US3720856A - Binary material field emitter structure - Google Patents

Binary material field emitter structure Download PDF

Info

Publication number
US3720856A
US3720856A US00059178A US3720856DA US3720856A US 3720856 A US3720856 A US 3720856A US 00059178 A US00059178 A US 00059178A US 3720856D A US3720856D A US 3720856DA US 3720856 A US3720856 A US 3720856A
Authority
US
United States
Prior art keywords
filaments
field emitter
emitter structure
matrix
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00059178A
Inventor
T Brody
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CBS Corp
Original Assignee
Westinghouse Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Westinghouse Electric Corp filed Critical Westinghouse Electric Corp
Application granted granted Critical
Publication of US3720856A publication Critical patent/US3720856A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/30Cold cathodes, e.g. field-emissive cathode
    • H01J1/304Field-emissive cathodes

Definitions

  • ABSTRACT A field emitter structure comprises a body of a binary eutectic alloy wherein thin filaments of the minor component of the alloy are embedded in, and a plurality of the thin filaments project above, a surface of a matrix enriched by the major component of the alloy thereby providing a highly effective and inexpensive non-thermionic source of electrons for a variety of vacuum and other applications.
  • the sandwich type structure of a cathode tends to show a progressive deterioration in performance as a result of non-reversible changes in the exit metal layer.
  • Field emitter structures consisting of a single emitter point or a small number of emitter points have a very limited emission capability. Consequently, a demand for an inexpensive, extended area non-thermionic source of electrons exists.
  • H. E. Cline in his paper Multineedle Field Emission from the Ni-W Eutectic," Journal of Applied Physics, volume 41, No. 1, January 1970, described a method of making a multineedle field emitter structure from an alloy of nickel and tungsten of essentially eutectic composition. H. E. Cline does not teach any specific geometrical structural orientation of the multineedle field emitter and is restricted to the nickel-tungsten binary eutectic alloys.
  • Field emitter structures consisting of a single or a small number of eutectic points have a limited emission capability.
  • a field emitter structure comprising a body having a surface and comprising a material consisting essentially of a lamellar microstructure of an ordered structure of thin filaments of the minor component of said lamellar microstructure being substantially perpendicular to the surface and embedded in a matrix of the major component of the material.
  • the matrix comprises a cermet or a binary eutectic alloy of chromium copper, or alloys of tungsten, molybdenum or tantalum with silicon.
  • a plurality of the thin filaments project out of the body above the surface to a predetermined height and are oriented within i20 of the vertical axis of the body.
  • FIG. 1 is a greatly enlarged top plan view of a field emitter structure made in accordance with the teachings of this invention
  • FIG. 2 is a greatly enlarged elevation, partly in crosssection, of the field emitter structure of FIG. 1 taking on the cutting plane Il-II;
  • FIG. 3 is a fragmentary magnified view of a single etched filament.
  • FIGS. 1 and 2 there is shown a field emitter structure, or cathode, 10 suitable for use as a non-thermionic source of electrons.
  • the structure 10 comprises a body 12 comprising a binary eutectic alloy or a cermet having a fibrous, or lamellar, microstructure wherein a dense ordered structure of thin filaments 14 comprising the minor component of the alloy or the cermet is embedded in and projects above the surface 18 of a matrix 16 enriched by the major component of the alloy or the major component of the cermet respectively.
  • suitable binary eutectic alloys for comprising the body 12 are copper-chromium, tungsten-silicon, molybdenum-silicon, and tantalum-silicon.
  • An example of a suitable cermet is uranium dioxide-tungsten.
  • the alloy composition by weight percent may vary about 1 percent from the eutectic composition but a preferred range is :54; weight percent from the eutectic composition.
  • the tungsten may comprise from 5 to 15 weight percent of the uranium dioxide-tungsten cermet.
  • the thin fila ments 14 extend from the face surface 18 to the rear surface 20.
  • the body 12 is made by cooling a molten mass of binary eutectic alloy or a cermet material at a predetermined rate from one end to the other to cause progressive solidification in order to produce the fibrous, or lamellar, microstructure wherein the thin filaments 14 are substantially parallel to the vertical axis of the resulting ingot, for example, within i20 of the vertical axis.
  • a molten mass of binary eutectic alloy or a cermet material at a predetermined rate from one end to the other to cause progressive solidification in order to produce the fibrous, or lamellar, microstructure wherein the thin filaments 14 are substantially parallel to the vertical axis of the resulting ingot, for example, within i20 of the vertical axis.
  • a transverse section is removed from the ingot and a first major top surface 18 of any desired shape is prepared by polishing.
  • the top surface 18, if substantially flat, is within i20 of being perpendicular to the filaments l4 and preferably is substantially perpendicular to the ordered orientation of filaments 14.
  • a second major rear surface 20 is also prepared by a polishing technique and may be flat and substantially parallel to the surface 18 or it may be prepared to a predetermined curvature.
  • a plurality of the thin filaments 14 must extend entirely through the body 12 when the material is a cer-' met.
  • the thin filament 14 need not extend entirely through the body 12 since the matrix 16 will be electrically conductive.
  • etching of the top surface 18 removes substantially only the matrix 16 from about the filaments 14, leaving the filaments projecting out of the surface 18 as shown in FIG. 2.
  • many of the etched filaments have blunt ends although others appear to taper to a point with about one-tenth the diameter of the average filament.
  • the prepared body 12 at this point is suitable for use as a highly effective field emission structure 10.
  • the efficiency of the structure may be further increased by selectively etching the tips of the exposed filaments 14 to produce filaments 22 having a tip radius R as shown in FIG. 3.
