US3720817A - Automated radiation therapy machine - Google Patents

Automated radiation therapy machine Download PDF

Info

Publication number
US3720817A
US3720817A US00093327A US3720817DA US3720817A US 3720817 A US3720817 A US 3720817A US 00093327 A US00093327 A US 00093327A US 3720817D A US3720817D A US 3720817DA US 3720817 A US3720817 A US 3720817A
Authority
US
United States
Prior art keywords
couch
support
collision
locus
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00093327A
Inventor
K Dinwiddie
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JARIAN ASS
Original Assignee
JARIAN ASS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JARIAN ASS filed Critical JARIAN ASS
Application granted granted Critical
Publication of US3720817A publication Critical patent/US3720817A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4476Constructional features of apparatus for radiation diagnosis related to motor-assisted motion of the source unit
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/10Application or adaptation of safety means
    • A61B6/102Protection against mechanical damage, e.g. anti-collision devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4429Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units
    • A61B6/4435Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit and the detector unit being coupled by a rigid structure
    • A61B6/4441Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit and the detector unit being coupled by a rigid structure the rigid structure being a C-arm or U-arm
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/01Devices for producing movement of radiation source during therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/188Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by special applications and not provided for in the relevant subclasses, (e.g. making dies, filament winding)
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K5/00Irradiation devices
    • G21K5/10Irradiation devices with provision for relative movement of beam source and object to be irradiated
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/26Measuring, controlling or protecting
    • H05G1/30Controlling
    • H05G1/38Exposure time
    • H05G1/42Exposure time using arrangements for switching when a predetermined dose of radiation has been applied, e.g. in which the switching instant is determined by measuring the electrical energy supplied to the tube
    • H05G1/44Exposure time using arrangements for switching when a predetermined dose of radiation has been applied, e.g. in which the switching instant is determined by measuring the electrical energy supplied to the tube in which the switching instant is determined by measuring the amount of radiation directly
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N2005/1074Details of the control system, e.g. user interfaces

Definitions

  • ABSTRACT A computer assisted radiation therapy machine is disclosed The machine includes a rotatable gantry having a radiation source portion and a beam stopping portion.
  • the gantry is rotatable about a patient treatment couch which is rectilinearly translatable in three orthogonal directions as well as being rotatable about the vertical axis.
  • a computer controls the operations of the machine to automatically set the position of the gantry relative to the couch for treatment of a patient.
  • the automated motions of the gantry and'the couch are simultaneous for decreasing the setup time.
  • the computer includes a collision avoidance program which averts collision between the couch or patient, and the gantry.
  • COUCH ANTRYANGOLE RAILCORNER (em T0 CALCULATION (2.2.2) MOTOR CONIROL BEAM STOPPER VS.FLOATABLE EDGE CALCULATION A STOP ALL BEAM STOPPER MOTORS CALCULATION ,MPOSS'BL IS YES IS NO IS LLISION ARC FLAG oucunac OSSQIBL SET 250M YES 0 N0 N0 IS A YES URNTABL o ANTRYANG TO (6.11) NGLE5
  • the cards were fed into a card reader, the output of the card reader being fed to control circuits, for sequentially controlling the motions of the gantry and couch for positioning the gantry relative to the couch to achieve a setup of the machine prior to radiation therapy.
  • the cards were read sequentially and the setup motions of the gantry and couch were obtained sequentially.
  • the problem with the prior art automated radiation treatment machine was that the setup was obtained sequentially such that before motion of one element could be started the setup of another element must be completed. For example, rotation of the gantry had to be completed before rotation of the couch to the desired position. It is desired to reduce the setup time of the radiation therapy machine even more such that a greater number of patients can be treated for a given amount of machine time.
  • the principal object of the present invention is the provision of an improved automated radiation therapy machine.
  • One feature of the present invention is the provision of simultaneous setup motions of the gantry and treatment couch such that the setup time for the machine can be greatly reduced.
  • the couch and gantry are translatable over paths which interfere and the simultaneous motions of the gantry and the couch are monitored to determine and to give an output determinative of an impending collision between the couch and gantry.
  • means are provided for sensing an impending collision between the gantry and couch and the machine is controlled in such a way as to avert the impending collision while causing the gantry and couch to move to the desired setup positions.
  • FIG. 1 is a schematic diagram, partly in block diagram form, of an automated radiation therapy machine incorporating features of the present invention
  • FIG. 2 is a schematic circuit diagram for deriving signals determinative of the position of the respective movable parts of the machine
  • FIG. 3 is a program flow chart for a computer which controls the setup and avoids collision between the gantry and couch portions of the radiation therapy machine of the present invention
  • FIG. 4 is a view similar to that portion of FIG. 1 delineated by line 4-4 showingdimensions, and
  • FIG. 5 is a sectional view of the structure of FIG. 4 taken along line 5-5 in the directionof the arrows.
