US3768203A - Closure operating structure - Google Patents

Closure operating structure Download PDF

Info

Publication number
US3768203A
US3768203A US00220789A US3768203DA US3768203A US 3768203 A US3768203 A US 3768203A US 00220789 A US00220789 A US 00220789A US 3768203D A US3768203D A US 3768203DA US 3768203 A US3768203 A US 3768203A
Authority
US
United States
Prior art keywords
closure
chamber
crank
combination
movement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00220789A
Inventor
E Bellucci
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AMSCO IND CO
Original Assignee
AMSCO IND CO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AMSCO IND CO filed Critical AMSCO IND CO
Application granted granted Critical
Publication of US3768203A publication Critical patent/US3768203A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05DHINGES OR SUSPENSION DEVICES FOR DOORS, WINDOWS OR WINGS
    • E05D3/00Hinges with pins
    • E05D3/06Hinges with pins with two or more pins
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME RELATING TO HINGES OR OTHER SUSPENSION DEVICES FOR DOORS, WINDOWS OR WINGS AND DEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION, CHECKS FOR WINGS AND WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05Y2900/00Application of doors, windows, wings or fittings thereof
    • E05Y2900/60Application of doors, windows, wings or fittings thereof for other use

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pressure Vessels And Lids Thereof (AREA)

Abstract

Closure movement assembly providing linear movement of a closure member in a direction transverse to a chamber opening so as to move the closure member into or out of locking position and, also providing in series, rotational movement to swing the closure member away from or toward the chamber; such dual movement of the closure member being provided with a single uninterrupted drive motion.