  • the field emission of the tips of the filaments 22 increases approximately inversely with the tip radius, while the emission goes up exponentially with the field.
  • Filaments 22 having a tip radius R of from 3000A to 4000A are suitable for use in partial vacuum of the order of l to 50 cm. of Hg, while those filaments 22 having a tip radius R of from 100A to 200A are suitable for use in air or gas at atmospheric pressure. If the material comprising the body 12 is prepared properly extremely small diameter filaments result so that little or no selective etching is required for shaping the tips of such very thin filaments. Even in this instance, however, the structure 10 is not as an efficient emitter as that prepared by selectively etching all the filaments. In any event, the structure 10 does provide an economical and effective nonthermionic source of electrons.
  • the exposed height, h, of the filaments 10 should be a minimum of at least 10 to 15 microns in order to assure a good source of electron emission. If the filaments 14 are spaced closer together they mutually shield each other thereby decreasing the efficiency of the field emitter structure 10. Therefore, it has been determined that the distance, d, in microns between any two adjacent filaments 14 should be at least of the order of 4 VH2 where h is in microns and R is the top radius in angstroms.
  • a close to optimum structure 10 has been determined as being one where the filaments 14 extend approximately 100 microns in height above the top surface 18 and are spaced apart from each other a distance given by the above expression, namely 40m
  • the body 12 comprises a chromium copper alloy wherein chromium is from 9% percent to 2 percent by weight of the alloy, which upon melting and controlled progressive longitudinal solidification forms five filaments of chromium.
  • a suitable etchant for selectively etching the copper matrix 16 from about the chromium filaments 14 is nitric acid.
  • an ingot of a copper-chromium eutectic alloy containing 1.5 weight percent chromium was cast, rolled, and swaged into a 0.2 inch diameter rod.
  • the alloy contained approximately 200 parts per million of impurities.
  • the swaged rod was encapsulated in a high purity, 99.9 percent, alumina tube and regrown in a vertical Bridgman furnace at a rate of h inch per hour.
  • the molten metal in the furnace was at 1200" C and there was a temperature gradient of the order of 150 C per inch at the interface of the newly regrown rod and the initial swaged rod.
  • the vertical regrowth of the rod caused a lamellar structure characterized by a fine, uniform distribution of chromium whiskers, or filaments 14, axially oriented in substantially the direction of the rod axis.
  • the grown rod was cut perpendicular to its axis to produce a substrate wafer about l/l6 inch in thickness.
  • the opposed major surfaces of the substrate wafer were polished and one surface was exposed to a 50 percent solution of nitric acid for 20 seconds to selectively etch the copper rich matrix 16 away from the chromium filaments 14.
  • the result of this selective etching was to produce filaments l4 protruding about 0.1 millimeter from a surface 18.
  • the filaments 14 were not further etched.
  • the structure 10 was mounted in a holder comprising an electrically insulating material, polytetrafluoroethylene with an electrical contact was affixed to the rear surface 20, and the assembled components placed in a high vacuum system for emission studies.
  • the separation between the emitting surface, that is, the plane of the tips of the filaments 14, and a plain stainless steel anode was arranged so that it could be varied and could be measured to :1 mil.
  • a polished flat stainless steel wafer was mounted in the test fixture to act as a cathode with a space of 10 mils. between the anode and cathode, and 10 KV was applied to the anode. No observable emission was noted under a high vacuum. It was determined that leakage currents, if they existed, were less than 1 X 10' amps and therefore were neglected. The emission currents were measured with an electrometer.
  • the structure 10 as processed was electrically connected to a linear motion feed-through of a UHV system, the stainless steel anode being disposed near and parallel to the structure 10, and the system evacuated to about 10 Torr and voltage applied between the emitter structure 10 and the anode.
  • the resulting emission current was measured with the electrometer as a function of accelerating voltage and plate separation. Test results obtained were as follows:
  • the cathode, or field emitter structure, and the anode of up to and including 56 of an inch.
  • Emission currents as high as 250 microamperes are obtainable with the field emitter structure described heretofore. These currents have been maintained for days without degradation.
  • Field emitter structures embodying the chromiumcopper binary eutectic alloy compositions have been found to resist deterioration after exposure to air and yielded the same emission currents upon retesting in the high vacuum system as were obtained during previous testing in the same high-vacuum system.
  • a cermet such, for example, as uranium dioxide-tungsten
  • electrical contact is made to the bottom ends of the filaments 14 by plating the bottom surface 20 with a layer 24 of an electrically conductive metal such as copper.
  • the layer 24 provides a means of applying an electrical potential to the filaments 14 which extend through the entire body 12. Since the ordered structure of filament growth provides substantially all filaments grown the complete length of the ingot, very few, if any, of the filaments 14 will not be connected electrically by the layer 24.
  • the layer 24 is not needed for the binary eutectic alloy materials since the matrix 16 of such alloys comprises an electrically conductive material.
  • a field emitter structure comprising a body having a surface and comprising a material consisting essentially of a lamellar microstructure of an ordered structure of thin filaments of the minor component of said lamellar microstructure substantially perpendicular to the surface and embedded in a matrix of the major component of said material;
  • said material comprising said body being a binary eutectic alloy of copperchromium wherein the major component chromium varies from the eutectic alloy composition by up to :1 weight percent.

