on rod 68 to frame 60.
  • Tension spring 75 biases primary latch 65 in a clockwise direction about pivot 69.
  • the other leg of carrier 66 is provided with transversely extending pin 71 that projects into triangular window 72 of pirmary latch 65 at a portion thereof near rear latch tip 64, for a reason to be hereinafter explained.
  • Tension spring 76 connected between frame 60 and carrier extension 66a, biases carrier 66 in a counterclockwise direction about its pivot 68 toward latching position.
  • carrier 66 in the faulted phase is moved clockwise either by the deflection of bimetal 77 or movement of magnetic armature 78, causing latch plate 67 to release primary latch 65, which in turn releases secondary latch 53 and permits main operating springs 38 to rotate cradle 40 in a counterclockwise direction to break toggle 42, 43.
  • the force from main spring 38 acts through cradle 40, primary latch 53, and secondary latch 65 to drive cam surface 78, bounding opening 72, against extension 71 to rotate carrier 66 clockwise, with surface 79 thereof engaging ear 81 of extension 82 on tripper bar 80 which extends between all three phases.
  • tripper bar 80 This causes tripper bar 80 to rotate in a counterclockwise direction, so that extensions 82 in the non-faulted phases rotate counterclockwise with cam surfaces 83 thereof engaging transversely extending pin 84 of carriers 66 in the non faulted phases, rotating them clockwise or in the tripping direction, to release the cradle latching systems in the non-faulted phases, so that the contacts of all three phases are open.
  • circuit breaker 25 is provided with a defeater latching system including defeater latch and defeater lever 90.
  • Latch 80 is pivotally mounted upon rod 55 and includes protrusion 81' extending over the rear of cradle 40 when the latter is in latched position.
  • Latch 80 further includes protrusion 82' extending over the forward end of defeater lever in slot 91 thereof.
  • Coiled tension spring .83 is connected between stop rod 57 and latch 80', passing partially around rod 55, to bias latch 80 in a counterclockwise direction about its pivot 55 and maintaining this pivot in the basic position at the right end of slot 84' in latch 80. This basic position is established through the em gagement of latch stop surface 86, and stop rod'57.
  • Slot 91 is in the web of the U-shaped forward portion of latch lever 90, with the U arms having pivot pin 69 for lever 90 extending therethrough.
  • Rear portion 89 of lever 90 is positioned below and in interfering relationship with transverse pin 71 mounted to latch plate carrier 66.
  • defeater latch protrusion 82' to engage defeater lever 90 and rotate the latter counterclockwise, with the rear end 89 thereof contacting carrier extension 71 so that latch plate carrier 66 is pivoted in a clockwise or latch train releasing direction.
  • surface 79 thereof engages nose 81 of one trip bar extension 82 to rotate common tripper bar 80 in a counterclockwise direction, with the other extensions 82 on bar 80 engaging pins 84 on the latch plate carriers 66 of the other poles, thereby causing the latch systems of all other poles to be released.
  • Coiled tension spring 97 connected between armature 78 an'd an element mounted to the rear transverse part'60a of frame 60, biases the former away from two spaced legs 98a extending upward from the horizontal'leg of'member 98, and is drawn downward toward legs 98a'when overload currents generatesufficient magnetic flux in magnetic frame 78, 96, 98.
  • the movable contact structure for each phase of circuit breaker 25 includes eight main contacts 103-110 and a single arcing contact 101.
  • the latter contact 101 is mounted at the forward end of arm 1 12, which is pivotally mounted to carrier 45 at toggle connecting rod 46.
  • Main contacts 103-110 are arranged in two parallel rows positioned to the rear of arcing contact 101 and disposed at right angles to the plane of movement of arcing contact arm 112.
  • Main contacts 103-106 in the forward row are mounted to individual contact arms 113-116 respectively, all pivotally mounted to carrier 45 on rod 46.
  • All of the contact arms 112-120 are connected toload strap 61 by means of individual stacks 121 of flexible sheet conductors.
  • Contact arms 113-116 are in alignment with and extend over the respective contact arms 1 17-120, so that the latter group of arms 117-120 block downward movement of the former group of arms 113-116 to establish the open circuit position of contacts 103-106 in a manner which will hereinafter be seen.
  • the open circuit position for arcing contact arm 112 is established through engagement thereof with aligned pins 123, 124 which mount the respective pairs of main contacts 1 17, 1 l8 and 1 19, 120 to auxiliary carriers 125, 126 respectively. Notch 122 along the lower edge of arc'ing contact arm 112 provides clearance for pins 123, 124.
  • Auxiliary carrier 125 is an inverted U-shaped member whose arms extend downwardly through cutouts 131, 132 in the web portion of contact carrier 45 and straddle four contact arms 113, 114, 117, 118. Pin 123 secures contacts 117 1 18 to the lower ends of the arms comprising auxiliary carrier 125.
  • the web of auxiliary carrier 125 is biased towards the web of contact carrier 45 by coiled compression spring 127, which is wound around the threaded body of bolt 128 whose head is positioned below the web portions of contact carrier 45.
  • Self-locking nut 133 mounted to bolt 128 is rotated to adjust the loading of spring 127, with the rectangular shoulder of bolt 128 cooperating with rectangular cutout in carrier 45 to prevent rotation of bolt 128.