Description

United States Patent [1 1 Bellucci Oct. 30, 1973 1 CLOSURE OPERATING STRUCTURE [75] Inventor: Edward A. Bellucci, Erie, Pa.
[73] Assignee: Amsco Industrial Company, Erie,
[22] Filed: Jan. 26, 1972 [21] Appl. No.: 220,789
[52] US. Cl..... 49/254, 49/340, 220/38 [51] Int. Cl E05d 15/58 [58] Field of Search 49/246, 253, 254,
[56] References Cited UNITED STATES PATENTS 10/1961 Wilmer 49/256 X 1/1970 Clements et a1. 49/246 l/l970 Beecher 220/38 FOREIGN PATENTS OR APPLICATIONS P15,447 9/1956 Germany 49/254 1,040,247 5/1953 France ..220/38 Primary ExaminerKenneth Downey Attorney-Shanley and O'Neil 5'7 7 ABSTRACT Closure movement assembly providing linear movement of a closure member in a direction transverse to a chamber opening so as to move the closure member into or out of locking position and, also providing in series, rotational movement to swing the closure member away from or toward the chamber; such dual movement of the closure member being provided with a single uninterrupted drive motion.
19 Claims, 8 Drawing Figures PATENTED 0U 30 I973 sum 3 OF 3 CLOSURE OPERATING STRUCTURE This invention is concerned with closure operating structure and, in its more specific aspects, with a hinge assembly means providing both linear movement and rotational movement of a closure from a single drive source.
Chambers requiring frequent access, and pressure operated i.e. at a vacuum or above atmospheric pressure, generally require sturdy construction interconnecting the chamber means and the closure means with interlocking means about at least a portion of the periphery of the closure 'in order to withstand the pressures involved and provide for proper locking and sealing. The locking can require some relative movement between the closure member and the chamber when the closure member is contiguous with the chamber opening for purposes of engaging or positioning for engagement flanges, edge slots, or other locking means.
It has been found that autoclave structures requiring swinging door access and linear movement for interlocking purposes lead to complexity in support and guide structures, multiple step opening procedures, and/or require multiple drives to effect proper movement or sealing.
The invention circumvents such difficulties in providing a sturdy, simplified, hinging structure providing both linear movement for interlocking purposes and swinging movement for access purposes from a single drive source. The result is a simplified, durable, easyoperating structure providing rapid actuation for both swinging and interlocking purposes.
Other advantages will be brought out in describing specific embodiments of the inventive concepts of the present invention as illustrated in the accompanying drawings.
In these drawings:
FIG. 1 is a plan view, partially in section, embodying the invention showing a chamber with its closure member in interlocking relationship with a chamber,
FIG. 2 is a similar plan view of the structure of FIG. 1 with the closure member shown out of interlocking position ready for rotational movement to swing the closure to an open position,
FIG. 3 is a similar plan view of the structure of FIGS. land 2 with the closure member in partially swung open position,
FIG. 4 is an enlarged view of a portion of the structure of FIGS. 1 2 and 3 showing releasably interconnectable structure operable between the closure member and the hinge assembly,
FIG. 5 is a plan view of a bell crank structure forming part of the present invention,
FIG. 6 is an elevational viewof the structure of FIG. 5,
FIG. 7 is a front elevational view of closure structure of the general type shown in FIG. 1 with auxiliary locking means, and
FIG. 8 is an enlarged view of wedge locking means as' used in the structure of FIG. 7. g
The plan view of FIG. 1 shows a closure member in locking position with respect to a chamber opening.
Chamber 10, only a portion of which is illustrated, in-
cludes side walls 11 and 12. Door 14 closes anopening in the frontal portion of chamber Gasket structure 15 establishes contact between the closure member and the chamber opening.
The door 14 is held in locking position by wedge members such as 16, 17 and 18, 19 on side flanges of the door and chamber. Chamber flange support takes the form of an angled member 20 at the left forward edge of the chamber shown and, at the opposite side of the chamber opening, a rearwardly projecting flange member 21 supports wedge member 19. Wedge member 18 is supported by door flange support arm 23 and, at the opposite side of the door, wedge 16 is supported on door edge flange 24. Interaction of such flange members, or other locking means, will be considered in more detail in later description.
Door 14 is supported through a hinge crank means comprising bell crank 26. The bell crank includes a fixed position fulcrum 28, input arm 29, and output arm 30. The fixed position of fulcrum 28 is established by rigid support structure 32 attached to the chamber side wall 12 but this support can be obtained from other rigid structure having a fixed positional relationship to the chamber opening. Fulcrum 28 is pivotally mounted on rigid structure arm 34.
Hinge arm 35 interconnects closure member 14 with crank output arm 30. Bracket 36 on door 14 is mounted centrally to provide sturdy support for the door; preferably it is mounted contiguous to the center of gravity of the door. Pin 37 at bracket 36 provides for at least limited pivotal movement of the hinge arm 35 with respect to the panel of door 14. At the opposite end of the hinge arm 35, the bell crank output arm 30 and the hinge arm 35 are pivotally connected at pin 38.
Power for movement of the door originates or, at least is transmitted, from a single source. In a simplified embodiment, a mechanical drive such as a fluidoperated cylinder 40 (shown in broken lines) is utilized. Outer crank input means, such as a gear drive connected to the shaft of crank 26 could be substituted for cylinder 40. Drive cylinder 40 is mounted on chamber 10, or chamber framing, by bracket 41. The mounting includes a pivotal connection 42 for limited angular movement of the cylinder. Cylinder 40 has a straight power stroke but limited angular movement for the cylinder' is provided because of the angular movement of bell crank input arm 29 about the fixed fulcrum 28. The working end of piston rod 44 is pivotally connected to the bell crank input arm'29 at pin 46.
