Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3738368 A
Publication typeGrant
Publication date12 Jun 1973
Filing date14 Dec 1970
Priority date14 Dec 1970
Publication numberUS 3738368 A, US 3738368A, US-A-3738368, US3738368 A, US3738368A
InventorsR Avery, J Wepsic
Original AssigneeR Avery, J Wepsic
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Implantable electrodes for the stimulation of the sciatic nerve
US 3738368 A
Abstract
An electrode for the stimulation of the sciatic nerve is disclosed, the electrode being comprised of a pair of physiologically inert plastic strips each of which has a plurality of contact means fixed thereto. The contact or electrode means which preferably are formed of platinum comprise a plurality of buttons positioned on opposite sides the sciatic nerve and are oriented by the surgeon with respect to each other to achieve optimum pain inhibition. When properly placed, the two plastic members are suitably secured to each other. External power means that are electrically coupled to the contact buttons by conductive leads provide selective stimulation of the sciatic nerve in order to relieve pain. The conductive leads for the contact buttons that are not coupled to the source of electrical power are severed.
Images(2)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent 1 Avery et al.

[ IMPLANTABLE ELECTRODES FOR THE STIMULATION or THE SCIATIC NERVE [76] Inventors: Roger E. Avery, 145 Rome St.,

Melville; James S. Wepsic, 84 Prince St., Jamaica Plains, both of NY.

22 Filed: Dec. 14, 1970 21 Appl. No.: 97,937

[52] U.S. Cl. 128/418 [51] Int. Cl A6ln 1/04 [58] Field of Search 128/2.06 E, 2.1 E,

128/404, 411, 410, 418, 419 C, DIG. 4

[56] References Cited UNITED STATES PATENTS 3,650,276 3/1972 Burghele et al 128/418 2,943,628 7/1960 Howell 1 128/418 1,588,182 6/1926 Gibson 128/418 3,295,515 1/1967 Kahn 128/418 2,047,308 7/1936 Chapman 128/418 3,543,761 12/1970 Bradley 128/418 3,067,749 12/1962 Walters 128/418 1,597,061 8/1926 Cultra 1281404 3,279,468 10/1966 Le Vine 128/410 3,244,174 4/1966 Wesbey et al 128/418 June 12, 1973 Primary Examiner-William E. Kamm Attorney-Leonard E. King [57] ABSTRACT An electrode for the stimulation of the sciatic nerve is disclosed, the electrode being comprised of a pair of physiologically inert plastic strips each of which has a plurality of contact means fixed thereto. The contact or electrode means which preferably are formed of platinum comprise a plurality of buttons positioned on opposite sides the sciatic nerve and are oriented by the surgeon with respect to each other to achieve optimum pain inhibition. When properly placed, the two plastic members are suitably secured to each other. External power means that are electrically coupled to the contact buttons by conductive leads provide selective stimulation of the sciatic nerve in order to relieve pain. The conductive leads for the contact buttons that are not coupled to the source of electrical power are severed. The aforementioned abstract is neither intended to define the invention of the application which, of course, is measured by the claims, nor is it intended to be limiting as to the scope of the invention in any way.

13 Claims, 9 Drawing Figures Pmmwwmlw 3,738,368

SHH'ITIBFZ INVEIVIUR ROGER E. AVERY JAMES 5. WEPSIC fiymud F ATTORNEY PAIENIEU JUN 1 2 191a SHE? 2 BF 2 SEPARATION B 5 G F INVESTOR ROGER E.AVERY BY JAMES 5 WEPSIC jzuam F y ATTORNEY FIG. 6

IMPLANTABLE ELECTRODES FOR THE STIMULATION OF THE SCIATIC NERVE This invention relates generally to an implantable electrode for use in the human body and more particularly to an improved device for stimulating the sciatic nerve.

BACKGROUND OF THE INVENTION There are many different types of therapy that require surgical procedures wherein electrodes are implanted in the body for stimulating a selected nerve. Pain inhibition is an example of one application wherein devices of the type that will be subsequently described are a particularly advantageous therapeutic tool. A source of power electrically coupled to the electrode may also be implanted or an external source of power and a transmitter may be utilized, together with an implanted receiver. Regardless of the techniques that are used, it is absolutely essential that the body be able to tolerate the foreign object for extended periods of time.