  • the radiation machine such as a CLINAC IV made by Varian Associates, includes a couch 2 having a table portion 3 which receives the patient to be treated.
  • the couch is rotatable about a vertical axis 4 by means of a turntable 5 to which the couch 2 is affixed.
  • the couch includes an elevator portion 6 for translating the couch in the vertical direction Z.
  • the couch 2 includes X and Y motorized drivers for translating the table 3 in the X and Y directions.
  • a generally C-shaped gantry 8 is rotatable by 359 about a horizontal axis 9.
  • the gantry 8 is rotatably supported from a stand 11.
  • a source of radiation such as a linear accelerator producing a high energy electron beam which is directed against an X-ray producing target, produces a beam of X-rays emanating from a collimator head portion 12.
  • the X-rays are directed out of the radiating head portion 12 in a beam having an axis 13 which intersects the gantry axis of rotation 9 at a position identified as the isocenter 14 which is also intersected by the turntable axis 4.
  • the head portion 12 includes two sets of movable beam defining jaws which are movable to define the length L, and thickness T of the field of the X-ray beam as collimated by the beam defining jaws.
  • the source 12 is enclosed in a barrel shaped collimator housing 15.
  • the source housing 15, along with the beam defining jaws, are rotatable about the beam axis 13.
  • the gantry 8 includes a beam stopping portion 16 disposed along the beam axis 13 and holding an X-ray absorbing material, such as lead, for stopping and absorbing the X-ray beam.
  • the computer 18 includesla core memory portion 22 interconnected to a central processor 23 which includes the address and arithmetic unit.
  • Sixteen channels of multiplexed analog-to-digital conversion 24 are provided for converting analog output signal derived from the radiation therapy machine 1 to digital form which are in-turn fed into the central processor 23 for use therein and in the memory 22.
  • Eight digital-toanalog converters 25 are provided for converting digital output signals from the central processor 23 into analog signals which in-turn are fed into the radiation therapy machine 1 via the intermediary of the interface 21.
  • Sensor and control lines 26 are provided for sensing and controlling functions of the radiation therapy machine 1 via the interface 21.
  • a machine console 27 is coupled to the radiation therapy machine 1 and to the computer 18 via the machine interface 21.
  • a digital cassette tape unit 28 is coupled via suitable cables to the central processor 23 for reading digital data stored in the patients individual cassette into the central processor 23 and memory 22. In addition, outputs from the processor are recorded back into the patients cassette via the tape unit 28.
  • a cathode ray tube/keyboard terminal 29 is coupled to the central processor 23 via cable 31 for displaying data read from the memory through the central processor and for controlling certain operations of the radiation therapy machine 1 via the computer 18.
  • FIG. 2 there is shown one of the circuits for generating an analog positional signal determinative of the position of one of the variable parameters of the radiation machine 1, such as: gantry angle G, housing angle H, couch position in the X, Y, and Z directions, etc.
  • the positional signal circuit of FIG. 2 includes a potentiometer 33, as of 10 K ohms, attached to the drive shaft 34 which generates the motion of the parameter being controlled, such that a full scale motion of the parameter being varied results in generating a full scale plus 10 volts to minus 10 volt analog output derived from the pick-off 36 of the potentiometer 33.
  • l 5 volts and +15 volts, respectively, are applied to opposite ends of the potentiometer 33 through trimming potentiometers 37 and 38 provided at the ends of the potentiometer 33.
  • the trimming potentiometer provide for calibration of the range and end points for each positional output readout.
  • One turn 0.25 percent linearity, 0.095 percent resolution potentiometers 33 are utilized on the beam collimator jaws, as position indicators.
  • Ten turn 0.1 percent linearity, 0.019 percent resolution potentiometers 33 are provided for each of the other analog positional readouts.
  • Each of the motorized controlled motions of the radiation machine 1 is driven by a shunt-wound dc motor 39 operated by an SCR controller.
  • each controller is open-loop providing full output in response to a 6-volt dc signal, decreasing to output at 0.5 volts dc (120.5 volt dead band).
  • the gantry speed control is closed loop, speed regulated, full speed output in response to a 12 volt dc input, again with volt dead band.
  • the turntable drive is equipped with a brake which is engaged when the input voltage to the motor controller is zero.
  • the couch longitudinal and lateral motions have switch actuated electric clutches engaging their respective drives.