  • spring 127 biases the web of auxiliary contact carrier 125 against the web of contact carrier 45, and when the contacts are closed there is a space between the webs of these contact carriers 45, 125, so that the force exerted by spring 127 acts to bias contacts 107, 108 into firm electrical engagement with their respective cooperating contact portions on line strap 136.
  • Biasing forces for each of the contacts 103-106 in the forward row are provided by individual coiled com- 6 pression springs 138, and each of these springs is mounted in the same way so that only the mounting of one of these springs will be described.
  • the lower end of spring 138 extends into depression 139 in the upper surface of main contact arm 113, and the rear of spring 138 extends into tubular support 141 through the open bottom thereof.
  • Support 141 is mounted to the upper surface of carrier 45 at the web portion thereof, and its upper end is threaded to receive adjusting screw 142 whose lower end bears against disc 143 abutting the upper end of spring 138. If screw 142 is adjusted to set I the contact pressure exerted by spring 138, lock nut 144 is tightened to lock this adjustment.
  • each of the main contacts is provided with a portion extending outward of its respective contact arm. That is, in order to utilize the space below arcing contact 112, main contacts 104, 105, 108, 109 have been extended beyond their respectivecontact arms 114, 115, 118, 119 to project below arcing contact arm 112.'Similarly, main contacts 103, 106, 107, have been extended outboard from their respective contact arms 1 13, 1 l6, 1 17, 120, to lie in the space below the outboard arms of auxiliary contact carrier 125, 126' and other elements used to connectv the movable contact structure to the contact operating mechanism.
  • the forward end of arcing contact arm 112 is biased downward away from the web portion of contact carrier 45 by coiled compression spring 171 whose lower end is positioned by pin 172 extending upward from arm 112.
  • the upper end of spring 171 extends into tubular member 173, on the upper surface of the carrier 45 web portion, through the bottom of member 173 and abuts the closed upper end thereof.
  • contact carrier 45 The spaced arms of contact carrier 45 are provided with rearward extensions 45a, 45b that are spaced by and secured to shouldered cylindrical tube 146.
  • Mechanism frame 36 is provided with aligned elongated slots 148 to provide clearances for movement of rod 147 during opening and closing of the movable contact structures It is noted that because of high magnitude current flow in circuit breaker 25, the magnetic fields generated are very strong. In order to reduce adverse effects of these magnetic fields, many of the frame parts and operating mechanism parts are constructed of nonmagnetic stainless steel.
  • a multi-pole circuit breaker including first, secnd; and third mechanisms, each comprising associated individual contact operating means, individual latch means and individual overload trip means; said operating means including a main spring means to provide contact operating power and contact pressure, and a latchable cradle movable by said spring means from a normally latched position wherein said operating means is effective for contact closing to a tripped position wherein said operating means is inefiective for contact closing when said cradle is released; said latch means including a latch unit normally maintaining the cradle of its associated operating means in its said latched position; common trip bar means for operating said latch units and for being operated thereby; said overload trip means when subjected to predetermined current overload conditions operating its associated latch means to release the cradle of its associated operating mechanism prior to operation of any of said latch units by said trip bar means; with said circuit breaker closed each of said latch units being connected to the cradle of its associated operating means such that after releasing the last recited cradle the force of its associated spring means is transmitted
  • a circuit breaker as set forth in claim 2 in which the trip bar means and said trip units are pivoted on parallel axes and each of said latch trains comprises a plurality of lever-like latch members pivoted on axes parallel to the axis of the trip bar means.
  • a circuit breaker as set forth in claim 1 also including a single housing having individual longitudinal compartments for each of said mechanisms.
  • a circuit breaker as set forth in claim-4 also including a handle means having a transverse portion inside said housing interconnecting the operating means of said first and second mechanisms for simultaneous operation; said handle means including an operating section extending outside of said housing through an open ing therein; said operating section generally being no wider than one of said compartments.
  • a circuit breaker as set forth in claim 5 also including individual separable contact means for each of said mechanisms connected for operation to open and closed positions directly by the operating means of the respective associated mechanism; a transverse tie bar mechanically interconnecting said separable contact means of all of said mechanisms.
  • a circuit breaker as set forth in claim 7 in which the trip bar means and said trip units are pivoted on parallel axes and each of said latch trains comprises a plurality of lever-like latch members pivoted on axes parallel to the axis of the trip bar means.
  • a circuit breaker as set forth in claim 6 in which the latch means of all of said mechanisms are operatively mounted by means remote from said common trip bar means.
  • a circuit breaker as set forth in claim 1 in which the latch means of all of said mechanisms are operatively mounted by means remote from said common trip bar means.