The management of chronic, severe pain has historically been an elusive and compromising problem for the physician. One example of such pain is the phantom pain in an amputated extremity. Pain of partial nerve injury due to trauma or vascular disease is also difficult to deal with using traditional narcotics -or neuro-destructive procedures. Recently, however, researchers have gained significant insight into the physiology of pain. From their observation and from recent developments in the field of neuro-stimulation, the physician now has means for controlling pain by utilizing the body's own natural inhibiting mechanisms. The new devices are beneficial in that they provide nondestructive means for regulating pain without the systematic administration of drugs. Electrical stimulation for the purpose of regulating or inhibiting pain is nondestructive and permits great selectivity in relieving severe pain in the desired region.

One of the problems encountered in developing an electrical stimulator for the sciatic nerve resides in the fact that there are really two nerve bundles in one, both of the bundles being covered by a sheath system. There are also substantial differences in the connective tissue and the relative positions of the two bundles as well as the individual fibers within each bundle. For a surgeon attempting to get at one series of fibers it is virtually impossible to judge, from one person to the next, where to place the point electrodes. Attempts made by the prior art structures to solve this problem were not satisfactory.

The devices used in the past have generally consisted of a flat strip of plastic material in which two contact buttons were imbedded with conductive leads extending from the buttons to the power source. The plastic strip was then wrapped around the sciatic nerve such that the buttons were in opposition to each other with the nerve therebetween. However, with the prior art structure there was very little possibility for the surgeon to reorient the contact buttons so as to change their relative position since the device was made in one piece. Frequently, the buttons in the prior art would be too far to one side or the other.

In the usage of the device comprising the present invention, a curvilinear incision is made through the gluteus maximus over the sciatic notch of the ilium. This allows stimulation of the sciatic nerve at its most proximate point of exit from the pelvis. It is useful to stimulate proximally to allow inhibition of pain for as much of the leg as is possible. With the muscles and tissues retracted the implant is sutured in place and the leads from the electrode are connected directly to an external signal source to allow direct stimulation of the nerve. Usually the patient can tolerate this arrangement for several days allowing the surgeon to electrically energize different combinations of electrodes to achieve optimum relief in the proper location of the patients pain. When the most effective electrode sites are determined, the remaining leads connected to the sites not to be stimulated are severed and receiver means are implanted after connection to the leads that have been selected for stimulation.

In its broadest aspect, the present invention comprises two separate sections that are sutured together around thenerve after they are appropriately aligned, with respect to each other. Each of the sections comprises a plurality of platinum contact buttons, each of the buttons having a platinum staple welded thereto. 'A separate length of platinum wire is also welded to each staple and button combination. Preferably, the contact button is concave with the staple being positioned internally. A stainless steel lead wire is then coupled to the platinum lead wire.

The present invention avoids dissimilar materials adjacent the contact button. The platinum staple is secured to a relatively thin strip of dacron mesh reinforcedsilicon rubber which is covered with another layer of the same material, the platinum together with the stainless steel lead wire, being encased in a plastic tube. Preferably the leads are color coded so that the surgeon may know the exact position of each electrode. A colored suture thread inside the plastic tube is used for this purpose. It should also be noted that the stainless steel lead wire is remote from the platinum contact button and is insulated therefrom. Further, it is to be understood that the term plastic" in its present context refers to a medical grade material that is an electrical insulator and which is physiologically inert to body 1 fluids and tissues.

As noted hereinabove, there are provided two of the aforementioned assemblies, one on each side of the sciatic nerve, so that the contact buttons are in opposition to each other. There are provided in the preferred embodiment a total of eight contact buttons and eight leads. As opposed to the prior art structure, the present invention provides that the leads come out of the plastic layers at an angle to the length thereof. This allows the leads to leave the site of implantation in the proper plane of the overlying musculature and to provide a more stable attachment of the electrode to the nerve. In addition, it prevents stress on the electrode-lead interface during exercise of the patient. As will be explained hereinafter in making the implant it is necessary to reach the site of implant through an opening located from a remote point and at an angle to the sciatic nerve.

Accordingly, it is a primary object of the present invention to provide an improved implantable device for stimulating a nerve by means of electricity, whereby pain being sensed by that nerve is inhibited.

Another object of this invention is to provide a device as described above, particularly for use in conjunction with the sciatic nerve, the device being made in two complimentary halves that are sutured in place during surgery.