  • Control of each motion of the radiation therapy machine is obtained by direct digital control. Positions of each of the eight analog motions are sampled, by sampling the output of each potentiometer 33, every 50 milliseconds, l0 microseconds required for each sample. Sampling is controlled by the central processor 23 and is effected through the interface 21 to the positional control circuits of FIG. 2 coupled to the drive for each of the driven elements of the radiation therapy machine 1. The motions are sufficiently fast so as to alter their feedback from 0 to full scale in seconds. Assuming a 12-bit plus sign analog-to-digital converter, the analog-to-digital converter output will vary a maximum of one least-significant bit in 3.6 milliseconds, allowing observation of at most four least-significant bit changes at every reading.
  • the core memory 22 has stored therein the permissible ranges of values for the various adjustable parameters of the radiation therapy machine 1. More particularly, the permissible values stored in the memory are as follows: gantry angle, G, 0 to 359; turntable angle,
  • Also stored in the memory of the computer are: a range of permissible radiation dose times of 0 to 9.9 minutes; dose range of 0 to 999 rads; permissible wedge numbers 0 to 7; gantry stop angle, between 1 and 359, for are therapy; and rads per degree for are therapy, between 0.50 and 5.00.
  • the output of the digital cassette tape unit 28 is fed into the central processor 23 and stored in the memory 22.
  • the information transferred from the cassette to the memory of the computer includes the patients identification number, his name, the diagnosis of his condition, the portal definition of eight separate radia-' tion portals, each including an identifying numbers 1-8 and a definition of the quantities, G, S, X, Y, Z, H, L, T, dose, time, dose for each of the defined portals, whether the individual treatment .will involve arc therapy, and if so the start and stop gantry angles G and the rads per degree, and information as to which if any wedge is to be employed and whether blocks are to be employed.
  • information stored in the memory 22 from the patients cassette includes the sequence of how the portal definitions are to be administered, i.e., the treatment plan, the monitored cumulative dose per portal, and the total cumulative does for the patient.
  • the keyboard terminal 29 is actuated for displaying desired information from the memory on the display of the keyboard terminal 29.
  • the central processor 23 causes to be displayed from the memory 22, on the cathode ray tube display of the terminal 29, the next treatment to be given.
  • a certain radiation portal is defined with the desired set points for the quantities of G, S, X, Y, Z, H, L, T, etc.
  • the desired values for the aforementioned quantities, which define the treatment, to be given is displayed the corresponding present position of each setting of the radiation therapy machine 1.
  • the present values are obtained from the outputs of the positional circuits of the type shown in FIG.
  • the central processor 23 Upon depressing the proper command button of the keyboard terminal 29, the central processor 23 causes the positional signals to be monitored and to be compared with the desired position signals to derive error signals which are fed to the controllers for causing the radiation therapy machine 1 to take the positions defined by the treatment plan being executed.
  • each position is read, compared with its desired set point, and voltage applied to its controller in an ascending linear manner to full-scale in order to provide soft" acceleration and eliminate excessive current surge through upstream circuit breakers.
  • the desired starting periods are determinated empirically, suitable values include 500 milliseconds for gantry rotation, 200 milliseconds for couch elevator motion, and milliseconds for all other motions.
  • An anti-collision program is stored in the memory 22 and the central processor 23 continually checks for the possiblity of a collision between the gantry 8 and the couch 2 in a manner more fully disclosed below.
  • Each controller has full voltage applied until either impending collision is detected or the respective movable element approaches its desired set point.
  • the corresponding control voltage is reduced in a linear manner inside a proportional band until the indicated position is inside a tolerance band, typically 0.1 percent of full scale, at which time the control voltage is set to zero.
  • values for proportional and tolerance bands are established empirically.
  • the anti-collision program examines all possible collision modes for the current combination of radiation therapy machine parameters. If safety envelopes around proximate members are invaded, all motions are stopped. The final increment above the actual physical dimensions for defining the safety envelope has been selected at approximately 1 inch.
  • the program causes the four motional prime candidates for collision; namely, gantry rotation, couch rotation, couch lateral displacement, and couch elevation, to be moved briefly, i.e., for 5 seconds, toward their neutral positions. Then this motion is stopped, another attempt is made at the desired set points by causing the various motions to resume tracking toward their desired set points. If this new attempt is unsuccessful, all motion is stopped and the sequence repeats for a certain predetermined number, such as five times. If after five attempts collision is still imminent, all motions are stopped with finality and an error message is displayed on the cathode ray tube of the keyboard terminal 29.
  • FIG. 3 there is shown the simplified flow chart for the collision avoidance program, showing the types of possible collisions, how their probability is determined, and the sequence of calculations made to determine impending collision.
  • a diamond shaped box means a simple decision function
  • a rectangular box means a calculation.
  • the numbers in parenthesis associated with each box is the algorithm employed in the calculation and is found in the table of algorithms below.