Abstract

A field emitter structure comprises a body of a binary eutectic alloy wherein thin filaments of the minor component of the alloy are embedded in, and a plurality of the thin filaments project above, a surface of a matrix enriched by the major component of the alloy thereby providing a highly effective and inexpensive non-thermionic source of electrons for a variety of vacuum and other applications.

Description

United States Patent n 1 Brody 1March 13, 1973 BINARY MATERIAL FIELD EMITTER STRUCTURE Thomas P. Brody, Pittsburgh, Pa.
Westinghouse Electric Corporation, Pittsburgh, Pa.
July 29, 1970 Inventor:
Assignee:
Filed:
Appl. N0.:
US. Cl. ..313/309, 313/336, 313/351 Int. Cl. ..II0lj l/02 Field of Search ..313/309, 336, 351
References Cited UNITED STATES PATENTS 7/1966 Shroff 7/1969 Shoulders et al. ..3l3/35l X 9/1969 Arthur et a1 ..313/309 X 9/1970 Frankland ..313/351 X OTHER PUBLICATIONS Dranova et a1., High-current Pulsed Field-Emission Cathode, Chem. Abstracts, Vol. 70, June 30, 1969 No. ll9308s.
Dudley et al., Rare Earth Oxide Cermet Cathodes,"
Chem. Abstracts, Vol.58, 1963, No. 6295g.
Cline, Multineedle Field Emission from the Ni-W Eutectic, Journal of Applied Physics, Vol. 41, No. 1, Jan. 1970, pp. 76-81. Gifford et al., Thermionic Emitters Consisting of BaQ-UO Dispersed in a Tungsten Matrix, Journal of Appl. Physics, Vol. 38, No. 5, April 1967, pp. 2261-2268.
Garber, R. 1.; High Current Field-Emission Cathode, Translation from Priboryi Tekhnika Eksperimenta, No. 1, pp. 196-198, February 1969.
Primary ExaminerDavid Schonberg Assistant Examiner-Paul R. Miller Attorney-Fr Shapoe and C. L. Menzemer [57] ABSTRACT A field emitter structure comprises a body of a binary eutectic alloy wherein thin filaments of the minor component of the alloy are embedded in, and a plurality of the thin filaments project above, a surface of a matrix enriched by the major component of the alloy thereby providing a highly effective and inexpensive non-thermionic source of electrons for a variety of vacuum and other applications.
5 Claims, 3 Drawing Figures PATENTEDMARIB 1975 3,720,856
I4 22 li ll |H|H i '6 5/ l2 s WITNESSES: INVENTOR OSWMRQ'QCh' I Thbmos P. Brody gwaihwfii BY WWW ATTORNEY BINARY MATERIAL FIELD EMITTER STRUCTURE BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to non-thermionic electron sources, and in particular, to a field emitter structure suitable for use as a non-thermionic source of electrons for a variety of vacuum and non-vacuum applications.
2. Description of the Prior Art The provision of non-thermionic (cold) electron sources for a variety of scientific and commercial applications is highly desirable. Heretofore one field emission cathode was produced by spot welding 40 tungsten wires to form a comb structure. Later, multiple-needle field emission cathodes were produced by growing molybdenum whiskers on a substrate. Other prior art endeavors have been centered on thin film sandwich techniques and related field emitter structures which have been extensively investigated. However, such structures are difficult to fabricate, sensitive during operation and relatively fragile. In particular, the sensitivity of such structures allows for easy destruction by localized hot spots during normal operation. Additionally, the sandwich type structure of a cathode tends to show a progressive deterioration in performance as a result of non-reversible changes in the exit metal layer. Field emitter structures consisting of a single emitter point or a small number of emitter points have a very limited emission capability. Consequently, a demand for an inexpensive, extended area non-thermionic source of electrons exists.
More recently, H. E. Cline in his paper Multineedle Field Emission from the Ni-W Eutectic," Journal of Applied Physics, volume 41, No. 1, January 1970, described a method of making a multineedle field emitter structure from an alloy of nickel and tungsten of essentially eutectic composition. H. E. Cline does not teach any specific geometrical structural orientation of the multineedle field emitter and is restricted to the nickel-tungsten binary eutectic alloys.
Field emitter structures consisting of a single or a small number of eutectic points have a limited emission capability. A demand for an inexpensive, extended area non-thermionic source of electrons exists.
SUMMARY OF THE INVENTION In accordance with the teachings of this invention, there is provided a field emitter structure comprising a body having a surface and comprising a material consisting essentially of a lamellar microstructure of an ordered structure of thin filaments of the minor component of said lamellar microstructure being substantially perpendicular to the surface and embedded in a matrix of the major component of the material. The matrix comprises a cermet or a binary eutectic alloy of chromium copper, or alloys of tungsten, molybdenum or tantalum with silicon. A plurality of the thin filaments project out of the body above the surface to a predetermined height and are oriented within i20 of the vertical axis of the body.
DRAWINGS FIG. 1 is a greatly enlarged top plan view of a field emitter structure made in accordance with the teachings of this invention;
FIG. 2 is a greatly enlarged elevation, partly in crosssection, of the field emitter structure of FIG. 1 taking on the cutting plane Il-II; and
FIG. 3 is a fragmentary magnified view of a single etched filament.
