US3738786A - Reinforcement of concrete structures - Google Patents

Reinforcement of concrete structures Download PDF

Info

Publication number
US3738786A
US3738786A US00151284A US3738786DA US3738786A US 3738786 A US3738786 A US 3738786A US 00151284 A US00151284 A US 00151284A US 3738786D A US3738786D A US 3738786DA US 3738786 A US3738786 A US 3738786A
Authority
US
United States
Prior art keywords
shell
rods
concrete
outer shell
slots
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00151284A
Inventor
Buren M Van
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayshore Concrete Products Corp
Original Assignee
Bayshore Concrete Products Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayshore Concrete Products Corp filed Critical Bayshore Concrete Products Corp
Application granted granted Critical
Publication of US3738786A publication Critical patent/US3738786A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B23/00Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects
    • B28B23/02Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects wherein the elements are reinforcing members
    • B28B23/04Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects wherein the elements are reinforcing members the elements being stressed
    • B28B23/043Wire anchoring or tensioning means for the reinforcements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/08Members specially adapted to be used in prestressed constructions

Definitions

  • This invention relates to the reinforcing of concrete, and more particularly it concerns the impartation of predetermined stresses at different locations along concrete structures.
  • the present invention is particularly useful in connection with the manufacture of concrete poles and columns for supporting high tension wires and the like.
  • poles and columns in addition to their basic vertical supporting function, must also be capable of withstanding lateral bending loads imposed by the wires or cables which they support. Such bending loads however, impose tensile stresses on the concrete, and unless adequate provision is made for reinforcing, the concrete will fail.
  • reinforcing is provided by means of elongated steel tension members embedded in the concrete and placed under a predetermined degree of tensiomThis imposes a compressive stress on the concrete which it easily withstands; and at the same time it serves to absorb nearly all its tensile stresses produced under lateral orbending loads.
  • the reinforcing members were selectively coated in various regions along their length to prevent their bonding to the concrete.
  • those reinforcing members which were not-bonded in the chosen regions would not impose compressive stresses in these regions.
  • This technique required an excessive amount of reinforcing material for the amount of useful reinforcing produced.
  • the concrete was actually in a weakened condition dueto the presence of the internal passages through which the reinforcing material extended.
  • the present invention overcomes all of the above described problems of the prior art.
  • the present invention makes possible the provision of a reinforced tapered concrete structure subjected to a substantially uniform compressive unit stress throughout its length. No problems of weakening are presented with the arrangements of the present invention; and maximum efficiency is obtained in the use of reinforcing material.
  • the present invention makes use of various reinforcing members which are prestressed in tension and which are embedded within a continuous integral concrete structure. These reinforcing members are terminated at different locations within the concrete structure so that the unit stress at any cross section can be established by providing at such cross section a proper number of properly stressed reinforcing members.
  • a novel technique for manufacturing concrete structures having various prestressed reinforcing members embedded at different locations therealong.
  • a concrete forming mold is prepared for forming the reinforced structure.
  • Anchor members are mounted on the sides of the mold and extend inwardly a distance from the inner mold surface. Cables or other elongated reinforcing members are connected to the anchor members and are subjected to a predetermined tensile stress. Thereafter the concrete is poured into the mold and allowed to set. Upon completion of this set, the cables are disconnected from the anchor members, as by burning them off. The anchor members are then removed along with the mold and the voids left in the concrete structure by the anchor'members are filled up with additional concrete.
  • novel anchor member arrangements involving anchor members which may be securely mounted to the sides of the mold for holding reinforcing members inside the mold under a high degree of tension, and which at the same time are capable of easy removal from the hardened concrete structure.
  • These novel arrangements comprise special platen of generally triangular or quarter-round configuration which extend through a slot in the mold side and which are pinned in place to lugs or flanges formed adjacent the slot on the outer mold surface.
  • the cable or other reinforcing member to be embedded in the finished structure is secured to the plate in such a manner that the plate holds the reinforcing member inside the mold while withstanding the tensile forces imposed on the reinforcing member.
  • the securing arrangement however involves only a looping or abutment type interconnection between the plate and the reinforcing member so that the plate may easily be withdrawn cut through the slot after the concrete has set while leaving the cable embedded in the concrete.
  • FIG. 1 is a perspective view of a tapered hollow concrete supporting pole made according to the present invention.
  • FIG. 2 is a section view taken along line 2-2 of FIG.
  • FIG. 3 is a section view taken along line 3-3 of FIG.
  • FIG. 4 is a section view taken in side elevation of a mold arrangement for centrifugally casting the pole of FIG. 1;
  • FIG. 5 is a section view taken along lines 5-5 of FIG.
  • FIG. 6 is a fragmentary section view taken along lines 66 of FIG. 4;
  • FIG. 7 is a fragmentary section view taken along lines 7-7 of FIG. 1;
  • FIG. 8 is a fragmentary section view illustrating a modified reinforcing rod anchor arrangement according to the present invention.
  • FIG. 9 is a section view taken along line 99 of FIG.
  • FIG. 10 is a view similar to FIG. 8 but showing a still further modification of the reinforcing rod anchor arrangement according to the present invention.
  • FIG. 11 is a section view taken along line 11-11 of FIG. 10.
  • FIG. 1 shows a centrifugally cast tapered concrete supporting pole of circular cross section and formed with a hollow circular core 22.
  • a plurality of elongated steel reinforcing rods or cables 24 are embedded within the concrete of the pole 20 and extend along its length.
  • These reinforcing rods are prestressed; that is, they are subjected to a predetermined amount of tensile stress by external means during the time that the concrete which forms the pole '20 is hardening. Subsequent to hardening of the con crete, the rods 24 are released. As a consequence of this, these rods serve to induce compressive stresses along the length of the pole 20 thus increasing the ability of the pole to withstand tensile strains which are produced by forces tending to deflect or bend the pole in a lateral direction.
  • the pole 20 is tapered from end to end.
  • the purpose for this is to compensate for the high weight to strength ratio of the concrete, and to provide for a uniform unit supporting stress at each cross sectional location along its length.
  • the loading at any location along the pole is made up of both the load being supported by the pole and the weight of the pole concrete above the location.
  • the total loading increases toward the bottom of the pole. This increase in total loading is compensated for by increasing the pole cross-section toward the bottom thereof, thus providing for a uniform compressive stress throughout its length.
  • the pole 20 is also subjected to loading equal to the sum of the tensile forces in the reinforcing rods 24.
  • These rods by virtue of their tensile stresses, produce an equal amount of compressive loading on the concrete.
  • this reinforcing rod loading is continuous along the length of the rods. Consequently the variation in the pole cross section results in a variation in unit stress produced by the rods 24 at different cross-sectional locations along the pole.
  • this is compensated for by providing a greater number of the reinforcing rods 24 where the cross-sectional area of the pole 20 is largest and a lesser number of cables where the cross-sectional area of the pole is smallest.