  • the flow chart reads from top to bottom and from left to right.
  • the home plate-shaped boxes indicate that the flow diagram continues on another page and the other page is entered at the circular box with the same number employed in the home plate box. If the flow diagram branch terminates with an arrow leading into a circular box with a number, the program continues on that same page above at the position marked with a circular box with the same number and with an arrow entering the box.
  • the inverted trapezoid-shaped box indicates that a message is displayed on the CRT display 29, or printed, conforming to that message marked inside the box.
  • the control algorithm for automation of the radiation therapy machine 1 is designed to provide rapid simultaneous motion of the eight mechanical adjustments of the radiation therapy machine to prescribed set points as provided in the treatment plan stored in the memory. Potential collision is monitored, prevented, avoided if possible, and if otherwise inevitable due to erroneous set points all motions are stopped and an error message is displayed. Each motion is sequentially soft started” in order to avoid overloading the control circuits.
  • the couch is defined to include a patient. It is assumed the patient occupies a volume of space above the table top 45.7 cm wide, 203.2 cm long, 25 cm'high, flat ends, and with curved sides tangent to the side edge of the table top 3 and curving to the upper side of the patient zone with a radius of curvature of 40 cm.
  • control algorithm is divided into four sections: (1) the control logic tree (2) collision testing sub-routines, (3) motion control sub-routine, and (4) collision avoidance sub-routine.
  • Y represents couch lateral translation and R is the radius to the collimator housing from isocenter in millimeters. 10 is the thickness of the couch table top and 229 is half the width of the couch. If collision is impossible, the motion control sub-routine (6.1.1) is called.
  • the motions control subroutine (6.l.l) is called.
  • 61 is the thickness of the rail and table and 213 is half the distance between the outer edges of the rails. (1.4.1) If rail/collimator collision is possible, Z is greater than 242 mm, and G is between and 279, the possibility of collision between the couch rails and the beamstopper is examined:
  • A is a cushion factor of l".
  • 280 is half the elevator width
  • R is the radius of the beam stopper in mm and if S 17;
  • Motion control sub-routine Monitors each of the eight mechanical positions and compares each against its respective setpoint. Each motion is assigned a tolerance band and a proportional control band. For each motion, if the error between the setpoint and measured position exceeds the tolerance band, voltage is applied to direct the motion toward the setpoint. If no control voltage is currently being applied, a timed voltage increase to maximum is applied to provide soft acceleration, thereby reducing peak current to within the limits of the control circuitry. Proximity to each setpoint is continually monitored, and when a motion moves within the proportional control band, control voltage is reduced linearly to zero 7 within the tolerance band.
  • Collision avoidance sub-routine first stops all mechanical motions and resets a counter. For a timed interval, the turntable, gantry and couch X and Z motions are driven toward their respective zero positions. Another attempt is then made to achieve the intended setup. If, after a preset number of trials imminent collision remains indicated, all motions are stopped and an error message displayed.
  • couch means for supporting a patient to receive radiation, radiation source means for directing a beam of radiation onto the patient, rotatable support means for supporting said radiation source, means for rotating said support means in a locus of points about said couch means, means for translating said couch mea'ns relative to the locus of points traversable by said support means, means for establishing signals corresponding to prescribed positions of said support means and said couch means, means for generating positional signals representative of the actual positions of said support means and said couch means, means for comparing the respective prescribed position signals with the respective actual position signals to derive control signals, and means for applying the control signals to said support rotation means and said couch translation means for simultaneously rotating and translating said support and couch means to the desired positions, whereby the setup time to set the prescribed positions of said support means and said couch means is minimized, and wherein said couch means is translatable over a locus of points in interference with the locus of points traversable by said support means such that collisions between said couch means and said support means is possible, means for monitoring simultaneous translation of said
  • the apparatus of claim 1 including, means responsive to the collision determinative output signal for controlling said support rotation means and said couch translation means for averting the collision.
  • control means responsive to the collision signal for averting the collision includes, means for stopping translation of said support and couch means, and means for controlling said support and couch translating means for translating said support and couch means toward predetermined neutral positions for a given time, and means for causing said support and couch means to resume tracking towards the prescribed positions.
  • control means for averting the collision includes, computer means programmed to avert the collision.
  • control means for averting the collision includes; computer means programmed for averting the collision.

Abstract

A computer assisted radiation therapy machine is disclosed The machine includes a rotatable gantry having a radiation source portion and a beam stopping portion. The gantry is rotatable about a patient treatment couch which is rectilinearly translatable in three orthogonal directions as well as being rotatable about the vertical axis. A computer controls the operations of the machine to automatically set the position of the gantry relative to the couch for treatment of a patient. The automated motions of the gantry and the couch are simultaneous for decreasing the setup time. In addition, the computer includes a collision avoidance program which averts collision between the couch or patient, and the gantry.