A further object of this invention is to provide an improved implantable device for stimulating the sciatic nerve as described above, the device including two halves each having a plurality of electrodes whereby the electrodes in one of the halves may be oriented with respect to the electrodes in the other half.

These and other objects, features and advantages of the invention will, in part, be pointed out with particularity and will, in part, become obvious from the following more detailed description of the invention, taken in conjunction with the accompanying drawings, which forms an integral part thereof.

DESCRIPTION OF THE DRAWING In the drawing:

FIG. 1A is a pictorial showing of a portion of a human torso showing in phantom the location of sciatic nerve;

FIG. 1B is a perspective, schematic view illustrating a typical prior art structure;

FIG. 2 is an exploded, perspective view of a preferred.

embodiment of the present invention;

FIG. 3 is a greatly enlarged, sectional elevational view of a typical button contact and plastic strip assembly comprising the present invention;

FIG. 4 is a schematic perspective view showing the relationship of the present invention to a typical sciatic nerve;

FIG. 5A and 5B are cross sectional views showing the difference in fat and asymmetry of two different sciatic nerves taken in the buttock area;

FIG. 6 is a plan view of an alternative embodiment of the present invention; and

FIG. 7 is a schematic view, typical of both embodiments illustrating the improved selectivity of electrode position made possible by the present invention.

DESCRIPTION OF THE PREFERRED EMBODIMENT In FIG. 1A there is shown a portion of the human body showing the point A at which the curvilinear incision is made and the point B where electrode connection is made to the sciatic nerve at its most proximate point of exit from the pelvis. The surgeon performs the actual implant through a tunnel through retracted muscle layers, about five inches long. This tunnel is oriented at any acute angle making implantation with the prior art structures used for connection to peripheral nerves. A typical prior device is shown schematically and in perspective in FIG. 1B.

The prior art device is comprised of a thin plastic strip 10 that is adapted to be implanted in a human body. A pair of electrodes 12 are imbedded in the plastic strip 10 such that they, the electrodes 12, will be positioned in opposition to each other when the device is installed, and adjacent the sciatic nerve designated by the reference character S. A difficulty encountered There is shown in FIG. 2 and FIG. 3, the preferred embodiment of the present invention. The implant 14 comprising the present invention consists of two spacedly opposed strips 16 made of a relatively thin, inert plastic material such as dacron mesh reinforced with silicon rubber. A plurality of contact buttons or electrodes 18 are imbedded in each of the strips 16, in a manner to be described more fully hereinafter, and lead wires, generally designated by the reference character 20, are electrically coupled to the contact buttons. The leads 20 are positioned at an angle to the length of the strips 16 and are color coded by any suitable means such as colored suture thread or lumens.

Each of the strips 16 is preferably molded with a central section 16a and two laterally positioned end sec tions 16b, the central section 16a being in a plane different from the end sections 16b so that when the two strips 16 are positioned such as shown in FIG. 2, there will be a central recess for the nerve, the recess being defined by the spacedly opposed central sections 16a. The degree of molded-in curvature will depend upon the thickness of the plastic and the degree to which it can be made to envelope a portion of the nerve. While the various sections have been shown as being relatively flat and joined by angular portions it should be understood that the various sections may also be gentle curves.

Turning now to FIG. 3, the construction of a typical strip 16 and the mounting of an electrode button 18 thereon will be described. A staple 22 is welded at 24 to the inside surface of the cup-shaped electrode button 18. A platinum lead wire 26 is welded to the staple 22 as shown by the reference character 28. A stainless steel lead wire 30 is then secured to the platinum lead wire 26 at junction 32. A length of plastic 34, preferably medical grade silicon or the like, encapsulates the combined lead wires 26 and 30.

The legs of the staple 22 are crimped over a first layer of plastic 36 which is the dacron mesh reinforced with silicon rubber mentioned above, and a second layer 38 made of the same plastic material, is adhesively secured to the layer 36. Sealing means 40 are positioned about the length of plastic '34 where that member passes through the layer 38. As shown in FIG. 3, the outer surface of the electrode button 18 makes a kissing contact with the sciatic nerve that is labeled 8..