DESCRIPTION OF THE INVENTION With reference to FIGS. 1 and 2, there is shown a field emitter structure, or cathode, 10 suitable for use as a non-thermionic source of electrons. The structure 10 comprises a body 12 comprising a binary eutectic alloy or a cermet having a fibrous, or lamellar, microstructure wherein a dense ordered structure of thin filaments 14 comprising the minor component of the alloy or the cermet is embedded in and projects above the surface 18 of a matrix 16 enriched by the major component of the alloy or the major component of the cermet respectively. Examples of suitable binary eutectic alloys for comprising the body 12 are copper-chromium, tungsten-silicon, molybdenum-silicon, and tantalum-silicon. An example of a suitable cermet is uranium dioxide-tungsten. The alloy composition by weight percent may vary about 1 percent from the eutectic composition but a preferred range is :54; weight percent from the eutectic composition. The tungsten may comprise from 5 to 15 weight percent of the uranium dioxide-tungsten cermet. In the cermets the thin fila ments 14 extend from the face surface 18 to the rear surface 20.
The body 12 is made by cooling a molten mass of binary eutectic alloy or a cermet material at a predetermined rate from one end to the other to cause progressive solidification in order to produce the fibrous, or lamellar, microstructure wherein the thin filaments 14 are substantially parallel to the vertical axis of the resulting ingot, for example, within i20 of the vertical axis. By controlling the composition of the alloy or cermet, as well as the cooling rate and impurity content, one is able to control the number, distribution and diameter of the thin filaments 14. Control of the composition and the cooling rate to do this is within the competence of one skilled in the art. After the alloy or cermet has been preferentially solidified by slow cooling to form an ingot of rod-like shape, a transverse section is removed from the ingot and a first major top surface 18 of any desired shape is prepared by polishing. The top surface 18, if substantially flat, is within i20 of being perpendicular to the filaments l4 and preferably is substantially perpendicular to the ordered orientation of filaments 14. A second major rear surface 20 is also prepared by a polishing technique and may be flat and substantially parallel to the surface 18 or it may be prepared to a predetermined curvature.
A plurality of the thin filaments 14 must extend entirely through the body 12 when the material is a cer-' met. When the body 12 comprises a binary eutectic alloy, the thin filament 14 need not extend entirely through the body 12 since the matrix 16 will be electrically conductive.
After initial preparation of the body 12, selective etching of the top surface 18 removes substantially only the matrix 16 from about the filaments 14, leaving the filaments projecting out of the surface 18 as shown in FIG. 2. As prepared, many of the etched filaments have blunt ends although others appear to taper to a point with about one-tenth the diameter of the average filament. The prepared body 12 at this point is suitable for use as a highly effective field emission structure 10. However, the efficiency of the structure may be further increased by selectively etching the tips of the exposed filaments 14 to produce filaments 22 having a tip radius R as shown in FIG. 3. The field emission of the tips of the filaments 22 increases approximately inversely with the tip radius, while the emission goes up exponentially with the field. Filaments 22 having a tip radius R of from 3000A to 4000A are suitable for use in partial vacuum of the order of l to 50 cm. of Hg, while those filaments 22 having a tip radius R of from 100A to 200A are suitable for use in air or gas at atmospheric pressure. If the material comprising the body 12 is prepared properly extremely small diameter filaments result so that little or no selective etching is required for shaping the tips of such very thin filaments. Even in this instance, however, the structure 10 is not as an efficient emitter as that prepared by selectively etching all the filaments. In any event, the structure 10 does provide an economical and effective nonthermionic source of electrons.
The exposed height, h, of the filaments 10 should be a minimum of at least 10 to 15 microns in order to assure a good source of electron emission. If the filaments 14 are spaced closer together they mutually shield each other thereby decreasing the efficiency of the field emitter structure 10. Therefore, it has been determined that the distance, d, in microns between any two adjacent filaments 14 should be at least of the order of 4 VH2 where h is in microns and R is the top radius in angstroms. A close to optimum structure 10 has been determined as being one where the filaments 14 extend approximately 100 microns in height above the top surface 18 and are spaced apart from each other a distance given by the above expression, namely 40m In order to more fully describe this invention, particular reference will be made to a structure 10 wherein the body 12 comprises a chromium copper alloy wherein chromium is from 9% percent to 2 percent by weight of the alloy, which upon melting and controlled progressive longitudinal solidification forms five filaments of chromium. A suitable etchant for selectively etching the copper matrix 16 from about the chromium filaments 14 is nitric acid.
More particularly, an ingot of a copper-chromium eutectic alloy containing 1.5 weight percent chromium was cast, rolled, and swaged into a 0.2 inch diameter rod. The alloy contained approximately 200 parts per million of impurities. The swaged rod was encapsulated in a high purity, 99.9 percent, alumina tube and regrown in a vertical Bridgman furnace at a rate of h inch per hour. The molten metal in the furnace was at 1200" C and there was a temperature gradient of the order of 150 C per inch at the interface of the newly regrown rod and the initial swaged rod. The vertical regrowth of the rod caused a lamellar structure characterized by a fine, uniform distribution of chromium whiskers, or filaments 14, axially oriented in substantially the direction of the rod axis.