Description

Unite States atent n 1 Dinwiddie 1March 13, 1973 [75] Inventor: Kendall L. Dinwiddie, Palo Alto,
Calif.
[73] Assignee: Jarian Associates, Palo Alto, Calif.
[22] Filed: Nov. 27, 1970 [2]] Appl. No.1 93,327
UNITED STATES PATENTS Koerner et al ..250/6'l.5 Volk ..235/61.6 H UX FOREIGN PATENTS OR APPLICATIONS OTHER PUBLICATIONS Varian Clinac 4 Installation" by Varian Radiation Div. Palo Alto, Calif., dated RAD l575-2M-669.
Primary Examiner-Eugene G. Botz Att0meyStanley Z. Cole and Leon F. Herbert [57] ABSTRACT A computer assisted radiation therapy machine is disclosed The machine includes a rotatable gantry having a radiation source portion and a beam stopping portion. The gantry is rotatable about a patient treatment couch which is rectilinearly translatable in three orthogonal directions as well as being rotatable about the vertical axis. A computer controls the operations of the machine to automatically set the position of the gantry relative to the couch for treatment of a patient. The automated motions of the gantry and'the couch are simultaneous for decreasing the setup time. In addition, the computer includes a collision avoidance program which averts collision between the couch or patient, and the gantry.
831,597 l/1970 Canada ..250/6l.5 6Claims,5l)rawing Figures PROGRAM 22W CORE MEMORY 28 CENTRAL PROCESSOR ANALOG/DIGITAL CONVERTER ISCHANNELS 25 8DIGITAL/ANALOG KEYBOARD DIGITAL CONVERTERS TERMINAL CASSETTE 2s SENSE a CONTROL TAPE UNIT LINES 27 MACHINE MACHINE INTERFACE PATENTEDMARI 3l975 SHEEIIOFG PROGRAM 22A CORE MEMORY CENTRAL PROCESSOR V ANALOG/DIGITAL CONVERTER IGCHANNELS 8DlGlTAL/ANALOG CRT/KEYBOARD CONVERTERS TERMINAL SENSE & CONTROL LINES 2? MACHINE MACHINE f INTERFACE f2] CONSOLE 1 l6 I L INVENTOK |5v KENDALL L. DINWIDDIE BY 59 I 33 :%E 2 MR W ATTORNEY PATENTEUHARI 31975 3720817 SHEET 3 OF 6 BEAM SATOPPER VS. COUCH ANTRYANGOLE RAILCORNER (em T0 CALCULATION (2.2.2) MOTOR CONIROL BEAM STOPPER VS.FLOATABLE EDGE CALCULATION A STOP ALL BEAM STOPPER MOTORS CALCULATION ,MPOSS'BL IS YES IS NO IS LLISION ARC FLAG oucunac OSSQIBL SET 250M YES 0 N0 N0 IS A YES URNTABL o ANTRYANG TO (6.11) NGLE5| OQZ? MOTOR 5 YES/- CONTROL YES UAW CVOSLLg AEQ R COLLygATOR L (2.4.l)\. BOTTOM A PATIENT ANTR YA|iG CALCULATION LQALCULATION YES 5 YES BEAM STOPPER BEAM STOPPER ANTRYANG To (242%, V3. 244) V8. COUCH o PATlENT LE BOTTOM \l6 0T R CALCULATION CALCULATION oNALoL IS ANTRYANG YES 6sq sl7 0 N0 INVENTOR.
KENDALL LDINWIDDIE V A BY PAGEZ 5A1?- W ATTORNEY Pmminum 3191a F|G.3 FACES BEAMSTOPPER CALCULATION COUCH RAIL VS SHEET U OF 6 ANTRY ANCL PATIENT LBEAM STOPPER VS. PATIENT LCULATION V .ELEVATOR 8 SIDE BEAM STOPPER CALCULATION VS. ELEVATOR END BEAM STOPPER COLLISION I NVENTOR.
ATTORNEY PATENTEOHARI 3197a 3,720,817 SHEET 5 OF 6 YES FIG 3 T0 MOTOR PAGE 4 ANT R GL CONTROL N0 (6.l.l)
GANTRY CORNER VS. ELEVATOR OANTRY CORNER VS. ELEVATOR END CALCULATION l OLLNSIO POSglBL CONTROL (6.l.|
COLLIMATOR (4 2 I) CALCULATION T0 MOTOR CONTROL (6. H)
INVENTOR.