In FIG. 1 piston rod 44 is in its extended position which through bell crank output arm 30 and hinge arm 35 has moved door 14 linearly across the closure opening (to the left as shown) into locking position.
For purposes of opening door 14, piston rod 44 is withdrawn into cylinder 40. In the plan view shown, bell crank input arm 29 moves to the left about fulcrum 28 and bell crank output arm 30 moves to the right. This action, through hinge arm 35, moves the door 14 linearly across the chamber opening to the position shown in FIG. 2. Such linear movement of the door is provided when the door is in contiguous relationship to Additional means for releasably interlocking the door 14 and bell crank 26 for swinging movement is provided through prong 52 which is mounted on door 14. This pring fits into bell crank recess 54 upon linear movement of door 14 into position for swinging open so thatboth the crank arm and door swing together. This releasable interlocking structure is shown in greater detail in FIG. 4. I
Such interlocking for swinging movement can also be carried out by limiting the pivotal movement at pin 37 where hinge arm 35 connects to the door 14. If the pivotal movement at this point is limited to the slight angular relative movement at pin 37 as required to allow for and provide the linear movement of door 14 through hinge arm 35, swinging movement will take place when the door has moved to its unlocked position. A stop or other means located at bracket 36 can lock the door and hinge arm for swinging movement. Stop block 56 on output arm 30 stops arm 35 from being swung further in a clockwise direction, by spring 48, when the door 14 has been moved to the right and interlocked for swinging movement. Stop block 56 is adjustably mounted on output arm 30.
Note in FIG. 2 that the flange means have been moved out of locking position so that the door is free for rotational movement, i.e. to be swung open. With the interlocking of door 14 and bell crank 26, continued rotation of crank 26 by withdrawal of piston rod 44 into cylinder 40 causes door 14 to swing open about fixed fulcrum 28 to a position such as that shown in FIG. 3. Reversing the action of cylinder 40, i.e. extending piston rod 44 reverses the action. The door 14 is swung into closing position (as in FIG. 2) contiguous to the chamber opening. Continued rotation of crank 26 by extension of piston rod 44 causes the door 14 to move linearly into locking position (FIG. 1). Linear movement is stopped by limit switch 57 which stops drive from cylinder 40. Other means, including mechanical stop means can be used in place of or in conjunction with limit switch 57.
Note that the in-series dual motion of the closure member is brought about by the continued rotation of the crank means in the same direction without need of interruption of motion nor direction of such motion during the separate movements of the door.
Details of the specific embodiment of the crank means, bell crank 26, are shown in FIGS. and 6. The length of hell crank shaft 60 and the number of hinge arm sockets, such as 61, 62, can be varied to suit the weight and dimensions of the closure member.
The dual movement hinge assembly structure provides unusual advantages in sturdier construction and in the adaptability to a single, unidirectional-drive means. The coordinated rotational and linear movements provided are especially advantageous in facilitating locking and sealing of pressure vessels. After the closure member has swung into place the linear movement can move the door into locking position and/or such linear movement can itself complete locking. As an example of the latter, by having the interacting wedge surface positioned as shown in FIG. 2, their interaction upon linear movement causes the door to be moved into sealing relationship, that is, toward the chamber opening. This type of wedge interaction activated by linear movement is especially suited for vacuum seal applications, lighter weight structures, and embodiments using inflatable sealing gaskets.
The rotational and linear movement in series permits clearance for top and bottom edge interlocking means during swinging of the door. For example, flange projections can be moved into alignment upon linear movement of. the door and flange mounted wedge surfaces can act to hold the closure member to the chamber along the top and bottom edges. An example of this arrangement for top and bottom edge sealing support is shown schematically in dotted lines in FIGS. 1 and 2. In FIG. 1 the chamber wedge surface 66 is shown contacting a wedge surface on door flange 68, thus moving and holding the door to the chamber opening. Whereas, in FIG. 2 the interacting wedge surfaces are separated by the linear movement of door 14, such separation allowing for swinging movement of the door.
For heavy-duty high-pressure type chambers, where it is desired to interlock the closure member and the chamber and mechanically effect sealing, the coordinated linear movement of the closure member moves and holds the closure member in position for locking. For example, the apparatus of FIG. 7 uses vertically spaced flange wedges on the sides of the door and opening. After door 70 is moved into position for locking, auxiliary locking means, with power drives 72 and 74, move the locking wedges carried on locking shaft means 76, 78 (shown in dotted lines) at the sides of the closure structure.
A mechanical type of locking and sealing action is described in detail in the patent referred to above US. Pat. No. 3,490,641. However, for purposes of understanding the present invention, as shown in the enlarged view of cooperating wedge surfaces in FIG. 8, wedge 80 moved downwardly by shaft 82 acts against wedge 84 carried by door 70. This action causes door 70 to move toward the chamber with intermediate gasket means sealing the closure. The coordinated rotational and linear movements enables such wedge surfaces to be moved out of and into interacting relationship for unlocking and for locking and sealing purposes.