Abstract

A multipole circuit breaker having an individual spring powered overcenter toggle operating mechanism with a releasable cradle is provided with an interpole trip system in which there is a common tripper bar that does not support any of the latches for the operating mechanism cradles.

Description

United States Patent 1 Strobel Nov. 6, 1973 INTERPOLE TRIP SYSTEM FOR MULTI-POLE CIRCUIT BREAKER [75] Inventor: Albert Strobel, Cherry Hill, NJ.
[73] Assignee: I-T-E Imperial Corporation, Spring House, Pa.
[22] Filed: July 27, 1972 [21] Appl. No.: 275,508
[52] US. Cl. 335/9, 335/21 [51] Int. Cl. .L H0lh 73/00 [58] Field of Search 335/8, 9, 10, 21,
[56] References Cited UNITED STATES PATENTS 2,067,935 1/1937 Lingal 335/21 3/1964 Cole et al. 335/10 10/1971 Ellsworth 335/166 Primary Examiner-Harold Broome Attorney-Sidney G. Faber et al.
[5 7 ABSTRACT A multipole circuit breaker having an individual Spring powered overcenter toggle operating mechanism with a releasable cradle is provided with an interpole trip system in which there is a common tripper bar that does not support any of the latches for the operating mechanism cradles.
10 Claims, 7 Drawing Figures PATENIEUKBY 5 I973 I SHEET 10F 6 N MP H PATENTEU NOV 6 I973 SHEET 2 [IF 6 PAIENTEBMUV 6 I913 SHEET u or s INTERPOLE TRIP SYSTEM FORMULTI-POLE CIRCUIT BREAKER This invention relates to 'multipole molded case circuit breakers having very high continuous current ratings, and more particularly relates to a circuit breaker of this type having individual contact operating mechanisms for each pole and an interpole trip system whereby the opening of one poledue to a fault condition causes opening of the remaining poles. v
For the most part, a multipole molded case circuit breaker is provided with a single operating mechanism which operates the contact structures of all poles simultaneously. This contact operating mechanism includes a latch member extending into an overload sensing unit where the latch member is locked against a latch plate on a tripper bar that extends into all poles of the circuit breaker. Magnetic and/or thermal actuated devices in each pole may independently pivot the tripper bar recome necessary to use more than one contact operating mechanism to generate sufficient forces for adequate contact pressure and contact operation. In order to obtain simultaneous tripping of all poles in a multiple operating mechanism construction, the secondary latches of all these operating mechanisms are usually tied together by means of a connecting bar. In turn, this connecting bar supports a single primary latch that extends into the overload sensing unit where this primary latch is controlled by a common tripper bar in the same manner as previously describedfor circuit breakers having a single operating mechanism.
This type of trip system for multimechanisrn circuit breakers appears adequate for those mechanisms with moderate size and force requirements. However, when forces on these secondary latches become very high due to a design for extra high continuous current ratings (say 2,000 amperes or more) of a circuit breaker of very compact construction, the tying together of the secondary latches with a tie bar presents certain diff culties. In addition, the combined forces of all secondary latches acting on a single primary latch could very well exceed the available tripping forces generated by the overload sensing system, especially since leverage space in a compact unit is at a premium.
I Thus, the instant invention provides a trip system that consists of independent latching, tripping and sensing means for each pole, complete with primary and secondary latches. The common or interpole trip feature is obtained by means of a tripper bar that does not supportany latches. This tripper bar is actuated by the forces of an operating mechanism acting through a lever system only after any one of the primary latches is fully disengaged.
Accordingly, a primary object of the instant invention is to provide a novel interpole tripping system for a multipole circuit breaker having individual spring powered contact operating mechanisms for each pole thereof.
Another object is to provide a multipole circuit breaker in which each pole is provided with an identical mechanism for contact operation, complete with'a latch system, tripping means and overload sensing devices connected so that each of these mechanisms is separately and independently operable.
Still another object is to provide a compact molding case circuit breaker of very high current rating with an interpole trip system so constructed that overload sensing devices in each pole are required to overcome forces of only a single primary latch during automatic tripping operation.
These objects as well as other objects of this invention will become readily apparent after reading the following description of the accompanying drawings in which:
FIG. 1 is a plan view of a circuit breaker constructed in accordance with teachings of the instant invention.
FIG. 2 is a longitudinal cross-section taken through line 2-2 of FIG. 1, looking in the direction of arrows 2-2 and including a handle operating mechanism, not shown in FIG. 1.
FIG. 3 is an exploded perspective of one overcenter toggle mechanism and selected elements connected thereto.
FIG. 4 is an exploded perspective of the movable contact structure for one phase.
FIG. 5 is an enlarged plan view showing a fragmentary portion of the circuit breaker operating mechanisms including elements of the interpole trip system and system to prevent contact closing prior to latching of all operating mechanisms.
FIG-6 is a cross-section taken through line 66 of FIG. 5 looking in the direction of arrows 6- 6, showing the elements of the interpole trip system with other elements eliminated for the sake of brevity.
FIG. 7 is across-section taken through lines 7--7 of FIG. 5 looking in the direction of arrows 7-7, showing the elements of the system to prevent contact closing prior to latching the contact operating mechanisms of all poles, eliminated for the sake of brevity.