  • Each of the cables is subjected to a continuous tensile stress along its length. However, certain of the cables are terminated intermediate the overall length of the pole 20.
  • the base section of the pole illustrated by the distance A, is provided with the greatest number of reinforcing rods 24.
  • a first portion of these rods however, (i.e. rods 24') are terminated at the upper end of the base section A. The remainder of the rods 24 continue up the length of the pole 20 through an intermediate section B.
  • a second portion i.e. rods 24
  • the remainder of the rods 24 then continue on trough an upper portion C of the pole 20 and terminate at its upper end.
  • a maximum number of reinforcing rods 24 which generate a greater total compressive force upon the concrete in the lower section A of the pole. This greater force is counteracted by the greater cross-sectional area in this region of the pole so that the unit stress is not exorbitantly high.
  • a smaller number of the reinforcing rods 24 extend through the intermediate section B. Each of these rods is subject to the same tensile stress that it experiences in the lower section A.
  • the lesser number of these rods in the intermediate section B results in a smaller total compressive force exertedin this region of the pole 20.
  • the total cross-sectional area of the pole 20 in'the intermediate section D is less than its was in the lower section A so that the total unit stress produced by the reinforcing rods on the concrete in the intermediate region is approximately that produced in the lower section A.
  • FIG. 4 A centrifugal casting arrangement used to produce the pole 20 is shown in FIG. 4.
  • This casting arrangement comprises a tapered cylindrical steel outer shell 26 having collars 28 and 30 formed at each end. These collars provide anchorage arrangements for running wheels 32 which extend around the. mold 26 at each end thereof.
  • the wheels 32 and 34 are dimensioned so that the central axis of the wheel 26 remains horizontal while the mold rotates. Thus, it will be seen that the wheel 32 has a shorter web 32a while the wheel 34 has a longer web 340.
  • Lower and upper end plate members 36 and 38 are fitted into the collars 28 and 30 at the opposite ends of the shell 26 respectively.
  • the end plate members 36 and 38 are provided with end walls 40 and 42 respectively. These walls having central openings 44 and 46.
  • wet concrete, shown at 48 is
  • the wet concrete 48 distributes itself evenly about the inner surfaces of the shell 26. Any excess concrete will find its way out from the end openings 44 and 46.
  • the wet concrete 48 which remains within the mold 26 assumes the shape of the finished pole 20.
  • the mold 26 continues in rotation until the concrete 48 has fully formed in this desired finished shape. Thereafter, the mold 26 is stopped and the concrete pole is withdrawn after hardening.
  • the wheels 32 and 34 each ride upon a driver wheel 50 and an idler wheel 52 which serve to ensure that the longitudinal axis of the mold 26 remains stationary during rotation.
  • the reinforcing rods 24 may be affixed by means of anchors 94 into the lower end wall 40 before or after the concrete 48 is poured into the molds.
  • The' shorter rods 24' which terminate at the.
  • first intermediate anchors 59 To this-end these rods face of the mold 26, and are positioned to lie along the opposite sides of each of the slots 64.
  • the anchor plates 60 are of generally triangular or quarter-round configuration and they extend through the slots 64 down into the interior of the shell 26. As shown in FIG. 6 the edge of each plate 60 is formed with a groove or recess 68 to hold one of the cables 24' securely while the cable passes around the edgeof the plate 60 and out through the slot 64 to one of the anchor members 62.
  • the plate 60 itself is secured in place by means of pins 70 which pass through the flanges 66 and the plate 60.
  • the rods 24' can be pretensioned to any desired degree by adjustment of either the anchor member 54 at the lower end thereof or the anchor arrangement 62 at the upper end thereof.
  • Second intermediate cable termination arrangements 72 are provided at the upper end of the intermediate section B for terminating the rods 24" at the end of this section.
  • the remaining rods 24, which extend the full length of the pole 20 through sections A, B and C are terminated in conventional fashion by means of anchors 74 arranged in the upper end wall 42.
  • the mold 26 is stopped and subsequently the first and second intermediate anchor arrangements 59 and 72 are removed. This is achieved by releasing the upper anchors 62 and withdrawing the pins from the anchor plates 60. Thereafter, the anchor plates are withdrawn out from the longitudinal slots 64 and the reinforcing rods 24' and 24" are severed as illustrated in FIG. 7 at locations 76 within the regions 78 voided by the anchor plates 60. The regions 78 are thereupon filled with additional concrete to provide'a smooth even exterior for the pole 20. After the various intermediate anchor arrangements have thus been removed, the end anchor arrangement 54 and 74 are removed as are the end plates 36 and 38. The finished pole 20 is then removed from the outer shell 26.
  • FIGS. 8 and 9 show a modified version of the intermediate anchor assemblies 59 and 72 used in terminating the various cables 24 and 24".
  • the shell 26 is provided at each anchor point with a longitudinal slot 64 and associated side flanges 66.
  • a modified anchor plate 80 'of similar configuration to the anchor plate 60 of FIG. 6 is inserted into the slot 64 and is pinned in place as in the preceeding arrangement.
  • the plate is reversed. That is, the curved or slanted edge of the plate which faced rearwardly in the preceeding arrangement, faces forwardly in the present arrangement.
  • the reinforcing rod 24 loops around a holding plate 82 which abuts a straight sided, non-slanting rearwardly facing surface 84 of the anchor plate 80.
  • the pretension on the cable 24' or 24" must be provided by the anchor member 54 at the end of the mold arrangement for there is no adjustable anchor element provided in the intermediate anchor region.
  • FIGS. 10 and 11 A further intermediate anchor arrangement is shown in FIGS. 10 and 11.
  • the mold 26 is provided with a longitudinally extending slot 64 surrounded on both sides by means of longitudinally extending flanges 66 which are welded or otherwise secured to the outer surface of the mold 26.
  • a further anchor plate 86 extends down into the slot 26 and is secured in place by means of the pins 70 which pass through the plate 86 and through the flanges 66.
  • the plates 86 are provided with a fork-like lower end 88 which straddles the reinforcing cable 24'.
  • An anchor member 90 similar to the anchor members 54, 62 and 74, is provided to abut against a rearwardly facing surface 92 of the anchor plate 86 and to secure the end of the cable 24 in place until after the concrete within the shell 26 is fully hardened.
  • any or all of the rods or cables may also have their opposite ends terminated intermediate the ends of the structure.
  • the structure may be provided with additional reinforcement only in the vicinity of the ground level to counteract the large bending movements which exist in that region. This may be accomplished according to the present invention, by providing additional tensioned reinforcing rods or cables which are terminated at both .ends just beyond the ground line and intermediate the ends of the overall structure.
  • a mold arrangement for forming reinforced concrete structures comprising an elongated outer shell having slots therethrough located intermediate its ends, anchor plates extending through said slots and detachably secured to said outer shell thereat and reinforcing rods extending along the interior of said outer shell and having terminals detachably secured to said anchor plates in a manner permitting release of said plates from said rods by withdrawal of said plates out from their slots, said rods being tensionable from either end, wherein said outer shell forms an enclosure and further includes means for rotating said shell about its longitudinal axis for centrifugally casting said concrete.
  • a mold arrangement for centrifugally casting a reinforced concrete load supporting structure comprising an elongated, tapered, outer shell, the taper of the shell being such that the weight of concrete formed therein at any location therein together with the external load forces acting at said location produce a predetermined stress distribution along the length thereof, a plurality of spaced reinforcing rods extending along the interior of the outer shell and spaced inwardly of said shell so as to be embedded in said concrete when formed in said shell, selected ends of certain ones of said reinforcing rods terminating at locations intermediate the end of said shell, said shell having slots therethrough, an-