As shown in FIG. 7, brackets 86 and 88 along the bottom edge of the opening support the door during the downward movement of the auxiliary locking shaft means on each side of the closure structure and thus help avoid strain being placed on the hinge assembly. The drive means 72 and 74 can be conventional fluidoperated cylinders.
Other sealing means and other flange locking means, such as cam-operated structures can be used. Also, other drive means and other configurations of the structural elements described can be resorted to in the light of the concepts and embodiments disclosed and explained. Therefore, the scope of the invention is not to be limited to the specific description but is to be determined by the scope of the appended claims.
It is claimed:
1. Closure operating structure including chamber means having an opening,
closure means for closing the opening of the chamber 7 to move rotatably to swing the closure means toward or away from the chamber, the hinge assembly means including crank means including an output arm means positioned for angular rotation about a fulcrum means,
support means for establishing a fixed position for the fulcrum means in relation to the chamber means such that the crank output arm means moves rotationally without need for interruption of movement or direction of such movement to produce both the linear and swinging movement of the closure means,
hinge arm means interconnecting the closure means and the crank output arm means for transmitting output force for movement of the closure means in relation to the chamber means,
drive means connected to the crank means for moving the crank output arm means pivotally about the fixed position fulcrum means,
retention means urging the closure means toward the chamber means when the closure means is in contiguous relationship to the opening of the chamber means, and
means releasablyinterconnecting the closure means and the hinge assembly means.
2. The combination of claim 1 in which the drive means comprises power transmitting means operating with a single uninterrupted power stroke to move the closure means serially through both linear and rotational movements. 3. The combination of claim 2 including limit means to limit linear movement of the closure means when in contiguous relationship to the chamber opening. 4. The combination of claim 3 in which the crank means comprises bell crank means having an input arm means with the input arm means and the output arm means being rigidly connected for coordinated rotation about the fixed position fulcrum means. 5. The combination of claim 4 in which the single stroke drive means comprises a fluid operated work cylinder having piston rod means pivotally connected to' the bell crank input arm means, with the work cylinder being mounted for limited pivotal movement to allow for curvilinear movement of such piston rod connection with the bell crank input arm means about the fixed position bell crank fulcrum means. 6. The combination of claim 1 in which the hinge arm means comprises a rigid elongated arm pivotally connected to the crank output arm means and connected to the closure means. 7. The combination of claim 6 in which the hinge arm means is connected centrally of the closure means for support of the closure means. 8. The combination of claim 8 in which the hinge arm means is connected to the closure means contiguous to a location for center of gravity support of the closure means.
9. The combination of claim 1 including means for releasably interconnecting the closure means and the crank output arm means upon linear movement of the closure means in a direction toward the fulcrum means, with the retention means exerting a directional moment of force urging the closure means toward the fulcrum means.
10. The combination of claim 9 in which the means for releasably interconnecting the closure means and the crank output arm means is mounted on the closure means and interacts with the crank means.
11. The combination of claim 10 in which the means for releasably interconnecting the closure means and the crank output arm means comprises an elongated prong means mounted on the closure means and tapered at one longitudinal end to interfit with a tapered recess in the crank output arm means upon linear movement of the closure means in a direction toward the fixed position fulcrum means.
12. The combination of claim 1 in which the retention means is connected to the hinge arm means.
13. The combination of claim 12 in which the retention means comprises spring means interconnecting the hinge arm means and the crank means.
14. The combination of claim 12 including stop block means mounted on the crank output arm means and acting to limit angular movement of the hinge arm means in relation to the crank output arm means.
15. The combination of claim 1 including means carried on the closure means and means positioned about the opening of the chamber means for interlocking the closure means and the chamber means.
16. The combination of claim 16 in which the means carried on the closure means and positioned about the opening of the chamber means comprises cooperating flange means.
17. The combination of claim 16 in which the linear movement of the closure means imposed by the crank means causes relative movement between the flange means on the closure means and the cooperating flange means on the chamber means establishing alignment of such flange means to permit sealing between the closure means and the chamber means.
18. The combination of claim 16 further including auxiliary locking means for effecting a pressure-tight seal between the closure member and the chamber opening.
19. The combination of claim 1 in which the chamber means comprises a pressure-operated sterilizing vessel.