Now referring to the figures. Three phase molded case circuit breaker 25 of FIGS. 1 and 2 includes an individual overcenter spring-powered toggle operating mechanism. Prior art examples of circuit breakers having more than a single operating mechanism for all phases are disclosed in US. Pat. Nos. 2,067,935 and Circuit breaker 25 includes a molded housing constructed of base 26 and removable cover 27 joined along line 28 and provided with longitudinal internal partitions 31, 32 which divide housing 26, 27 into three longitudinally extending compartments, one for each phase of circuit breaker 25. Cover 27 is provided with aperture 29 through which stubby bifurcated extension 33 of operating handle means 30 extends. Each section of handle extension 33 receives an individual pin 34 extending upwardly from the web portion of inverted generally U-shaped operating yoke member 35 of the center phase. Operating members 35 of the outer phases are each secured .to handle means 30 by a pair of screws 152.
Member 35is pivoted to the spaced arms of generally U-shaped operating mechanism frame 36 at outwardly extending lugs 37. Bolts 48, received by threaded apertures of inturned edges 36a at the bottom'of frame 36, fixedly secure the latter to base 26. Transverse tie member 49 is riveted to the arms of frame 36 to maintain spacing therebetween and to stabilize the frame structure.
- Four-tensioned coil springs 38, each connected at one end thereof to the web of operating member 35, combine to constitute the main operating spring mearis for the overcenter toggle-type contact operating mechanism. The other ends of springs 38 are connected to spaced plates 39, 39 that are pivotally mounted to toggle knee pin 41 connecting upper 42 and lower 43 toggle links. The upper ends of upper toggle links 42 are pivotally connected to the spaced arms of latchable cradle 40 at pins 44, and the lower ends of lower toggle links 43 are pivotally connected to contact carrier 45 by rod 46 that extends between the spaced arms of contact carrier 45. The spaced arms of cradle 40 are positioned adjacent the inner surfaces of the spaced arms of frame 36 and are pivotally connected thereto by pins 47 that are secured to frame 36.
Under normal operating conditions plate 51, secured to web 40a of cradle 40, is in engagement with forward latching surface 52 of auxiliary latch 53. The latter is loosely mounted to pivot rod 55 extending between the spaced arm of mechanism frame 36 and slightly outboard thereof. The coiled end sections of torsion spring member 56 are wound about pivot rod 55, with the ends of these sections bearing against rod 57 and auxiliary latch 53 to bias the latter counterclockwise against stop rod 58. The ends of rods 57 and 58 are supported by the arms of frame 36. Leaf spring 73 secured to auxiliary latch 53 bears against pivot rod 55 biasing latch 53, so that rod 55 will normally lie at the central portion of V-shaped notch 74 of primary latch 53.
The ends of rod 55 projecting outboard of mechanism frame 36 are engaged by the hooked portions at the forward extension 59 of the arms for U-shaped trip unit frame 60, whose web portion is seated on a forward surface of load strip 61, being secured thereto by bolts 62 that extend through clearance apertures in strap 61 and are received by threaded inserts molded in base 26.
Rear latch tip 54 engages latch tip 63 at the U-shaped forward arm of primary latch 65, whose rear latch tip 64 is engaged by latch plate 67 mounted on one leg of L-shaped carrier 66. Primary latch 65 is pivotally mounted to trip unit frame 60 at stub shaft 69, and the carrier is pivoted on rod 68 to frame 60. Tension spring 75 biases primary latch 65 in a clockwise direction about pivot 69. The other leg of carrier 66 is provided with transversely extending pin 71 that projects into triangular window 72 of pirmary latch 65 at a portion thereof near rear latch tip 64, for a reason to be hereinafter explained. Tension spring 76, connected between frame 60 and carrier extension 66a, biases carrier 66 in a counterclockwise direction about its pivot 68 toward latching position.
When automatic tripping occurs, carrier 66 in the faulted phase is moved clockwise either by the deflection of bimetal 77 or movement of magnetic armature 78, causing latch plate 67 to release primary latch 65, which in turn releases secondary latch 53 and permits main operating springs 38 to rotate cradle 40 in a counterclockwise direction to break toggle 42, 43. The force from main spring 38 acts through cradle 40, primary latch 53, and secondary latch 65 to drive cam surface 78, bounding opening 72, against extension 71 to rotate carrier 66 clockwise, with surface 79 thereof engaging ear 81 of extension 82 on tripper bar 80 which extends between all three phases. This causes tripper bar 80 to rotate in a counterclockwise direction, so that extensions 82 in the non-faulted phases rotate counterclockwise with cam surfaces 83 thereof engaging transversely extending pin 84 of carriers 66 in the non faulted phases, rotating them clockwise or in the tripping direction, to release the cradle latching systems in the non-faulted phases, so that the contacts of all three phases are open.
In order to prevent closing of the contacts of any one phase before the operating mechanisms of all phases are latched, circuit breaker 25 is provided with a defeater latching system including defeater latch and defeater lever 90. Latch 80 is pivotally mounted upon rod 55 and includes protrusion 81' extending over the rear of cradle 40 when the latter is in latched position. Latch 80 further includes protrusion 82' extending over the forward end of defeater lever in slot 91 thereof. Coiled tension spring .83 is connected between stop rod 57 and latch 80', passing partially around rod 55, to bias latch 80 in a counterclockwise direction about its pivot 55 and maintaining this pivot in the basic position at the right end of slot 84' in latch 80. This basic position is established through the em gagement of latch stop surface 86, and stop rod'57.
Slot 91 is in the web of the U-shaped forward portion of latch lever 90, with the U arms having pivot pin 69 for lever 90 extending therethrough. Rear portion 89 of lever 90 is positioned below and in interfering relationship with transverse pin 71 mounted to latch plate carrier 66.