The grown rod was cut perpendicular to its axis to produce a substrate wafer about l/l6 inch in thickness. The opposed major surfaces of the substrate wafer were polished and one surface was exposed to a 50 percent solution of nitric acid for 20 seconds to selectively etch the copper rich matrix 16 away from the chromium filaments 14. The result of this selective etching was to produce filaments l4 protruding about 0.1 millimeter from a surface 18. The filaments 14 were not further etched. The structure 10 was mounted in a holder comprising an electrically insulating material, polytetrafluoroethylene with an electrical contact was affixed to the rear surface 20, and the assembled components placed in a high vacuum system for emission studies. The separation between the emitting surface, that is, the plane of the tips of the filaments 14, and a plain stainless steel anode was arranged so that it could be varied and could be measured to :1 mil.
Prior to testing the structure 10, a polished flat stainless steel wafer was mounted in the test fixture to act as a cathode with a space of 10 mils. between the anode and cathode, and 10 KV was applied to the anode. No observable emission was noted under a high vacuum. It was determined that leakage currents, if they existed, were less than 1 X 10' amps and therefore were neglected. The emission currents were measured with an electrometer.
In the high vacuum system, the structure 10 as processed, was electrically connected to a linear motion feed-through of a UHV system, the stainless steel anode being disposed near and parallel to the structure 10, and the system evacuated to about 10 Torr and voltage applied between the emitter structure 10 and the anode. The resulting emission current was measured with the electrometer as a function of accelerating voltage and plate separation. Test results obtained were as follows:
TABLE I CONSTANT VOLTAGE OF 500 VOLTS APPLIED Separation between anode and cathode mils) Emission Current (p. A)
The results as shown in Table 1 indicate that emission currents are not greatly affected by the separation distance between cathode and anode.
TABLE II CONSTANT SEPARATION BETWEEN CATHOD E AND ANODE 10 MILS Voltage (volts) Emission Current (p. A)
the cathode, or field emitter structure, and the anode of up to and including 56 of an inch.
As a control, a polished stainless steel plug of the same geometry as the field emitter structure was inserted in the test apparatus in place of the field emitter structure. No emission was detected at any setting previously used, and no leakage currents were observable at an ammeter setting of ampere, which was full scale deflection. Therefore, any emission current, if there be any at all, was necessarily below 10-" ampere.
Emission currents as high as 250 microamperes are obtainable with the field emitter structure described heretofore. These currents have been maintained for days without degradation.
Field emitter structures embodying the chromiumcopper binary eutectic alloy compositions have been found to resist deterioration after exposure to air and yielded the same emission currents upon retesting in the high vacuum system as were obtained during previous testing in the same high-vacuum system.
When a cermet such, for example, as uranium dioxide-tungsten comprises the body 12, electrical contact is made to the bottom ends of the filaments 14 by plating the bottom surface 20 with a layer 24 of an electrically conductive metal such as copper. The layer 24 provides a means of applying an electrical potential to the filaments 14 which extend through the entire body 12. Since the ordered structure of filament growth provides substantially all filaments grown the complete length of the ingot, very few, if any, of the filaments 14 will not be connected electrically by the layer 24. The layer 24 is not needed for the binary eutectic alloy materials since the matrix 16 of such alloys comprises an electrically conductive material.
I claim as my invention:
1. A field emitter structure comprising a body having a surface and comprising a material consisting essentially of a lamellar microstructure of an ordered structure of thin filaments of the minor component of said lamellar microstructure substantially perpendicular to the surface and embedded in a matrix of the major component of said material;
a plurality of the thin filaments projecting out of said body matrix a predetermined height above said surface, the thin filaments being within i20 of the vertical axis of said body, said material comprising said body being a binary eutectic alloy of copperchromium wherein the major component chromium varies from the eutectic alloy composition by up to :1 weight percent.
2. The field emitter structure of claim 1 wherein said filaments are spaced apart from each other at least of the order of 4 mmicrons where h is the height in microns that the filament projects above the surface of the matrix, and R is the radius in angstroms of the tip of the filament.
3. The field emitter structure of claim 2 wherein said filaments project above said one of the two opposed surfaces at least 10 microns.
4. The field emitter structure of claim 3 wherein R is at least about A.
5. The field emitter structure of claim 2 wherein said filaments are spaced 100 microns apart from each other and each of the filaments projects 100 microns above said surface.