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Manufacturing Of Tubular Articles Or Embedded Moulded Articles (AREA)

Abstract

Use of pretensioned elongated reinforcing rods in concrete structures, the rods being terminated at various intermediate ends of the structure, and special anchor arrangements for permitting intermediate termination of the rods.

Description

United States Patent [191 Van Buren June 12, 1973 I REINFORCEMENT OF CONCRETE STRUCTURES [56] References Cited [75 Inventor: Myers Van Buren, Cheriton, Va. UNITED STATES PATENTS I 2,590,478 3/1952 Weinburg 264/228 Assignee: Bayshore Concrete Products Corp Van Buren Cape Charles I 3,583,047 6/1971 Uchiyama 425 111 [22] Filed: June 1971 Primary ExaminerJ. Spencer Overholser [21] Appl. No.: 151,284 Assistant Examiner-B. P. Tobor Attorney-Ward, McElhannon, Brooks & Fitzpatr ic Related U.S.'Appl1cat1on Data [62] Diuis ion of Ser. No. 8,139, Jan. 16,1970, which is a [57] ABSTRACT g'g g g 639371 May 1967 Use of pretensioned elongated reinforcing rods in concrete structures, the rods being terminated at various [52] U S Cl 425/111 249/93 249/137 intermediate ends of the structure, and special anchor f 425/435 arrangements for permitting intermediate termination 51 Int. Cl B28b 23/06 of [58] Field of Search 425/111, 435; 9 Claims, 11 Drawing Figures PATENTEDJIINI 2W5 SHEET 1 BF 2 INVENTOR. Wimps V4 9 PAIENTED 2975 SHEETZBFZ REINFORCEMENT OF CONCRETE STRUCTURES This application is a division of our copending 'appli cation, Ser. No.8 l 39 filed Jan. 16, 1970, which is a division of application, Ser. No. 639,37l, filed May 18, 1967, now US. Pat. No. 3,501,88l.
This invention relates to the reinforcing of concrete, and more particularly it concerns the impartation of predetermined stresses at different locations along concrete structures.
The present invention is particularly useful in connection with the manufacture of concrete poles and columns for supporting high tension wires and the like.
These poles and columns, in addition to their basic vertical supporting function, must also be capable of withstanding lateral bending loads imposed by the wires or cables which they support. Such bending loads however, impose tensile stresses on the concrete, and unless adequate provision is made for reinforcing, the concrete will fail. In general, such reinforcing is provided by means of elongated steel tension members embedded in the concrete and placed under a predetermined degree of tensiomThis imposes a compressive stress on the concrete which it easily withstands; and at the same time it serves to absorb nearly all its tensile stresses produced under lateral orbending loads.
Because of the high weightto strength ratio of concrete, it is desirable to taper elongated vertical support members made of concrete. This permits-ofa more efficient structure, since each cross sectional area may be tailored to the total weight being supported byit. As a out the structure.
The tapering of an elongated concrete structure however, presents certain problems with regard to the provision of reinforcement. This is because the elongated reinforcing'rods which are embedded within the concrete are each subjected to a constant tensile stress throughout its length. Thus the total compressive force imposed by the reinforcing rods upon the concrete is the same at each cross sectional location along the structure. This uniform compressive force however is imposed upon different'cross sectional'areas; and toward the tip of the structure, where the cross sectional area is smallest, the unit compressive stresses become quite high in relation to those near' the base of the structure.
Prior attempts tosolve this problem and to obtain a more uniform unit stress throughout a tapered concrete structure have been unsatisfactory. According to one technique, the reinforcing members were selectively coated in various regions along their length to prevent their bonding to the concrete. Thus those reinforcing members which were not-bonded in the chosen regions would not impose compressive stresses in these regions. This technique required an excessive amount of reinforcing material for the amount of useful reinforcing produced. Moreover, in those regions where the reinforcing materialv was not bonded to the concrete and was left unstressed, the concrete was actually in a weakened condition dueto the presence of the internal passages through which the reinforcing material extended. 1
According to another prior technique, only a sufficient amount of prestressed reinforcing material is used to produce a desired amount of unit stress at the small end of the concrete structure. Then additional unstressed reinforcing is added to the larger end of the structure in order to strengthen it in that region. While this avoids the small and weakening problem of the first technique, it also requires uneconomical use of reinforcing material.
The present invention overcomes all of the above described problems of the prior art. The present invention makes possible the provision of a reinforced tapered concrete structure subjected to a substantially uniform compressive unit stress throughout its length. No problems of weakening are presented with the arrangements of the present invention; and maximum efficiency is obtained in the use of reinforcing material.
Essentially, the present invention makes use of various reinforcing members which are prestressed in tension and which are embedded within a continuous integral concrete structure. These reinforcing members are terminated at different locations within the concrete structure so that the unit stress at any cross section can be established by providing at such cross section a proper number of properly stressed reinforcing members.
According to a particular feature of the present invention a novel technique is provided for manufacturing concrete structures having various prestressed reinforcing members embedded at different locations therealong. According to the technique a concrete forming mold is prepared for forming the reinforced structure. Anchor members are mounted on the sides of the mold and extend inwardly a distance from the inner mold surface. Cables or other elongated reinforcing members are connected to the anchor members and are subjected to a predetermined tensile stress. Thereafter the concrete is poured into the mold and allowed to set. Upon completion of this set, the cables are disconnected from the anchor members, as by burning them off. The anchor members are then removed along with the mold and the voids left in the concrete structure by the anchor'members are filled up with additional concrete.