Claims (19)

1. Closure operating structure including chamber means having an opening, closure means for closing the opening of the chamber means, and hinge assembly means interconnecting the chamber means and the closure means and operable with an uninterrupted drive movement to cause the closure means to move linearly in a direction transverse to the opening when the closure means is in contiguous relationship to such opening and, in series with such linear movement, to cause the closure means to move rotatably to swing the closure means toward or away from the chamber, the hinge assembly means including crank means including an output arm means positioned for angular rotation about a fulcrum means, support means for establishing a fixed position for the fulcrum means in relation to the chamber means such that the crank output arm means moves rotationally without need for interruption of movement or direction of such movement to produce both the linear and swinging movement of the closure means, hinge arm means interconnecting the closure means and the crank output arm means for transmitting output force for movement of the closure means in relation to the chamber means, drive means connected to the crank means for moving the crank output arm means pivotally about the fixed position fulcrum means, retention means urging the closure means toward the chamber means when the closure means is in contiguous relationship to the opening of the chamber means, and means releasably interconnecting the closure means and the hinge assembly means.
2. The combination of claim 1 in which the drive means comprises power transmitting means operating with a single uninterrupted power stroke to move the closure means serially through both linear and rotational movements.
3. The combination of claim 2 including limit means to limit linear movement of the closure means when in contiguous relationship to the chamber opening.
4. The combination of claim 3 in which the crank means comprises bell crank means having an input arm means with the input arm means and the output arm means being rigidly connected for coordinated rotation about the fixed position fulcrum meAns.
5. The combination of claim 4 in which the single stroke drive means comprises a fluid operated work cylinder having piston rod means pivotally connected to the bell crank input arm means, with the work cylinder being mounted for limited pivotal movement to allow for curvilinear movement of such piston rod connection with the bell crank input arm means about the fixed position bell crank fulcrum means.
6. The combination of claim 1 in which the hinge arm means comprises a rigid elongated arm pivotally connected to the crank output arm means and connected to the closure means.
7. The combination of claim 6 in which the hinge arm means is connected centrally of the closure means for support of the closure means.
8. The combination of claim 8 in which the hinge arm means is connected to the closure means contiguous to a location for center of gravity support of the closure means.
9. The combination of claim 1 including means for releasably interconnecting the closure means and the crank output arm means upon linear movement of the closure means in a direction toward the fulcrum means, with the retention means exerting a directional moment of force urging the closure means toward the fulcrum means.
10. The combination of claim 9 in which the means for releasably interconnecting the closure means and the crank output arm means is mounted on the closure means and interacts with the crank means.
11. The combination of claim 10 in which the means for releasably interconnecting the closure means and the crank output arm means comprises an elongated prong means mounted on the closure means and tapered at one longitudinal end to interfit with a tapered recess in the crank output arm means upon linear movement of the closure means in a direction toward the fixed position fulcrum means.
12. The combination of claim 1 in which the retention means is connected to the hinge arm means.
13. The combination of claim 12 in which the retention means comprises spring means interconnecting the hinge arm means and the crank means.
14. The combination of claim 12 including stop block means mounted on the crank output arm means and acting to limit angular movement of the hinge arm means in relation to the crank output arm means.
15. The combination of claim 1 including means carried on the closure means and means positioned about the opening of the chamber means for interlocking the closure means and the chamber means.
16. The combination of claim 16 in which the means carried on the closure means and positioned about the opening of the chamber means comprises cooperating flange means.
17. The combination of claim 16 in which the linear movement of the closure means imposed by the crank means causes relative movement between the flange means on the closure means and the cooperating flange means on the chamber means establishing alignment of such flange means to permit sealing between the closure means and the chamber means.
18. The combination of claim 16 further including auxiliary locking means for effecting a pressure-tight seal between the closure member and the chamber opening.
19. The combination of claim 1 in which the chamber means comprises a pressure-operated sterilizing vessel.
US00220789A 1972-01-26 1972-01-26 Closure operating structure Expired - Lifetime US3768203A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US22078972A 1972-01-26 1972-01-26

Publications (1)

Publication Number Publication Date
US3768203A true US3768203A (en) 1973-10-30

Family

ID=22824985

Family Applications (1)

Application Number Title Priority Date Filing Date
US00220789A Expired - Lifetime US3768203A (en) 1972-01-26 1972-01-26 Closure operating structure

Country Status (2)