The difficulties encountered in installing a neurostimulator for the sciatic nerve will be more fully appreciated by reference to FIGS. 4, 5A and 5B. As shown particularly in FIGS. 5A and 5B, there are substantial differences in the cross section of the sciatic nerve, for example as taken in the buttock area. There are differences as to the connective tissues surrounding the nerve as well as the asymmetry of the nerve. Accordingly, it was very difficuit for the surgeon to select the most effective location for opposed electrodes. With the prior art electrodes the surgeon had very little mechanical leeway in locating the electrode contact points. By use of the present invention, the surgeon may now position the two strips 16 on opposite sides of the sciatic nerve and then move them about relative to each other. It should be noted that eight leads 20 are shown. When the surgeon has determined the two or more contacts that will provide a maximum of relief from pain, the remaining leads may either be severed or connected to a steerable system such as a transmitter with a switching circuit. When the optimum position of the contacts has been established by the temporary expedient described hereinabove and the unused leads have been severed, the device together with receiver means may be sutured in place. When using the steerable system, the leads are brought out through the skin for connection to a suitable source of electrical energy.

Average dimensions a and b have been established by study of cadavers at 12.5 millimeters and 5.25 millimeters respectively, for the sciatic nerve in the area of the buttocks. At mid-thigh, the same dimensions and b, on an average, are 11.5 millimeters and 4.5 millimeters respectively. Thus, it may be seen that there is a wide deviation from patient to patient, and without means for orienting the opposed electrodes with respect to each other, the problems encountered by the surgeon for providing maximum relief from pain are greatly enlarged.

An alternative embodiment of the present invention is shown in FIG. 6. Instead of aligning the contact or electrode buttons 18 as previously shown in FIG. 2, electrode buttons 50 are positioned along a line that is at an angle with respect to the longitudinal axis of each strip 16. All of the components of the invention remain the same as described hereinabove. The arrangement as shown in FIG. 6 provides increased selectivity for the surgeon when he moves one of the strips 16' in relation to the other strip 16'.

FIG. 7 is used to show the mathematically possible combinations of electrode pairs that are available to the surgeon. Electrodes c, d, e andfare on one plastic strip 16 and opposed electrodes 0', d, e andf' are on the other strip 16. Thus there are 32 possible combinations of single pairs of electrodes and if pairs are taken in combination a much greater number of possibilities exists, whereas in the prior art structure shown in FIG. 1, there is only one pair of electrodes available. Six further combinations of electrode pairs are available if both electrodes that are ultimately connected to the receiver means are on the same plastic strip. This last mentioned arrangement is a distinct possibility depending on the nerve fiber to be stimulated and/or the relationship of the surrounding tissue.

While a specific number of contact buttons or electrodes have been shown for each of the two embodiments, it should be clearly understood that the invention is not so limited. Three and four contacts have been illustrated merely for purposes of convenience. Further, while the contacts or electrode buttons 18 have been shown to be rectangular in area, with rounded comers, it should also be understood that other shapes such as oval, ellipses, etc., may be employed within the scope of this invention.

There has been disclosed heretofore the best embodiment of the invention presently contemplated. However, it is to be understood that various changes and modifications may be made by those skilled in the art without departing from the spirit of the invention.

What we claim as new and desire to secure by Letters Patent is:

l. A device implantable within a living body for the electrical stimulation of the sciatic nerve, said device comprising the combination of:

a. a first and second relatively thin strips of flexible, electrically insulating material that is inert to body fluids and tissues, each of said strips being defined by a pair of longitudinally spaced end sections and a central section therebetween, said central section being in a plane different from at least one of said end sections, said respective end sections of said first and said second strips, in use, beingsecured to each other and said opposed central sections defining a recess therebetween having an axis that is substantially perpendicular to the longitudinal axis of said strips, said recess being adapted to accommodate the sciatic nerve therein;

b. a plurality of substantially flat, button-like electrically conductive electrode means secured to said central section of each of said strips in said recess defined by the combination of said opposed central sections whereby at least one of said electrode means of each of said strips is adapted to directly contact the sciatic nerve when said device is implanted; and

c. a plurality ofconductive lead means secured to said central section of .each of said strips, said lead means being electrically and physically coupled to said electrode means.

2. The device in accordance with claim 1 wherein each said lead means is comprised ofa platinum section secured to said electrode means and a stainless steel section secured to said platinum section.

3. The device in accordance with claim 1 wherein said electrode means are each comprised of a cupshaped member and means for securing said cupshaped member to said strip.

4. The device in accordance with claim 3 wherein said means for securing said cup-shaped member to said strip comprises a staple welded to said cup, said staple being crimped to said strip of insulating material.