According to a further feature of the invention there are provided novel anchor member arrangements involving anchor members which may be securely mounted to the sides of the mold for holding reinforcing members inside the mold under a high degree of tension, and which at the same time are capable of easy removal from the hardened concrete structure. These novel arrangements comprise special platen of generally triangular or quarter-round configuration which extend through a slot in the mold side and which are pinned in place to lugs or flanges formed adjacent the slot on the outer mold surface. The cable or other reinforcing member to be embedded in the finished structure is secured to the plate in such a manner that the plate holds the reinforcing member inside the mold while withstanding the tensile forces imposed on the reinforcing member. The securing arrangement however involves only a looping or abutment type interconnection between the plate and the reinforcing member so that the plate may easily be withdrawn cut through the slot after the concrete has set while leaving the cable embedded in the concrete.
There has thus been outlined rather broadly the more important feature of the invention in order that the detailed description thereof that follows may be better understood, and in order that the present contribution to the art may be better appreciated. There are, of
course, additional features of the invention that will be described hereinafter and which will form the subject of the claims appended hereto. Those skilled in the art will appreciate that the conception upon which this disclosure is based may readily be utilized as a basis for the designing of other structures for carrying out the several purposes of the invention. It is important, therefore, that the claims be regarded as including such equivalent construction as do not depart from the spirit and scope of the invention.
Specific embodiments of the invention have been chosen for purposes of illustration and description, and are shown in the accompanying drawings, forming a part of the specification wherein:
FIG. 1 is a perspective view of a tapered hollow concrete supporting pole made according to the present invention; I
FIG. 2 is a section view taken along line 2-2 of FIG.
FIG. 3 is a section view taken along line 3-3 of FIG.
FIG. 4 is a section view taken in side elevation of a mold arrangement for centrifugally casting the pole of FIG. 1;
FIG. 5 is a section view taken along lines 5-5 of FIG.
FIG. 6 is a fragmentary section view taken along lines 66 of FIG. 4;
FIG. 7 is a fragmentary section view taken along lines 7-7 of FIG. 1;
FIG. 8 is a fragmentary section view illustrating a modified reinforcing rod anchor arrangement according to the present invention;
FIG. 9 is a section view taken along line 99 of FIG.
FIG. 10 is a view similar to FIG. 8 but showing a still further modification of the reinforcing rod anchor arrangement according to the present invention; and
FIG. 11 is a section view taken along line 11-11 of FIG. 10.
FIG. 1 shows a centrifugally cast tapered concrete supporting pole of circular cross section and formed with a hollow circular core 22. As shown in dotted outline, a plurality of elongated steel reinforcing rods or cables 24 are embedded within the concrete of the pole 20 and extend along its length. These reinforcing rods are prestressed; that is, they are subjected to a predetermined amount of tensile stress by external means during the time that the concrete which forms the pole '20 is hardening. Subsequent to hardening of the con crete, the rods 24 are released. As a consequence of this, these rods serve to induce compressive stresses along the length of the pole 20 thus increasing the ability of the pole to withstand tensile strains which are produced by forces tending to deflect or bend the pole in a lateral direction.
As stated above, the pole 20 is tapered from end to end. The purpose for this is to compensate for the high weight to strength ratio of the concrete, and to provide for a uniform unit supporting stress at each cross sectional location along its length. In this connection it will be noted that the loading at any location along the pole is made up of both the load being supported by the pole and the weight of the pole concrete above the location. Thus the total loading increases toward the bottom of the pole. This increase in total loading is compensated for by increasing the pole cross-section toward the bottom thereof, thus providing for a uniform compressive stress throughout its length.
In addition to the pole loading caused by the load it supports and the weight of the pole itself, the pole 20 is also subjected to loading equal to the sum of the tensile forces in the reinforcing rods 24. These rods, by virtue of their tensile stresses, produce an equal amount of compressive loading on the concrete. Now this reinforcing rod loading is continuous along the length of the rods. Consequently the variation in the pole cross section results in a variation in unit stress produced by the rods 24 at different cross-sectional locations along the pole.
According to the present invention, this is compensated for by providing a greater number of the reinforcing rods 24 where the cross-sectional area of the pole 20 is largest and a lesser number of cables where the cross-sectional area of the pole is smallest. Each of the cables is subjected to a continuous tensile stress along its length. However, certain of the cables are terminated intermediate the overall length of the pole 20. Thus, as can be seen in FIG. 1 the base section of the pole, illustrated by the distance A, is provided with the greatest number of reinforcing rods 24. A first portion of these rods however, (i.e. rods 24') are terminated at the upper end of the base section A. The remainder of the rods 24 continue up the length of the pole 20 through an intermediate section B. At the upper end of this section, a second portion (i.e. rods 24") are terminated. The remainder of the rods 24 then continue on trough an upper portion C of the pole 20 and terminate at its upper end. Thus, as shown at the lower end of the pole 20 in FIG. 1 there are provided a maximum number of reinforcing rods 24 which generate a greater total compressive force upon the concrete in the lower section A of the pole. This greater force is counteracted by the greater cross-sectional area in this region of the pole so that the unit stress is not exorbitantly high. Thereafter, as illustrated in FIG. 2, a smaller number of the reinforcing rods 24 extend through the intermediate section B. Each of these rods is subject to the same tensile stress that it experiences in the lower section A. However, the lesser number of these rods in the intermediate section B results in a smaller total compressive force exertedin this region of the pole 20. On the other hand, the total cross-sectional area of the pole 20 in'the intermediate section D is less than its was in the lower section A so that the total unit stress produced by the reinforcing rods on the concrete in the intermediate region is approximately that produced in the lower section A.