During normal relatching of circuit breaker 25, inwardly protruding portions of the operating member 35 arms engage outboard portions of pin .44 to pivot cradle 40 clockwise, whereby the latter cams defeater latch 80' away and moves below auxiliary latch 53. Upon release of the circuit breaker operating handle 30, the elements of the latch train 53, 65, 66 move into place. However, should any of these elements fail to properly engage or should cradle 40 not have been moved far enough to engage auxiliary latch 53, cradle 40 will pick up defeater latch protrusion 81', causing clockwise rotation of defeater latch 80. In turn, this causes defeater latch protrusion 82' to engage defeater lever 90 and rotate the latter counterclockwise, with the rear end 89 thereof contacting carrier extension 71 so that latch plate carrier 66 is pivoted in a clockwise or latch train releasing direction. During this releasing'movement of carrier 66, surface 79 thereof engages nose 81 of one trip bar extension 82 to rotate common tripper bar 80 in a counterclockwise direction, with the other extensions 82 on bar 80 engaging pins 84 on the latch plate carriers 66 of the other poles, thereby causing the latch systems of all other poles to be released.
The lower end of bimetal 77 is fixedly secured to shading coil 99, and these elements are fixedly secured to molded frame member 95 secured to trip unit frame 60. The horizontal leg of inverted U-shaped stationary magnetic frame member 98 passes through the center of coil 99. Member 98 is secured to the rear of frame 60, with the vertical legs of member 98 being .on opposite sides of load strip 61. The other U-shaped magnetic frame member 96 is secured directly to load strap 61, with the ends of the arms for frame members 96 and 98 confronting one another in spaced relationship. Thus, current flowing in load strap 61 generates flux in magnetic frame 96, 98 which induces current flow in shading coil 99 and thereby generates heat that is conducted to bimetal 77 for heating thereof. Coiled tension spring 97, connected between armature 78 an'd an element mounted to the rear transverse part'60a of frame 60, biases the former away from two spaced legs 98a extending upward from the horizontal'leg of'member 98, and is drawn downward toward legs 98a'when overload currents generatesufficient magnetic flux in magnetic frame 78, 96, 98.
With particular reference to FIG. 4, it is seen that the movable contact structure for each phase of circuit breaker 25 includes eight main contacts 103-110 and a single arcing contact 101. The latter contact 101 is mounted at the forward end of arm 1 12, which is pivotally mounted to carrier 45 at toggle connecting rod 46. Main contacts 103-110 are arranged in two parallel rows positioned to the rear of arcing contact 101 and disposed at right angles to the plane of movement of arcing contact arm 112.
Main contacts 103-106 in the forward row are mounted to individual contact arms 113-116 respectively, all pivotally mounted to carrier 45 on rod 46. Main contacts 107-110 in the rear row-are mounted to the forward end of the respective contact arms 11 7-120, respectively, pivotally mounted to carrier 45 on rod 102. All of the contact arms 112-120 are connected toload strap 61 by means of individual stacks 121 of flexible sheet conductors. Contact arms 113-116 are in alignment with and extend over the respective contact arms 1 17-120, so that the latter group of arms 117-120 block downward movement of the former group of arms 113-116 to establish the open circuit position of contacts 103-106 in a manner which will hereinafter be seen. The open circuit position for arcing contact arm 112 is established through engagement thereof with aligned pins 123, 124 which mount the respective pairs of main contacts 1 17, 1 l8 and 1 19, 120 to auxiliary carriers 125, 126 respectively. Notch 122 along the lower edge of arc'ing contact arm 112 provides clearance for pins 123, 124.
Auxiliary carrier 125 is an inverted U-shaped member whose arms extend downwardly through cutouts 131, 132 in the web portion of contact carrier 45 and straddle four contact arms 113, 114, 117, 118. Pin 123 secures contacts 117 1 18 to the lower ends of the arms comprising auxiliary carrier 125. The web of auxiliary carrier 125 is biased towards the web of contact carrier 45 by coiled compression spring 127, which is wound around the threaded body of bolt 128 whose head is positioned below the web portions of contact carrier 45. Self-locking nut 133 mounted to bolt 128 is rotated to adjust the loading of spring 127, with the rectangular shoulder of bolt 128 cooperating with rectangular cutout in carrier 45 to prevent rotation of bolt 128. Thus, in the open circuit position, spring 127 biases the web of auxiliary contact carrier 125 against the web of contact carrier 45, and when the contacts are closed there is a space between the webs of these contact carriers 45, 125, so that the force exerted by spring 127 acts to bias contacts 107, 108 into firm electrical engagement with their respective cooperating contact portions on line strap 136. I
The mounting of contact arms 119, 120 to auxiliary contact carrier 126 and mounting of the latter to contact carrier 45 is the same as the mounting of contact arms 117,1 18 and auxiliary carrier 125, so that this description will not be repeated.
Biasing forces for each of the contacts 103-106 in the forward row are provided by individual coiled com- 6 pression springs 138, and each of these springs is mounted in the same way so that only the mounting of one of these springs will be described. The lower end of spring 138 extends into depression 139 in the upper surface of main contact arm 113, and the rear of spring 138 extends into tubular support 141 through the open bottom thereof. Support 141 is mounted to the upper surface of carrier 45 at the web portion thereof, and its upper end is threaded to receive adjusting screw 142 whose lower end bears against disc 143 abutting the upper end of spring 138. If screw 142 is adjusted to set I the contact pressure exerted by spring 138, lock nut 144 is tightened to lock this adjustment.
In order to increase the area of engagement between main contacts 103-110 and their respective cooperating stationary main contacts in the very limited space available, it is noted that each of the main contacts is provided with a portion extending outward of its respective contact arm. That is, in order to utilize the space below arcing contact 112, main contacts 104, 105, 108, 109 have been extended beyond their respectivecontact arms 114, 115, 118, 119 to project below arcing contact arm 112.'Similarly, main contacts 103, 106, 107, have been extended outboard from their respective contact arms 1 13, 1 l6, 1 17, 120, to lie in the space below the outboard arms of auxiliary contact carrier 125, 126' and other elements used to connectv the movable contact structure to the contact operating mechanism.