Country Link
US (1) US3768203A (en)
CA (1) CA979033A (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USB430798I5 (en) * 1974-01-04 1975-01-28
DE2717232A1 (en) * 1977-04-19 1978-11-02 Calor Emag Elektrizitaets Ag Electric arc resistant switchgear door - has displaceable mounting on swivelling hinges with sides gripping behind cell frame
US4192435A (en) * 1978-04-07 1980-03-11 Aluminum Pechiney Self-sealing closure device for transport tank
US4228134A (en) * 1977-04-05 1980-10-14 The Goodyear Tire & Rubber Company Autoclave for thermally treating very long rubbery hose products, and the like
US4262447A (en) * 1979-08-20 1981-04-21 Sybron Corporation Double acting hinged pressure vessel closure
EP0068157A1 (en) * 1981-07-01 1983-01-05 AUTE Gesellschaft für autogene Technik mbH Fireproof closure
WO1984003941A1 (en) * 1983-03-29 1984-10-11 Burford Corp Spreader for particulate material
US4666551A (en) * 1985-06-17 1987-05-19 Thaddeus Soberay Vacuum press
US4715315A (en) * 1983-03-29 1987-12-29 Burford Corp. Dispenser for particulate material
US4932160A (en) * 1989-05-04 1990-06-12 Sterilizer Technologies Corporation Closure apparatus and method
US5361926A (en) * 1992-11-02 1994-11-08 Krauss Maffei Aktiengesellschaft Cover for centrifuge housing
DE29614557U1 (en) * 1996-08-22 1997-12-18 Niemann Hans Dieter Turn-tilt window or door
US20040265167A1 (en) * 2003-06-30 2004-12-30 Todd Morrison Sterilization vacuum chamber door closure
EP1549817A1 (en) * 2002-10-09 2005-07-06 Lokaway Pty Ltd. Security door and frame construction
US20050198856A1 (en) * 2004-03-10 2005-09-15 Frans Damen Freeze dryer
US20100212103A1 (en) * 2009-02-24 2010-08-26 Kolon Construction., Ltd. Waste discharge valve for vacuum-conveyance waste collection system
US20110107548A1 (en) * 2007-04-03 2011-05-12 Mclaughlin Group, Inc. Vacuum system with improved mobility
US20110163109A1 (en) * 2008-09-03 2011-07-07 Lokaway Pty. Ltd. Security box
US8066140B1 (en) * 2003-02-28 2011-11-29 The Charles Machine Works, Inc. Container door and container door latching and sealing system
US20120153790A1 (en) * 2009-08-26 2012-06-21 Rohde & Schwarz Gmbh & Co. Kg Closure mechanism for a measuring station
US8667717B2 (en) 2004-10-22 2014-03-11 Mclaughlin Group, Inc. Digging and backfill apparatus
US20140230937A1 (en) * 2006-10-06 2014-08-21 Mclaughlin Group, Inc. Collection tank
US9821953B2 (en) 2011-05-02 2017-11-21 The Charles Machine Works, Inc. Apparatus for sealing a vacuum tank door
US20170350177A1 (en) * 2015-02-26 2017-12-07 Huawei Technologies Co., Ltd. Door and Suspension Mechanism Assembly and An Assembly of An Elongated Housing and A Door and Suspension Mechanism Assembly
US10221602B2 (en) 2016-04-06 2019-03-05 The Charles Machine Works, Inc. Vacuum system
USD895914S1 (en) 2018-02-15 2020-09-08 The Charles Machine Works, Inc. Vacuum system
US11059682B2 (en) 2017-12-21 2021-07-13 The Charles Machine Works, Inc. Offloading vacuum tank
US11801785B2 (en) 2020-06-17 2023-10-31 Vermeer Manufacturing Company Vacuum excavator tank and door system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE15447C (en) * F. KÜNZEL in Berlin, Höchstestrafse 47 Innovations to circular arc saws
FR1040247A (en) * 1951-08-01 1953-10-13 Merlin Gerin Quick-closing door for explosion-proof cabinet
US3004303A (en) * 1958-07-04 1961-10-17 Vickers Armstrongs Aircraft Doors for the fuselages of pressurized aircraft
US3488883A (en) * 1968-08-08 1970-01-13 Welding & Steel Fabrication Co Sealed door leveling system
US3490641A (en) * 1968-02-27 1970-01-20 American Sterilizer Co Pressure vessel closure and closure fastener