Claims (4)

1. A field emitter structure comprising a body having a surface and comprising a material consisting essentially of a lamellar microstructure of an ordered structure of thin filaments of the minor component of said lamellar microstructure substantially perpendicular to the surface and embedded in a matrix of the major component of said material; a plurality of the thin filaments projecting out of said body matrix a predetermined height above said surface, the thin filaments being within + or - 20* of the vertical axis of said body, said material comprising said body being a binary eutectic alloy of copper-chromium wherein the major component chromium varies from the eutectic alloy composition by up to + or - 1 weight percent.
2. The field emitter structure of claim 1 wherein said filaments are spaced apart from each other at least of the order of 4 Square Root hR microns where h is the height in microns that the filament projects above the surface of the matrix, and R is the radius in angstroms of the tip of the filament.
3. The field emitter structure of claim 2 wherein said filaments project above said one of the two opposed surfaces at least 10 microns.
4. The field emitter structure of claim 3 wherein R is at least about 100A.
US00059178A 1970-07-29 1970-07-29 Binary material field emitter structure Expired - Lifetime US3720856A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US5917870A 1970-07-29 1970-07-29

Publications (1)

Publication Number Publication Date
US3720856A true US3720856A (en) 1973-03-13

Family

ID=22021315

Family Applications (1)

Application Number Title Priority Date Filing Date
US00059178A Expired - Lifetime US3720856A (en) 1970-07-29 1970-07-29 Binary material field emitter structure

Country Status (2)