The forward end of arcing contact arm 112 is biased downward away from the web portion of contact carrier 45 by coiled compression spring 171 whose lower end is positioned by pin 172 extending upward from arm 112. The upper end of spring 171 extends into tubular member 173, on the upper surface of the carrier 45 web portion, through the bottom of member 173 and abuts the closed upper end thereof.
The spaced arms of contact carrier 45 are provided with rearward extensions 45a, 45b that are spaced by and secured to shouldered cylindrical tube 146. After all contact structures, operatingmechanisms, latching devices, and automatic trip units are mounted to base 26, and all adjustments to these mechanisms have been made, the contact structures of all phases are operated to the closed circuit position, so that the tubular members 146 of all phases are axially aligned and are positioned above barriers 31, 32 and the longitudinal sides of base 26. Thereafter, cylindrical tie bar 147 is driven longitudinally in the members 146 of all phases to constitute a rigid mechanical connection between the movable contact structures of all phases. The fit between tie rod 147 and tubular members 146 is tight enough to prevent unintentional axial movement of tie rod 147, yet permits tie rod 147 to be removed for convenient servicing and replacement of parts. Mechanism frame 36 is provided with aligned elongated slots 148 to provide clearances for movement of rod 147 during opening and closing of the movable contact structures It is noted that because of high magnitude current flow in circuit breaker 25, the magnetic fields generated are very strong. In order to reduce adverse effects of these magnetic fields, many of the frame parts and operating mechanism parts are constructed of nonmagnetic stainless steel.
For those features of construction in circuit breaker 25 that have not been described in detail herein, reference is made to one or more of the copending applications Ser. Nos.
275,568 275,577 275,446 275,578 275,507 275,454 275,621 275,623 275,624 275,569 275,522 275,521 275,523, and 275,622,
all filed of even date herewith, and all assigned to the assignee of the instant invention.
Although there has been described a preferred embodiment of this novel invention, many variations and modifications will now become apparent to those skilled in the art. Therefore, this invention is to be limited not by the specific disclosure herein but only by the appending claims.
The embodiments of the invention in which an exclusive privilege or property is claimed are defined as follows.
1. A multi-pole circuit breaker including first, secnd; and third mechanisms, each comprising associated individual contact operating means, individual latch means and individual overload trip means; said operating means including a main spring means to provide contact operating power and contact pressure, and a latchable cradle movable by said spring means from a normally latched position wherein said operating means is effective for contact closing to a tripped position wherein said operating means is inefiective for contact closing when said cradle is released; said latch means including a latch unit normally maintaining the cradle of its associated operating means in its said latched position; common trip bar means for operating said latch units and for being operated thereby; said overload trip means when subjected to predetermined current overload conditions operating its associated latch means to release the cradle of its associated operating mechanism prior to operation of any of said latch units by said trip bar means; with said circuit breaker closed each of said latch units being connected to the cradle of its associated operating means such that after releasing the last recited cradle the force of its associated spring means is transmitted through this last recited cradle and its associated latch means to operate said trip bar means which in turn operates the other latch units to release their associated cradles.
2. A circuit breaker as set forth in claim 1 in which the latch means of each of the mechanisms includes an individual latch train interposed between the cradle and the latch unit thereof.
3. A circuit breaker as set forth in claim 2 in which the trip bar means and said trip units are pivoted on parallel axes and each of said latch trains comprises a plurality of lever-like latch members pivoted on axes parallel to the axis of the trip bar means.
4. A circuit breaker as set forth in claim 1 also including a single housing having individual longitudinal compartments for each of said mechanisms.
5. A circuit breaker as set forth in claim-4 also including a handle means having a transverse portion inside said housing interconnecting the operating means of said first and second mechanisms for simultaneous operation; said handle means including an operating section extending outside of said housing through an open ing therein; said operating section generally being no wider than one of said compartments.
6. A circuit breaker as set forth in claim 5 also including individual separable contact means for each of said mechanisms connected for operation to open and closed positions directly by the operating means of the respective associated mechanism; a transverse tie bar mechanically interconnecting said separable contact means of all of said mechanisms.
7. A circuit breaker as set forth in claim 6 in which the latch means of each of the mechanisms includes an individual latch train interposed between the cradle and the latch unit thereof.
8. A circuit breaker as set forth in claim 7 in which the trip bar means and said trip units are pivoted on parallel axes and each of said latch trains comprises a plurality of lever-like latch members pivoted on axes parallel to the axis of the trip bar means.
9. A circuit breaker as set forth in claim 6 in which the latch means of all of said mechanisms are operatively mounted by means remote from said common trip bar means.
10. A circuit breaker as set forth in claim 1 in which the latch means of all of said mechanisms are operatively mounted by means remote from said common trip bar means.