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE15447C (en) * F. KÜNZEL in Berlin, Höchstestrafse 47 Innovations to circular arc saws
FR1040247A (en) * 1951-08-01 1953-10-13 Merlin Gerin Quick-closing door for explosion-proof cabinet
US3004303A (en) * 1958-07-04 1961-10-17 Vickers Armstrongs Aircraft Doors for the fuselages of pressurized aircraft
US3490641A (en) * 1968-02-27 1970-01-20 American Sterilizer Co Pressure vessel closure and closure fastener
US3488883A (en) * 1968-08-08 1970-01-13 Welding & Steel Fabrication Co Sealed door leveling system

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USB430798I5 (en) * 1974-01-04 1975-01-28
US3918204A (en) * 1974-01-04 1975-11-11 Dolney Theodore J Gate assembly
US4228134A (en) * 1977-04-05 1980-10-14 The Goodyear Tire & Rubber Company Autoclave for thermally treating very long rubbery hose products, and the like
DE2717232A1 (en) * 1977-04-19 1978-11-02 Calor Emag Elektrizitaets Ag Electric arc resistant switchgear door - has displaceable mounting on swivelling hinges with sides gripping behind cell frame
US4192435A (en) * 1978-04-07 1980-03-11 Aluminum Pechiney Self-sealing closure device for transport tank
US4262447A (en) * 1979-08-20 1981-04-21 Sybron Corporation Double acting hinged pressure vessel closure
EP0068157A1 (en) * 1981-07-01 1983-01-05 AUTE Gesellschaft für autogene Technik mbH Fireproof closure
WO1984003941A1 (en) * 1983-03-29 1984-10-11 Burford Corp Spreader for particulate material
US4611555A (en) * 1983-03-29 1986-09-16 Burford Corp. Spreader for particulate material
US4715315A (en) * 1983-03-29 1987-12-29 Burford Corp. Dispenser for particulate material
US4666551A (en) * 1985-06-17 1987-05-19 Thaddeus Soberay Vacuum press
US4932160A (en) * 1989-05-04 1990-06-12 Sterilizer Technologies Corporation Closure apparatus and method
US5361926A (en) * 1992-11-02 1994-11-08 Krauss Maffei Aktiengesellschaft Cover for centrifuge housing
DE29614557U1 (en) * 1996-08-22 1997-12-18 Niemann Hans Dieter Turn-tilt window or door
EP1549817A1 (en) * 2002-10-09 2005-07-06 Lokaway Pty Ltd. Security door and frame construction
EP1549817A4 (en) * 2002-10-09 2009-10-28 Lokaway Pty Ltd Security door and frame construction
US8066140B1 (en) * 2003-02-28 2011-11-29 The Charles Machine Works, Inc. Container door and container door latching and sealing system
US20040265167A1 (en) * 2003-06-30 2004-12-30 Todd Morrison Sterilization vacuum chamber door closure
US20050132533A1 (en) * 2003-06-30 2005-06-23 Nguyen Nick N. Sterilization vacuum chamber door closure
US20050198856A1 (en) * 2004-03-10 2005-09-15 Frans Damen Freeze dryer
US7076888B2 (en) 2004-03-10 2006-07-18 The Boc Group, Plc Freeze dryer
US10443210B2 (en) 2004-10-22 2019-10-15 Mclaughlin Group, Inc. Digging and backfill apparatus
US9816250B2 (en) 2004-10-22 2017-11-14 Mclaughlin Group, Inc. Digging and backfill apparatus
US9399853B2 (en) 2004-10-22 2016-07-26 Mclaughlin Group, Inc. Digging and backfill apparatus
US8667717B2 (en) 2004-10-22 2014-03-11 Mclaughlin Group, Inc. Digging and backfill apparatus
US20140230937A1 (en) * 2006-10-06 2014-08-21 Mclaughlin Group, Inc. Collection tank
US11041287B2 (en) * 2006-10-06 2021-06-22 Vermeer Manufacturing Company Collection tank
US20140230938A1 (en) * 2006-10-06 2014-08-21 Mclaughlin Group, Inc. Collection tank
US8925753B2 (en) 2006-10-06 2015-01-06 Mclaughlin Group, Inc. Collection tank
US20200181875A1 (en) * 2006-10-06 2020-06-11 Mclaughlin Group, Inc. Collection tank
US9260050B2 (en) * 2006-10-06 2016-02-16 Mclaughlin Group, Inc. Collection tank
US9260048B2 (en) * 2006-10-06 2016-02-16 Mclaughlin Group, Inc. Collection tank
US9260049B2 (en) * 2006-10-06 2016-02-16 Mclaughlin Group, Inc. Collection tank
US20160153168A1 (en) * 2006-10-06 2016-06-02 Mclaughlin Group, Inc. Collection tank
US10563375B2 (en) * 2006-10-06 2020-02-18 Mclaughlin Group, Inc. Collection tank
US10844575B2 (en) * 2006-10-06 2020-11-24 Mclaughlin Group, Inc. Collection tank
US10337167B2 (en) * 2006-10-06 2019-07-02 Mclaughlin Group, Inc. Collection tank
US20110107548A1 (en) * 2007-04-03 2011-05-12 Mclaughlin Group, Inc. Vacuum system with improved mobility
US20110163109A1 (en) * 2008-09-03 2011-07-07 Lokaway Pty. Ltd. Security box
US9004546B2 (en) * 2008-09-03 2015-04-14 Lokaway Pty. Ltd. Security box
US20100212103A1 (en) * 2009-02-24 2010-08-26 Kolon Construction., Ltd. Waste discharge valve for vacuum-conveyance waste collection system
US20120153790A1 (en) * 2009-08-26 2012-06-21 Rohde & Schwarz Gmbh & Co. Kg Closure mechanism for a measuring station
US9574391B2 (en) * 2009-08-26 2017-02-21 Rohde & Schwarz Gmbh & Co. Kg Closure mechanism for a measuring station
US10207863B2 (en) 2011-05-02 2019-02-19 The Charles Machine Works, Inc. Apparatus for sealing a vacuum tank door
US9821953B2 (en) 2011-05-02 2017-11-21 The Charles Machine Works, Inc. Apparatus for sealing a vacuum tank door
US20170350177A1 (en) * 2015-02-26 2017-12-07 Huawei Technologies Co., Ltd. Door and Suspension Mechanism Assembly and An Assembly of An Elongated Housing and A Door and Suspension Mechanism Assembly
US10526831B2 (en) * 2015-02-26 2020-01-07 Huawei Technologies Co., Ltd. Door and suspension mechanism assembly and an assembly of an elongated housing and a door and suspension mechanism assembly
US10538949B2 (en) 2016-04-06 2020-01-21 The Charles Machine Works, Inc. Vacuum system
US10221602B2 (en) 2016-04-06 2019-03-05 The Charles Machine Works, Inc. Vacuum system
US11059682B2 (en) 2017-12-21 2021-07-13 The Charles Machine Works, Inc. Offloading vacuum tank
US11858761B2 (en) 2017-12-21 2024-01-02 The Charles Machine Works, Inc. Offloading vacuum tank
USD895914S1 (en) 2018-02-15 2020-09-08 The Charles Machine Works, Inc. Vacuum system
US11801785B2 (en) 2020-06-17 2023-10-31 Vermeer Manufacturing Company Vacuum excavator tank and door system