KENDALL L. DINWIDDIE BY 5m: W ATTORNEY PATENTEUHAR 1 31915 SHEET 6 SF 6 mvzzwoa KENDALL LDINWIDDIE ATTORNEY AUTOMATED RADIATION THERAPY MACHINE DESCRIPTION OF THE PRIOR ART Heretofore, the geometrical setup of a radiation therapy machine has been automated for decreasing the setup time and improving the accuracy of the setup for a radiation therapy treatment. In the prior machine, the desired positional information of the machine for treatment of a patient was punched into cards, a deck of cards representing each geometrical setup for the gantry and couch. The cards were fed into a card reader, the output of the card reader being fed to control circuits, for sequentially controlling the motions of the gantry and couch for positioning the gantry relative to the couch to achieve a setup of the machine prior to radiation therapy. The cards were read sequentially and the setup motions of the gantry and couch were obtained sequentially.
The problem with the prior art automated radiation treatment machine was that the setup was obtained sequentially such that before motion of one element could be started the setup of another element must be completed. For example, rotation of the gantry had to be completed before rotation of the couch to the desired position. It is desired to reduce the setup time of the radiation therapy machine even more such that a greater number of patients can be treated for a given amount of machine time.
SUMMARY OF THE PRESENT INVENTION The principal object of the present invention is the provision of an improved automated radiation therapy machine.
One feature of the present invention is the provision of simultaneous setup motions of the gantry and treatment couch such that the setup time for the machine can be greatly reduced.
In another feature of the present invention, the couch and gantry are translatable over paths which interfere and the simultaneous motions of the gantry and the couch are monitored to determine and to give an output determinative of an impending collision between the couch and gantry.
In another feature of the present invention, means are provided for sensing an impending collision between the gantry and couch and the machine is controlled in such a way as to avert the impending collision while causing the gantry and couch to move to the desired setup positions.
Other features and advantages of the present invention will become apparent upon a perusal of the following specification taken in connection with the accompanying drawings wherein:
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram, partly in block diagram form, of an automated radiation therapy machine incorporating features of the present invention,
FIG. 2 is a schematic circuit diagram for deriving signals determinative of the position of the respective movable parts of the machine,
FIG. 3 is a program flow chart for a computer which controls the setup and avoids collision between the gantry and couch portions of the radiation therapy machine of the present invention,
FIG. 4 is a view similar to that portion of FIG. 1 delineated by line 4-4 showingdimensions, and
FIG. 5 is a sectional view of the structure of FIG. 4 taken along line 5-5 in the directionof the arrows.
DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring now to FIG. 1, there is shown a computer controlled radiation therapy machine incorporating features of the present invention. The radiation machine, such as a CLINAC IV made by Varian Associates, includes a couch 2 having a table portion 3 which receives the patient to be treated. The couch is rotatable about a vertical axis 4 by means of a turntable 5 to which the couch 2 is affixed. The couch includes an elevator portion 6 for translating the couch in the vertical direction Z. In addition, the couch 2 includes X and Y motorized drivers for translating the table 3 in the X and Y directions.
A generally C-shaped gantry 8 is rotatable by 359 about a horizontal axis 9. The gantry 8 is rotatably supported from a stand 11. A source of radiation, such as a linear accelerator producing a high energy electron beam which is directed against an X-ray producing target, produces a beam of X-rays emanating from a collimator head portion 12. The X-rays are directed out of the radiating head portion 12 in a beam having an axis 13 which intersects the gantry axis of rotation 9 at a position identified as the isocenter 14 which is also intersected by the turntable axis 4. The head portion 12 includes two sets of movable beam defining jaws which are movable to define the length L, and thickness T of the field of the X-ray beam as collimated by the beam defining jaws. The source 12 is enclosed in a barrel shaped collimator housing 15. The source housing 15, along with the beam defining jaws, are rotatable about the beam axis 13. The gantry 8 includes a beam stopping portion 16 disposed along the beam axis 13 and holding an X-ray absorbing material, such as lead, for stopping and absorbing the X-ray beam.
A digital computer 18, such as a Varian Data Machines model 620/i general purpose digital computer, is coupled to the radiation therapy machine 1 via the intermediary of a control cable 19 and an interface 21. The computer 18 includesla core memory portion 22 interconnected to a central processor 23 which includes the address and arithmetic unit. Sixteen channels of multiplexed analog-to-digital conversion 24 are provided for converting analog output signal derived from the radiation therapy machine 1 to digital form which are in-turn fed into the central processor 23 for use therein and in the memory 22. Eight digital-toanalog converters 25 are provided for converting digital output signals from the central processor 23 into analog signals which in-turn are fed into the radiation therapy machine 1 via the intermediary of the interface 21. Sensor and control lines 26 are provided for sensing and controlling functions of the radiation therapy machine 1 via the interface 21. A machine console 27 is coupled to the radiation therapy machine 1 and to the computer 18 via the machine interface 21.