5. The device in accordance with claim 4 wherein each said strip comprises a first layer to which said staple is crimped and a second layer sealingly covering said first layer and the legs of said staple, said second layer being remote from said electrode means, said lead means extending through said first and second layers for making electrical contact with said staple.

6. The device in accordance with claim 5 wherein said lead means are encapsulated in an electrically insulating material that is inert to body fluids and tissues, said encapsulating means extending through at least said layer that is remote from said electrode means.

7. The device in accordance with claim 6 further including sealing means positioned about said encapsulating material in the area at which said encapsulating material passes through said remote layer.

8. The device in accordance with claim 1 wherein said electrode means are rectangular in shape.

9. The device in accordance with claim 8 wherein said electrode means are oriented with the longer dimension thereof at an angle with respect to the length dimension of said strips.

10. The device inaccordance with claim 1 wherein said strips are molded with the end sections thereof in a common plane and the'central portion thereof interto the length dimension thereof.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US1588182 *6 Aug 19258 Jun 1926Gibson Timothy TElectrical therapeutic device
US1597061 *20 Oct 192424 Aug 1926Cultra James AElectrotherapeutic appliance
US2047308 *5 May 193414 Jul 1936T M Chapman S Sons CoElectrical therapeutic pad
US2943628 *27 Feb 19575 Jul 1960Howell William LElectrode assembly
US3067749 *27 Feb 196111 Dec 1962Walters Max LElectrode limb clamps
US3244174 *31 Jan 19645 Apr 1966Gen ElectricBody implantable conductor
US3279468 *14 May 196318 Oct 1966Vine Sidney LeElectrotherapeutic facial mask apparatus
US3295515 *5 Nov 19633 Jan 1967Beckman Instruments IncElectrode assembly
US3543761 *5 Oct 19671 Dec 1970Univ MinnesotaBladder stimulating method
US3650276 *25 Mar 196921 Mar 1972Inst Demedicina Si FarmacieMethod and apparatus, including a flexible electrode, for the electric neurostimulation of the neurogenic bladder
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3822708 *7 Dec 19729 Jul 1974Clinical Technology CorpElectrical spinal cord stimulating device and method for management of pain
US4026300 *14 Mar 197531 May 1977Liberty MutualMethod and apparatus for interfacing to nerves
US4341221 *7 Oct 198027 Jul 1982Medtronic, Inc.Shielded recording electrode system
US4516584 *7 Jan 198314 May 1985Cordis CorporationFor use with a pacing lead body
US4602624 *11 Oct 198429 Jul 1986Case Western Reserve UniversityImplantable cuff, method of manufacture, and method of installation
US4608985 *11 Oct 19842 Sep 1986Case Western Reserve UniversityAntidromic pulse generating wave form for collision blocking
US4628942 *11 Oct 198416 Dec 1986Case Western Reserve UniversityAsymmetric shielded two electrode cuff
US4649936 *11 Oct 198417 Mar 1987Case Western Reserve UniversityAsymmetric single electrode cuff for generation of unidirectionally propagating action potentials for collision blocking
US4735208 *9 Jan 19875 Apr 1988Ad-Tech Medical Instrument Corp.Subdural strip electrode for determining epileptogenic foci
US5095905 *7 Jun 199017 Mar 1992Medtronic, Inc.Implantable neural electrode
US5143067 *7 Jun 19901 Sep 1992Medtronic, Inc.Tool for implantable neural electrode
US5282468 *8 Jan 19921 Feb 1994Medtronic, Inc.Implantable neural electrode
US5344438 *16 Apr 19936 Sep 1994Medtronic, Inc.Cuff electrode
US5501703 *24 Jan 199426 Mar 1996Medtronic, Inc.Multichannel apparatus for epidural spinal cord stimulator
US5643330 *12 Feb 19961 Jul 1997Medtronic, Inc.Multichannel apparatus for epidural spinal cord stimulation
US5741319 *27 Jan 199521 Apr 1998Medtronic, Inc.For stimulating body tissue
US5775331 *7 Jun 19957 Jul 1998Uromed CorporationApparatus and method for locating a nerve