Similarly as shown in FIG. 3 an even smaller number of the reinforcing rods 24 pass through the upper region C. Again, these rods are each subjected to the same tensile stress which they experienced in passing through the lower and intermediate sections A and B of the pole 20. Thus, the total compressive force exerted by them on the concrete in the upper section C is less than that exerted by the reinforcing rods in the lower and intermediate sections A and B. However, this compressive force is resisted in the upper section C by an even smaller concrete cross section. Therefore the unit stress in the upper section C again approximates that existing in the lower and intermediate sections A and B.
It will be noted that although the various groups 24' and 24" of the rods 24 terminate at locations intermediate the ends of the pole 20, the pole itself is of continuous integral construction and is formed as a unit at one time.
A centrifugal casting arrangement used to produce the pole 20 is shown in FIG. 4. This casting arrangement comprises a tapered cylindrical steel outer shell 26 having collars 28 and 30 formed at each end. These collars provide anchorage arrangements for running wheels 32 which extend around the. mold 26 at each end thereof.
The wheels 32 and 34 are dimensioned so that the central axis of the wheel 26 remains horizontal while the mold rotates. Thus, it will be seen that the wheel 32 has a shorter web 32a while the wheel 34 has a longer web 340.
Lower and upper end plate members 36 and 38 are fitted into the collars 28 and 30 at the opposite ends of the shell 26 respectively. The end plate members 36 and 38 are provided with end walls 40 and 42 respectively. These walls having central openings 44 and 46.
In order to form a concrete pole by means of the device shown in FIG. 4 wet concrete, shown at 48, is
- poured .inside the shell 26 and the shell is thereupon caused to rotate'rapidly about its longitudinal axis. As a result of the centrifugal forces produced by such rotation the wet concrete 48 distributes itself evenly about the inner surfaces of the shell 26. Any excess concrete will find its way out from the end openings 44 and 46. Thus, as illustrated in FIG. 4, the wet concrete 48 which remains within the mold 26 assumes the shape of the finished pole 20. The mold 26 continues in rotation until the concrete 48 has fully formed in this desired finished shape. Thereafter, the mold 26 is stopped and the concrete pole is withdrawn after hardening.
Turning now to FIG. 5 it will be seen that the wheels 32 and 34 each ride upon a driver wheel 50 and an idler wheel 52 which serve to ensure that the longitudinal axis of the mold 26 remains stationary during rotation. As shown in FIG. 4, the reinforcing rods 24 may be affixed by means of anchors 94 into the lower end wall 40 before or after the concrete 48 is poured into the molds. The' shorter rods 24' which terminate at the.
upper end of the lowermost section A are terminated at first intermediate anchors 59. To this-end these rods face of the mold 26, and are positioned to lie along the opposite sides of each of the slots 64.
The anchor plates 60 are of generally triangular or quarter-round configuration and they extend through the slots 64 down into the interior of the shell 26. As shown in FIG. 6 the edge of each plate 60 is formed with a groove or recess 68 to hold one of the cables 24' securely while the cable passes around the edgeof the plate 60 and out through the slot 64 to one of the anchor members 62. The plate 60 itself is secured in place by means of pins 70 which pass through the flanges 66 and the plate 60. The rods 24' can be pretensioned to any desired degree by adjustment of either the anchor member 54 at the lower end thereof or the anchor arrangement 62 at the upper end thereof.
Second intermediate cable termination arrangements 72 are provided at the upper end of the intermediate section B for terminating the rods 24" at the end of this section. The remaining rods 24, which extend the full length of the pole 20 through sections A, B and C are terminated in conventional fashion by means of anchors 74 arranged in the upper end wall 42.
After the various reinforcing rods 24 have been properly pretensioned and the assembly has been rotated until the concrete has formed, the mold 26 is stopped and subsequently the first and second intermediate anchor arrangements 59 and 72 are removed. This is achieved by releasing the upper anchors 62 and withdrawing the pins from the anchor plates 60. Thereafter, the anchor plates are withdrawn out from the longitudinal slots 64 and the reinforcing rods 24' and 24" are severed as illustrated in FIG. 7 at locations 76 within the regions 78 voided by the anchor plates 60. The regions 78 are thereupon filled with additional concrete to provide'a smooth even exterior for the pole 20. After the various intermediate anchor arrangements have thus been removed, the end anchor arrangement 54 and 74 are removed as are the end plates 36 and 38. The finished pole 20 is then removed from the outer shell 26.