Country Link
US (1) US3720856A (en)
CA (1) CA938991A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4069171A (en) * 1976-11-12 1978-01-17 United Technologies Corporation Metallic fibrous skeletal catalysts and process for producing them
US4086264A (en) * 1976-11-12 1978-04-25 United Technologies Corporation Self supported skeletal metal catalysts and process for producing them
FR2370356A1 (en) * 1976-11-04 1978-06-02 Emi Varian Ltd IMPROVEMENTS TO ELECTRON TRANSMITTERS
US4110612A (en) * 1977-04-27 1978-08-29 General Electric Company Mass spectrometer desorption device including field anode eutectic alloy wire and auxiliary electrical resistance heating means
US4344104A (en) * 1979-10-10 1982-08-10 Oce-Nederland B.V. Corona device
US4477324A (en) * 1981-11-13 1984-10-16 General Electric Company Making metal eutectic fine wire arrays
US4498925A (en) * 1983-12-05 1985-02-12 General Electric Company Method for producing eutectics as thin films using an arc lamp, as a heat source in a line heater
US4498926A (en) * 1981-03-20 1985-02-12 General Electric Company Method for producing eutectics as thin films using a laser device as a heat source
US4498924A (en) * 1981-03-20 1985-02-12 General Electric Company Method for producing eutectics as thin films using a line heater
US4498923A (en) * 1981-03-20 1985-02-12 General Electric Company Method for producing eutectics as thin films using a quartz lamp as a heat source in a line heater
WO1985005491A1 (en) * 1984-05-11 1985-12-05 Sri International Flat panel display utilizing linear array of field emission cathodes
EP0351110A1 (en) * 1988-07-13 1990-01-17 THORN EMI plc Method of manifacturing a cold cathode, field emission device and a field emission device manufactured by the method
US5138220A (en) * 1990-12-05 1992-08-11 Science Applications International Corporation Field emission cathode of bio-molecular or semiconductor-metal eutectic composite microstructures
WO1993001610A1 (en) * 1991-07-11 1993-01-21 Gte Laboratories Incorporated Semiconductor metal composite field emission cathodes
US5495143A (en) * 1993-08-12 1996-02-27 Science Applications International Corporation Gas discharge device having a field emitter array with microscopic emitter elements
US5903092A (en) * 1994-05-18 1999-05-11 Kabushiki Kaisha Toshiba Device for emitting electrons
US5999153A (en) * 1996-03-22 1999-12-07 Lind; John Thomas Soft proofing display
DE19931328A1 (en) * 1999-07-01 2001-01-11 Codixx Ag Flat electron field emission source and method for its production
US20070229942A1 (en) * 2006-03-17 2007-10-04 Canon Kabushiki Kaisha Method of producing mold having uneven structure, mold for optical element, and optical element
US20080303405A1 (en) * 2007-06-08 2008-12-11 Tatung Company Electrode for the source of field emitting electrons and a panel and a lighting apparatus thereof
CN101295461B (en) * 2007-04-28 2010-09-22 东元电机股份有限公司 Cathode driving method of field transmitting display equipment and structure thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3259782A (en) * 1961-11-08 1966-07-05 Csf Electron-emissive structure
US3453478A (en) * 1966-05-31 1969-07-01 Stanford Research Inst Needle-type electron source
US3466485A (en) * 1967-09-21 1969-09-09 Bell Telephone Labor Inc Cold cathode emitter having a mosaic of closely spaced needles
US3531675A (en) * 1967-02-28 1970-09-29 Tektronix Inc Cathode ray storage tube having a target dielectric with collector electrodes extending therethrough

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3259782A (en) * 1961-11-08 1966-07-05 Csf Electron-emissive structure
US3453478A (en) * 1966-05-31 1969-07-01 Stanford Research Inst Needle-type electron source
US3531675A (en) * 1967-02-28 1970-09-29 Tektronix Inc Cathode ray storage tube having a target dielectric with collector electrodes extending therethrough
US3466485A (en) * 1967-09-21 1969-09-09 Bell Telephone Labor Inc Cold cathode emitter having a mosaic of closely spaced needles

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Cline, Multineedle Field Emission from the Ni W Eutectic, Journal of Applied Physics, Vol. 41, No. 1, Jan. 1970, pp. 76 81. *
Dranova et al., High current Pulsed Field Emission Cathode, Chem. Abstracts, Vol. 70, June 30, 1969 No. 119308s. *
Dudley et al., Rare Earth Oxide Cermet Cathodes, Chem. Abstracts, Vol. 58, 1963, No. 6295g. *
Garber, R. I.; High Current Field Emission Cathode, Translation from Priboryi Tekhnika Eksperimenta, No. 1, pp. 196 198, February 1969. *
Gifford et al., Thermionic Emitters Consisting of BaQ UO Dispersed in a Tungsten Matrix, Journal of Appl. Physics, Vol. 38, No. 5, April 1967, pp. 2261 2268. *