Claims (10)

1. A multi-pole circuit breaker including first, second, and third mechanisms, each comprising associated individual contact operating means, individual latch means and individual overload trip means; said operating means including a main spring means to provide contact operating power and contact pressure, and a latchable cradle movable by said spring means from a normally latched position wherein said operating means is effective for contact closing to a tripped position wherein said operating means is ineffective for contact closing when said cradle is released; said latch means including a latch unit normally maintaining the cradle of its associated operating means in its said latched position; common trip bar means for operating said latch units and for being operated thereby; said overload trip means when subjected to predetermined current overload conditions operating its associated latch means to release the cradle of its associated operating mechanism prior to operation of any of said latch units by said trip bar means; with said circuit breaker closed each of said latch units being connected to the cradle of its associated operating means such that after releasing the last recited cradle the force of its associated spring means is transmitted through this last recited cradle and its associated latch means to operate said trip bar means which in turn operates the other latch units to release their associated cradles.
2. A circuit breaker as set forth in claim 1 in which the latch means of each of the mechanisms includes an individual latch train interposed between the cradle and the latch unit thereof.
3. A circuit breaker as set forth in claim 2 in which the trip bar means and said trip units are pivoted on parallel axes and each of said latcH trains comprises a plurality of lever-like latch members pivoted on axes parallel to the axis of the trip bar means.
4. A circuit breaker as set forth in claim 1 also including a single housing having individual longitudinal compartments for each of said mechanisms.
5. A circuit breaker as set forth in claim 4 also including a handle means having a transverse portion inside said housing interconnecting the operating means of said first and second mechanisms for simultaneous operation; said handle means including an operating section extending outside of said housing through an opening therein; said operating section generally being no wider than one of said compartments.
6. A circuit breaker as set forth in claim 5 also including individual separable contact means for each of said mechanisms connected for operation to open and closed positions directly by the operating means of the respective associated mechanism; a transverse tie bar mechanically interconnecting said separable contact means of all of said mechanisms.
7. A circuit breaker as set forth in claim 6 in which the latch means of each of the mechanisms includes an individual latch train interposed between the cradle and the latch unit thereof.
8. A circuit breaker as set forth in claim 7 in which the trip bar means and said trip units are pivoted on parallel axes and each of said latch trains comprises a plurality of lever-like latch members pivoted on axes parallel to the axis of the trip bar means.
9. A circuit breaker as set forth in claim 6 in which the latch means of all of said mechanisms are operatively mounted by means remote from said common trip bar means.
10. A circuit breaker as set forth in claim 1 in which the latch means of all of said mechanisms are operatively mounted by means remote from said common trip bar means.
US00275508A 1972-07-27 1972-07-27 Interpole trip system for multi-pole circuit breaker Expired - Lifetime US3771081A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US27550872A 1972-07-27 1972-07-27