US5897583 *13 Jul 199527 Apr 1999Fraunhofer Gesellschaft Zur Forderung Der Angewandten Forschung E.V.Flexible artificial nerve plates
US5919220 *8 Sep 19956 Jul 1999Fraunhofer Gesellschaft Zur Foerderung Der Angewandten Forschung E.V.Cuff electrode
US6175769 *14 Jun 199916 Jan 2001Electro Core Technologies, LlcSpinal cord electrode assembly having laterally extending portions
US6836685 *10 Jan 200028 Dec 2004William R. FitzNerve stimulation method and apparatus for pain relief
US6970746 *26 Jan 200129 Nov 2005Intelligent Implants GmbhMicrocontact structure for neuroprostheses for implantation on nerve tissue and method therefor
US751596828 Apr 20067 Apr 2009Medtronic, Inc.Assembly method for spinal cord stimulation lead
US761700628 Apr 200610 Nov 2009Medtronic, Inc.Medical electrical lead for spinal cord stimulation
US773896621 Aug 200615 Jun 2010Medtronic, Inc.Features for routing conductors in medical electrical lead electrode assemblies
US774282421 Aug 200622 Jun 2010Medtronic, Inc.Medical electrode mounting
US776501121 Aug 200627 Jul 2010Medtronic, Inc.Assembly methods for medical electrical leads
US811688212 Feb 200914 Feb 2012Angeltear Solutions Inc.Adjustable tissue or nerve cuff and method of use
US82046079 Jun 200619 Jun 2012Medtronic, Inc.Implantable medical lead
US832643419 May 20104 Dec 2012Medtronic, Inc.Medical electrode mounting
US832643916 Apr 20084 Dec 2012Nevro CorporationTreatment devices with delivery-activated inflatable members, and associated systems and methods for treating the spinal cord and other tissues
US84891691 Jul 201016 Jul 2013Medtronic, Inc.Assembly methods for medical electrical leads
US860051822 Apr 20093 Dec 2013Boston Scientific Neuromodulation CorporationElectrodes for stimulation leads and methods of manufacture and use
US862045630 Nov 200931 Dec 2013Amitabh GoelAssembly for pain suppressing electrical stimulation of a patient's spinal cord
US863489319 May 201021 Jan 2014Medtronic, Inc.Features for routing conductors in medical electrical lead electrode assemblies
US867634525 Oct 201318 Mar 2014Boston Scientific Neuromodulation CorporationElectrodes for stimulation leads and methods of manufacture and use
US86941262 Nov 20098 Apr 2014Medtronic, IncMedical electrical lead for spinal cord stimulation
US871255215 Nov 201229 Apr 2014Nevro CorporationTreatment devices with deliver-activated inflatable members, and associated systems and methods for treating the spinal cord and other tissues
US8731676 *18 May 201220 May 2014Neuros Medical, Inc.High-frequency electrical nerve block
US8774940 *7 Mar 20138 Jul 2014Advanced Neuromodulation Systems, Inc.Paddle lead body with insertion tab
US20120296389 *18 May 201222 Nov 2012Neuros Medical, Inc.High-frequency electrical nerve block
US20130238076 *7 Mar 201312 Sep 2013Advanced Neuromodulation Systems, Inc. D/B/A St. Jude Medical Neuromodulation DivisionPaddle lead body with insertion tab
EP0723788A1 *19 Jan 199631 Jul 1996Medtronic, Inc.Biocompatible medical lead
EP1353725A2 *23 Jan 200222 Oct 2003Biocontrol Medical BCM Ltd.Method and apparatus for selective control of nerve fibers
WO1991017791A1 *21 May 199128 Nov 1991Souriau & CieAnnular neural electrode
WO1996002298A1 *13 Jul 19951 Feb 1996Fraunhofer Ges ForschungFlexible artificial nerve plate
WO1996008290A1 *8 Sep 199521 Mar 1996Fraunhofer Ges ForschungCuff electrode
WO1996039932A1 *31 May 199619 Dec 1996Uromed CorpApparatus and method for locating a nerve
WO2006133445A2 *9 Jun 200614 Dec 2006Medtronic IncImplantable medical lead
WO2008024524A1 *23 Jan 200728 Feb 2008Medtronic IncNovel assembly methods for medical electrical leads
WO2008024525A1 *23 Jan 200728 Feb 2008Medtronic IncNovel medical electrode mounting
WO2008024526A1 *23 Jan 200728 Feb 2008Medtronic IncNovel features for routing conductors in medical electrical lead electrode assemblies
Classifications
U.S. Classification607/117
International ClassificationA61N1/05
Cooperative ClassificationA61N1/0553
European ClassificationA61N1/05L2