A digital cassette tape unit 28 is coupled via suitable cables to the central processor 23 for reading digital data stored in the patients individual cassette into the central processor 23 and memory 22. In addition, outputs from the processor are recorded back into the patients cassette via the tape unit 28. A cathode ray tube/keyboard terminal 29 is coupled to the central processor 23 via cable 31 for displaying data read from the memory through the central processor and for controlling certain operations of the radiation therapy machine 1 via the computer 18.
Referring now to FIG. 2, there is shown one of the circuits for generating an analog positional signal determinative of the position of one of the variable parameters of the radiation machine 1, such as: gantry angle G, housing angle H, couch position in the X, Y, and Z directions, etc. The positional signal circuit of FIG. 2 includes a potentiometer 33, as of 10 K ohms, attached to the drive shaft 34 which generates the motion of the parameter being controlled, such that a full scale motion of the parameter being varied results in generating a full scale plus 10 volts to minus 10 volt analog output derived from the pick-off 36 of the potentiometer 33.
l 5 volts and +15 volts, respectively, are applied to opposite ends of the potentiometer 33 through trimming potentiometers 37 and 38 provided at the ends of the potentiometer 33. The trimming potentiometer provide for calibration of the range and end points for each positional output readout. One turn 0.25 percent linearity, 0.095 percent resolution potentiometers 33 are utilized on the beam collimator jaws, as position indicators. Ten turn 0.1 percent linearity, 0.019 percent resolution potentiometers 33 are provided for each of the other analog positional readouts.
Each of the motorized controlled motions of the radiation machine 1 is driven by a shunt-wound dc motor 39 operated by an SCR controller. With exception of the gantry rotation controller, each controller is open-loop providing full output in response to a 6-volt dc signal, decreasing to output at 0.5 volts dc (120.5 volt dead band). The gantry speed control is closed loop, speed regulated, full speed output in response to a 12 volt dc input, again with volt dead band. The turntable drive is equipped with a brake which is engaged when the input voltage to the motor controller is zero. The couch longitudinal and lateral motions have switch actuated electric clutches engaging their respective drives.
Control of each motion of the radiation therapy machine is obtained by direct digital control. Positions of each of the eight analog motions are sampled, by sampling the output of each potentiometer 33, every 50 milliseconds, l0 microseconds required for each sample. Sampling is controlled by the central processor 23 and is effected through the interface 21 to the positional control circuits of FIG. 2 coupled to the drive for each of the driven elements of the radiation therapy machine 1. The motions are sufficiently fast so as to alter their feedback from 0 to full scale in seconds. Assuming a 12-bit plus sign analog-to-digital converter, the analog-to-digital converter output will vary a maximum of one least-significant bit in 3.6 milliseconds, allowing observation of at most four least-significant bit changes at every reading.
The core memory 22 has stored therein the permissible ranges of values for the various adjustable parameters of the radiation therapy machine 1. More particularly, the permissible values stored in the memory are as follows: gantry angle, G, 0 to 359; turntable angle,
S, to +90; couch X direction travel, X, -856 to +544 millimeters; couch Z direction travel, Z, 20 millimeters to +560 millimeters; radiation head angle, H, 90 to +90; X-ray beam field length, L, at 80 centimeters from the source, 0 to +320 millimeters; beam radiation field width, T, at 80 centimeters from the source, 0 to +320 millimeters. Also stored in the memory of the computer are: a range of permissible radiation dose times of 0 to 9.9 minutes; dose range of 0 to 999 rads; permissible wedge numbers 0 to 7; gantry stop angle, between 1 and 359, for are therapy; and rads per degree for are therapy, between 0.50 and 5.00.
The output of the digital cassette tape unit 28 is fed into the central processor 23 and stored in the memory 22. The information transferred from the cassette to the memory of the computer includes the patients identification number, his name, the diagnosis of his condition, the portal definition of eight separate radia-' tion portals, each including an identifying numbers 1-8 and a definition of the quantities, G, S, X, Y, Z, H, L, T, dose, time, dose for each of the defined portals, whether the individual treatment .will involve arc therapy, and if so the start and stop gantry angles G and the rads per degree, and information as to which if any wedge is to be employed and whether blocks are to be employed. In addition, information stored in the memory 22 from the patients cassette, includes the sequence of how the portal definitions are to be administered, i.e., the treatment plan, the monitored cumulative dose per portal, and the total cumulative does for the patient.