FIGS. 8 and 9 show a modified version of the intermediate anchor assemblies 59 and 72 used in terminating the various cables 24 and 24". As shown in FIG. 8, the shell 26 is provided at each anchor point with a longitudinal slot 64 and associated side flanges 66. A modified anchor plate 80 'of similar configuration to the anchor plate 60 of FIG. 6 is inserted into the slot 64 and is pinned in place as in the preceeding arrangement. In the arrangement of FIGS. 8 and 9 however, the plate is reversed. That is, the curved or slanted edge of the plate which faced rearwardly in the preceeding arrangement, faces forwardly in the present arrangement. Additionally, in the present arrangement the reinforcing rod 24 loops around a holding plate 82 which abuts a straight sided, non-slanting rearwardly facing surface 84 of the anchor plate 80. In this arrangement the pretension on the cable 24' or 24" must be provided by the anchor member 54 at the end of the mold arrangement for there is no adjustable anchor element provided in the intermediate anchor region.
A further intermediate anchor arrangement is shown in FIGS. 10 and 11. Here again the mold 26 is provided with a longitudinally extending slot 64 surrounded on both sides by means of longitudinally extending flanges 66 which are welded or otherwise secured to the outer surface of the mold 26. A further anchor plate 86 extends down into the slot 26 and is secured in place by means of the pins 70 which pass through the plate 86 and through the flanges 66. As shown in FIG. 11 the plates 86 are provided with a fork-like lower end 88 which straddles the reinforcing cable 24'. An anchor member 90, similar to the anchor members 54, 62 and 74, is provided to abut against a rearwardly facing surface 92 of the anchor plate 86 and to secure the end of the cable 24 in place until after the concrete within the shell 26 is fully hardened.
It will be noted that with the two anchor plate modifications shown in FIGS. 8ll the reinforcing cables 24' and 24" are fully terminated within the shell 26 prior to the pouring of the concrete into the shell. Accordingly, it is not necessary when using these two modifications to burn or otherwise sever the reinforcing cables after the concrete has set.
It will be additionally noted that in all three of the anchor arrangements described there is provided a simple abutting relationship between the reinforcing cables 24 and 24" and the anchor plates 60, 80 and 86, so that the anchor plates may readily be removed from the slot 64 while leaving the reinforcing cable embedded properly in place.
Those skilled in the art will readily appreciate that while the reinforcing rods or cables shown in the illustrative embodiments only have one end terminated intermediate the ends of the finished structure, any or all of the rods or cables may also have their opposite ends terminated intermediate the ends of the structure. Thus, for example, where the structure is to be driven part-way into the ground and will be subjected to lateral bending loads, the structure may be provided with additional reinforcement only in the vicinity of the ground level to counteract the large bending movements which exist in that region. This may be accomplished according to the present invention, by providing additional tensioned reinforcing rods or cables which are terminated at both .ends just beyond the ground line and intermediate the ends of the overall structure.
Having'thus described my invention with particular reference to the preferred forms thereof, it will be obvious to those skilled in the art to which the invention pertains, after understanding my invention, that various changes and modifications may be made therein without departing from the spirit and scope of my invention, as defined by the claims appended thereto.
What is claimed as new and desired to be secured by Letters Patent is:
l. A mold arrangement for forming reinforced concrete structures, said mold arrangement comprising an elongated outer shell having slots therethrough located intermediate its ends, anchor plates extending through said slots and detachably secured to said outer shell thereat and reinforcing rods extending along the interior of said outer shell and having terminals detachably secured to said anchor plates in a manner permitting release of said plates from said rods by withdrawal of said plates out from their slots, said rods being tensionable from either end, wherein said outer shell forms an enclosure and further includes means for rotating said shell about its longitudinal axis for centrifugally casting said concrete.
2. A mold arrangement as in claim 1 wherein said outer shell is elongated and is provided with end walls at the ends thereof.
3. A mold arrangement as in claim 2 wherein one end of each of said reinforcing rod is anchored to one of said end walls, and the other ends of various ones of said reinforcing rods are terminated at different ones of said slots along said outer shell.
4. A mold arrangement as in claim 1 wherein said outer shell is provided with flange means on the outer surface thereof near each of said slots.
5. A mold arrangement as in claim 4 wherein said anchor plates are pinned to said flange means.
6. A mold arrangement for centrifugally casting a reinforced concrete load supporting structure comprising an elongated, tapered, outer shell, the taper of the shell being such that the weight of concrete formed therein at any location therein together with the external load forces acting at said location produce a predetermined stress distribution along the length thereof, a plurality of spaced reinforcing rods extending along the interior of the outer shell and spaced inwardly of said shell so as to be embedded in said concrete when formed in said shell, selected ends of certain ones of said reinforcing rods terminating at locations intermediate the end of said shell, said shell having slots therethrough, an-
chor plates extending through said slots and detachably secured to said outer shell thereat, the ends of said certain reinforcing rods being detachably secured to said anchor plates in a manner permitting release of said plates from said rods by withdrawal of said plates out from their slots, said rods being tensionable thereby to obtain such predetermined stress distribution along the length of said structure, and means for rotational movement about a longitudinal axis.
7. A mold arrangement according to claim 6 wherein said elongated, tapered outer shell is of cylindrical configuration.
8. A mold arrangement according to claim 6 wherein said longitudinal axis is horizontally disposed.
9. A mold arrangement according to claim 6 wherein said reinforcing rods terminating at locations intermediate the ends of said shell extend through said shell to the exterior thereof, and means mounted exteriorly of said shell for tensioningsaid extended rods.