Also Published As

Publication number Publication date
CA979033A (en) 1975-12-02

Similar Documents

Publication Publication Date Title
US3768203A (en) Closure operating structure
US4087939A (en) Door operator with locking mechanism
US5191993A (en) Device for the shifting and tilting of a vessel closure
US20190211935A1 (en) Gate valve
US3645042A (en) Apparatus for opening a swing door
KR20050060035A (en) Security door and frame construction
US4802247A (en) Door bath tube for the handicapped
JPH0825974A (en) Driving device for collapsible folding type roof
KR910005810A (en) Mechanism for opening, sealing and locking the pressure cooker
NO177157B (en) locking device
US4577577A (en) Sliding door arrangement
CN101313119B (en) Door or window with watertight sealing mechanism
JP2002536592A (en) Reciprocating differential hydraulic machines, especially differential hydraulic motors
US3362460A (en) Cam controlled folding closure
KR102254611B1 (en) Valve shutter for high pressure gas barrel
US5037147A (en) Latching mechanism for chamber access door
US447488A (en) Island
JPH08210457A (en) Cam device
US3262672A (en) Large port gate valve
US3673736A (en) Device for operating sliding doors
CA2059151A1 (en) A mobile steeping tank
CN206053601U (en) Safe-guard door lock drive mechanism
NO743592L (en)
CN210598599U (en) Small-size washing chamber dodge gate
JP2000257751A (en) Vacuum gate valve