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2370356A1 (en) * 1976-11-04 1978-06-02 Emi Varian Ltd IMPROVEMENTS TO ELECTRON TRANSMITTERS
US4069171A (en) * 1976-11-12 1978-01-17 United Technologies Corporation Metallic fibrous skeletal catalysts and process for producing them
US4086264A (en) * 1976-11-12 1978-04-25 United Technologies Corporation Self supported skeletal metal catalysts and process for producing them
US4110612A (en) * 1977-04-27 1978-08-29 General Electric Company Mass spectrometer desorption device including field anode eutectic alloy wire and auxiliary electrical resistance heating means
US4344104A (en) * 1979-10-10 1982-08-10 Oce-Nederland B.V. Corona device
US4498926A (en) * 1981-03-20 1985-02-12 General Electric Company Method for producing eutectics as thin films using a laser device as a heat source
US4498924A (en) * 1981-03-20 1985-02-12 General Electric Company Method for producing eutectics as thin films using a line heater
US4498923A (en) * 1981-03-20 1985-02-12 General Electric Company Method for producing eutectics as thin films using a quartz lamp as a heat source in a line heater
US4477324A (en) * 1981-11-13 1984-10-16 General Electric Company Making metal eutectic fine wire arrays
US4498925A (en) * 1983-12-05 1985-02-12 General Electric Company Method for producing eutectics as thin films using an arc lamp, as a heat source in a line heater
WO1985005491A1 (en) * 1984-05-11 1985-12-05 Sri International Flat panel display utilizing linear array of field emission cathodes
EP0351110A1 (en) * 1988-07-13 1990-01-17 THORN EMI plc Method of manifacturing a cold cathode, field emission device and a field emission device manufactured by the method
US5138220A (en) * 1990-12-05 1992-08-11 Science Applications International Corporation Field emission cathode of bio-molecular or semiconductor-metal eutectic composite microstructures
WO1993001610A1 (en) * 1991-07-11 1993-01-21 Gte Laboratories Incorporated Semiconductor metal composite field emission cathodes
US5211707A (en) * 1991-07-11 1993-05-18 Gte Laboratories Incorporated Semiconductor metal composite field emission cathodes
US5495143A (en) * 1993-08-12 1996-02-27 Science Applications International Corporation Gas discharge device having a field emitter array with microscopic emitter elements
US5903092A (en) * 1994-05-18 1999-05-11 Kabushiki Kaisha Toshiba Device for emitting electrons
US5999153A (en) * 1996-03-22 1999-12-07 Lind; John Thomas Soft proofing display
US6069601A (en) * 1996-03-22 2000-05-30 R.R. Donnelley & Sons Company Soft proofing display
DE19931328A1 (en) * 1999-07-01 2001-01-11 Codixx Ag Flat electron field emission source and method for its production
US20070229942A1 (en) * 2006-03-17 2007-10-04 Canon Kabushiki Kaisha Method of producing mold having uneven structure, mold for optical element, and optical element
US8133538B2 (en) * 2006-03-17 2012-03-13 Canon Kabushiki Kaisha Method of producing mold having uneven structure
CN101295461B (en) * 2007-04-28 2010-09-22 东元电机股份有限公司 Cathode driving method of field transmitting display equipment and structure thereof
US20080303405A1 (en) * 2007-06-08 2008-12-11 Tatung Company Electrode for the source of field emitting electrons and a panel and a lighting apparatus thereof
US7692371B2 (en) * 2007-06-08 2010-04-06 Tatung Company Electrode for the source of field emitting electrons and a panel and a lighting apparatus thereof

Also Published As

Publication number Publication date
CA938991A (en) 1973-12-25

Similar Documents

Publication Publication Date Title
US3720856A (en) Binary material field emitter structure
US4272699A (en) Electron impact ion source with field emission cathode
US4008412A (en) Thin-film field-emission electron source and a method for manufacturing the same
US3631291A (en) Field emission cathode with metallic boride coating
US3466485A (en) Cold cathode emitter having a mosaic of closely spaced needles
US5170422A (en) Electron emitter for an x-ray tube
US5211707A (en) Semiconductor metal composite field emission cathodes
Schmidt et al. Design and optimization of directly heated LaB6 cathode assemblies for electron‐beam instruments
Iannazzo A survey of the present status of vacuum microelectronics
US4054946A (en) Electron source of a single crystal of lanthanum hexaboride emitting surface of (110) crystal plane
US5969467A (en) Field emission cathode and cleaning method therefor
US2916668A (en) Heat stabilized field emission electron sources
Cline Multineedle Field Emission from the Ni–W Eutectic
US4030963A (en) Arc-melting preparation of single crystal LaB6 cathodes
US3462635A (en) Holder for highly reactive cathodes of rare-earth borides such as lanthanum hexaboride,the holder provided with a cooling means opposite to the emissive end of the cathode in order to reduce tendency of holder deterioration
Shimizu et al. LaB6 single‐crystal tips as an electron source of high brightness
US4200555A (en) Low work function hexaboride electron source
Goebel et al. Large area lanthanum molybdenum electron emitters
US3495120A (en) Microheating elements,more particularly for cathodes of electron tubes
Treloar et al. Secondary-electron emission from nickel, cobalt and iron as a function of temperature
Kirkpatrick et al. Vacuum field emission from a Si‐TaSi2 semiconductor‐metal eutectic composite
GB2190786A (en) Liquid metal field emission electron source
US3727093A (en) Electron beam apparatus
US3783327A (en) Filamentary cathode mount and mounting method
US4110612A (en) Mass spectrometer desorption device including field anode eutectic alloy wire and auxiliary electrical resistance heating means