Claims (9)

1. A mold arrangement for forming reinforced concrete structures, said mold arrangement comprising an elongated outer shell having slots therethrough located intermediate its ends, anchor plates extending through said slots and detachably secured to said outer shell thereat and reinforcing rods extending along the interior of said outer shell and having terminals detachably secured to said anchor plates in a manner permitting release of said plates from said rods by withdrawal of said plates out from their slots, said rods being tensionable from either end, wherein said outer shell forms an enclosure and further includes means for rotating said shell about its longitudinal axis for centrifugally casting saiD concrete.
2. A mold arrangement as in claim 1 wherein said outer shell is elongated and is provided with end walls at the ends thereof.
3. A mold arrangement as in claim 2 wherein one end of each of said reinforcing rod is anchored to one of said end walls, and the other ends of various ones of said reinforcing rods are terminated at different ones of said slots along said outer shell.
4. A mold arrangement as in claim 1 wherein said outer shell is provided with flange means on the outer surface thereof near each of said slots.
5. A mold arrangement as in claim 4 wherein said anchor plates are pinned to said flange means.
6. A mold arrangement for centrifugally casting a reinforced concrete load supporting structure comprising an elongated, tapered, outer shell, the taper of the shell being such that the weight of concrete formed therein at any location therein together with the external load forces acting at said location produce a predetermined stress distribution along the length thereof, a plurality of spaced reinforcing rods extending along the interior of the outer shell and spaced inwardly of said shell so as to be embedded in said concrete when formed in said shell, selected ends of certain ones of said reinforcing rods terminating at locations intermediate the end of said shell, said shell having slots therethrough, anchor plates extending through said slots and detachably secured to said outer shell thereat, the ends of said certain reinforcing rods being detachably secured to said anchor plates in a manner permitting release of said plates from said rods by withdrawal of said plates out from their slots, said rods being tensionable thereby to obtain such predetermined stress distribution along the length of said structure, and means for rotational movement about a longitudinal axis.
7. A mold arrangement according to claim 6 wherein said elongated, tapered outer shell is of cylindrical configuration.
8. A mold arrangement according to claim 6 wherein said longitudinal axis is horizontally disposed.
9. A mold arrangement according to claim 6 wherein said reinforcing rods terminating at locations intermediate the ends of said shell extend through said shell to the exterior thereof, and means mounted exteriorly of said shell for tensioning said extended rods.
US00151284A 1967-05-18 1971-06-09 Reinforcement of concrete structures Expired - Lifetime US3738786A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US63937167A 1967-05-18 1967-05-18
US15128471A 1971-06-09 1971-06-09