Publications (1)

Publication Number Publication Date
US3771081A true US3771081A (en) 1973-11-06

Family

ID=23052614

Family Applications (1)

Application Number Title Priority Date Filing Date
US00275508A Expired - Lifetime US3771081A (en) 1972-07-27 1972-07-27 Interpole trip system for multi-pole circuit breaker

Country Status (1)

Country Link
US (1) US3771081A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29514678U1 (en) * 1995-09-13 1995-11-23 Abb Patent Gmbh Electrical installation switching device
US5920451A (en) * 1997-09-05 1999-07-06 Carlingswitch, Inc. Earth leakage circuit breaker assembly

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2067935A (en) * 1933-11-02 1937-01-19 Westinghouse Electric & Mfg Co Circuit breaker
US3125653A (en) * 1959-03-20 1964-03-17 Multiple automatic circuit breaker
US3614685A (en) * 1970-02-06 1971-10-19 Westinghouse Electric Corp Circuit breaker with handle-indicating means

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2067935A (en) * 1933-11-02 1937-01-19 Westinghouse Electric & Mfg Co Circuit breaker
US3125653A (en) * 1959-03-20 1964-03-17 Multiple automatic circuit breaker
US3614685A (en) * 1970-02-06 1971-10-19 Westinghouse Electric Corp Circuit breaker with handle-indicating means

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29514678U1 (en) * 1995-09-13 1995-11-23 Abb Patent Gmbh Electrical installation switching device
US5920451A (en) * 1997-09-05 1999-07-06 Carlingswitch, Inc. Earth leakage circuit breaker assembly

Similar Documents

Publication Publication Date Title
US3826951A (en) Circuit breaker with replaceable rating adjuster and interlock means
US3752947A (en) Auxiliary mechanism for operating handle of circuit breaker
US3760308A (en) Circuit breaker system
US3783215A (en) Positive on position indicator
US2416163A (en) Shockproof circuit breaker
JPH02281530A (en) Circuit breaker
EP0276074B1 (en) Circuit breaker with magnetic shunt hold back circuits
US3560683A (en) Circuit breaker with improved contact structure
US3797007A (en) Circuit interrupter protective device
US4313098A (en) Circuit interrupter trip unit
US3422381A (en) Multi-pole circuit breaker with common trip bar
US3777293A (en) No-fuse circuit breaker
US3211860A (en) Circuit breaker with improved trip-device enclosure
US3770922A (en) Circuit breaker contact structure
US3222475A (en) Operating mechanism for multipole electrical circuit breaker
CA2153755A1 (en) Circuit breaker
US3771081A (en) Interpole trip system for multi-pole circuit breaker
US1918232A (en) Circuit interrupter
US3808386A (en) Means for loading operating spring of a circuit breaker
US3248500A (en) Multipole circuit interrupting device having a removable fuse unit with a common unitary tripping bar
US3264428A (en) Relay in combination with a circuit breaker for auxiliary tripping of the latter
US3742401A (en) Multi pole latch system having means to defeat single pole latching
US3806847A (en) Circuit interrupter trip device
US2162577A (en) Circuit breaker
US3815058A (en) Shunt trip device with integrally mounted auxiliary switch

Legal Events

Date Code Title Description
AS Assignment

Owner name: SIEMENS-ALLIS, INC., A DE CORP.

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:GOULD, INC., A DE CORP.;ITE INDUSTRIES, LIMITED, A FEDERAL CORP. OF CANADA;REEL/FRAME:004226/0657

Effective date: 19830131