Publications (1)

Publication Number Publication Date
US3738786A true US3738786A (en) 1973-06-12

Family

ID=26848492

Family Applications (1)

Application Number Title Priority Date Filing Date
US00151284A Expired - Lifetime US3738786A (en) 1967-05-18 1971-06-09 Reinforcement of concrete structures

Country Status (1)

Country Link
US (1) US3738786A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4518342A (en) * 1983-04-11 1985-05-21 Somiver S.R.L. Apparatus for forming centrifuged poles
US4529567A (en) * 1983-06-17 1985-07-16 Bouygues Process and device for manufacturing concrete structural elements
US5055021A (en) * 1990-05-11 1991-10-08 Emil Bonato Intermediate anchor for centrifugal concrete mold for producing ring-shaped prestressed concrete bodies
US5385460A (en) * 1990-05-25 1995-01-31 Balatros Gmbh Apparatus to make an endless, flat, flexible belt of pourable plastics
DE19819416A1 (en) * 1998-04-30 1999-11-11 Andreas Buchner Modular walling system
US20040020146A1 (en) * 2002-07-31 2004-02-05 Zebuhr William H. Structure to limit damage due to failure
US20040211148A1 (en) * 1999-02-12 2004-10-28 Newmark International, Inc. Multiple-part pole

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4518342A (en) * 1983-04-11 1985-05-21 Somiver S.R.L. Apparatus for forming centrifuged poles
US4529567A (en) * 1983-06-17 1985-07-16 Bouygues Process and device for manufacturing concrete structural elements
US5055021A (en) * 1990-05-11 1991-10-08 Emil Bonato Intermediate anchor for centrifugal concrete mold for producing ring-shaped prestressed concrete bodies
DE4015093A1 (en) * 1990-05-11 1991-11-14 Emil Bonato INTERMEDIATE ANCHOR FOR SPINNING CONCRETE FORMS FOR THE PRODUCTION OF TUBULAR TENSIONED CONCRETE BODIES
US5385460A (en) * 1990-05-25 1995-01-31 Balatros Gmbh Apparatus to make an endless, flat, flexible belt of pourable plastics
DE19819416A1 (en) * 1998-04-30 1999-11-11 Andreas Buchner Modular walling system
US20040211148A1 (en) * 1999-02-12 2004-10-28 Newmark International, Inc. Multiple-part pole
US7343718B2 (en) * 1999-02-12 2008-03-18 Newmark International, Inc. Method for making multiple-part concrete pole
US20040020146A1 (en) * 2002-07-31 2004-02-05 Zebuhr William H. Structure to limit damage due to failure
US7032352B2 (en) * 2002-07-31 2006-04-25 Zebuhr William H Structure to limit damage due to failure

Similar Documents

Publication Publication Date Title
USRE27732E (en) Reinforcement of concrete structures
US3501881A (en) Reinforcement of concrete structures
US3089215A (en) Apparatus for prestressed concrete construction
US2371882A (en) Tensioning and anchoring of cables in concrete or similar structures
US3738786A (en) Reinforcement of concrete structures
US3652756A (en) Reinforcement of concrete structures
US3676031A (en) Post-tensioning system
FI64307B (en) SAETT ATT GJUTA TUNNVAEGGIG IHAOLIGA BETONGSTOLPAR OCH FORM FOER UTFOERANDE AV SAETTET
US3841599A (en) Anchor plate means for reinforcing rods
JP2682974B2 (en) Reinforcement method for cylindrical structures
US3115727A (en) Anchors for stranded pretensioned members
JPH0432903B2 (en)
JP3759232B2 (en) Removal anchor device
US3516211A (en) Internally prestressed reinforcement rod
JP2714604B2 (en) Prestressed concrete pile and method for manufacturing the same
KR100508532B1 (en) Structure of Bridge with Hollow Slab and Constructing Method Thereof
JP3029908B2 (en) Construction method of concrete structure
US3403492A (en) Construction of concrete liquid reservoirs such as swimming pools
JPH0251040B2 (en)
JP2608109B2 (en) Method of introducing prestress force to slope stabilizing structure
JP2941172B2 (en) Manufacturing method of PC segment
JP2719991B2 (en) Construction method of slope protection structure
JP2578627B2 (en) Half PCa board
KR101779883B1 (en) Steel strand anchorage device for improving concreate placement quality
JPS60133118A (en) Anchoring method