Once this information has been stored in the computer 18, the keyboard terminal 29 is actuated for displaying desired information from the memory on the display of the keyboard terminal 29. On a proper command from the keyboard terminal, the central processor 23, causes to be displayed from the memory 22, on the cathode ray tube display of the terminal 29, the next treatment to be given. For example a certain radiation portal is defined with the desired set points for the quantities of G, S, X, Y, Z, H, L, T, etc. Opposite the desired values for the aforementioned quantities, which define the treatment, to be given, is displayed the corresponding present position of each setting of the radiation therapy machine 1. The present values are obtained from the outputs of the positional circuits of the type shown in FIG. 2 as converted to digital form via the analog-to-digital converters 24, and as fed to the display tube of the keyboard terminal 29 from the central processor 23. Upon depressing the proper command button of the keyboard terminal 29, the central processor 23 causes the positional signals to be monitored and to be compared with the desired position signals to derive error signals which are fed to the controllers for causing the radiation therapy machine 1 to take the positions defined by the treatment plan being executed.
When starting, each position is read, compared with its desired set point, and voltage applied to its controller in an ascending linear manner to full-scale in order to provide soft" acceleration and eliminate excessive current surge through upstream circuit breakers. The desired starting periods are determinated empirically, suitable values include 500 milliseconds for gantry rotation, 200 milliseconds for couch elevator motion, and milliseconds for all other motions.
An anti-collision program is stored in the memory 22 and the central processor 23 continually checks for the possiblity of a collision between the gantry 8 and the couch 2 in a manner more fully disclosed below. Each controller has full voltage applied until either impending collision is detected or the respective movable element approaches its desired set point. As each desired set point is reached, the corresponding control voltage is reduced in a linear manner inside a proportional band until the indicated position is inside a tolerance band, typically 0.1 percent of full scale, at which time the control voltage is set to zero. Once again, values for proportional and tolerance bands are established empirically. When each motion has been brought to a stop at its respective set point, control returns to the displayinput-output routines.
The anti-collision program examines all possible collision modes for the current combination of radiation therapy machine parameters. If safety envelopes around proximate members are invaded, all motions are stopped. The final increment above the actual physical dimensions for defining the safety envelope has been selected at approximately 1 inch. When imminent collision is detected and motions stopped, the program causes the four motional prime candidates for collision; namely, gantry rotation, couch rotation, couch lateral displacement, and couch elevation, to be moved briefly, i.e., for 5 seconds, toward their neutral positions. Then this motion is stopped, another attempt is made at the desired set points by causing the various motions to resume tracking toward their desired set points. If this new attempt is unsuccessful, all motion is stopped and the sequence repeats for a certain predetermined number, such as five times. If after five attempts collision is still imminent, all motions are stopped with finality and an error message is displayed on the cathode ray tube of the keyboard terminal 29.
Referring now to FIG. 3 and the four sheets of drawings included as a part thereof, there is shown the simplified flow chart for the collision avoidance program, showing the types of possible collisions, how their probability is determined, and the sequence of calculations made to determine impending collision.
In the program flow chart conventional nomenclature has been employed for designating the functions. More particularly, a diamond shaped box means a simple decision function, a rectangular box means a calculation. The numbers in parenthesis associated with each box is the algorithm employed in the calculation and is found in the table of algorithms below. The flow chart reads from top to bottom and from left to right. The home plate-shaped boxes indicate that the flow diagram continues on another page and the other page is entered at the circular box with the same number employed in the home plate box. If the flow diagram branch terminates with an arrow leading into a circular box with a number, the program continues on that same page above at the position marked with a circular box with the same number and with an arrow entering the box. The inverted trapezoid-shaped box indicates that a message is displayed on the CRT display 29, or printed, conforming to that message marked inside the box.
The control algorithm for automation of the radiation therapy machine 1 is designed to provide rapid simultaneous motion of the eight mechanical adjustments of the radiation therapy machine to prescribed set points as provided in the treatment plan stored in the memory. Potential collision is monitored, prevented, avoided if possible, and if otherwise inevitable due to erroneous set points all motions are stopped and an error message is displayed. Each motion is sequentially soft started" in order to avoid overloading the control circuits.
For the purposes of the anti-collision program the couch is defined to include a patient. It is assumed the patient occupies a volume of space above the table top 45.7 cm wide, 203.2 cm long, 25 cm'high, flat ends, and with curved sides tangent to the side edge of the table top 3 and curving to the upper side of the patient zone with a radius of curvature of 40 cm.
The control algorithm is divided into four sections: (1) the control logic tree (2) collision testing sub-routines, (3) motion control sub-routine, and (4) collision avoidance sub-routine.
TABLE OF ALGORITHMS (Dimensionless numbers are in millimeters) (1.1.1) The main branch in the logic occurs based on whether the patient couch is aligned with the gantry axis (angle S 36). if so, and couch height (Z) is less than or equal to 84 mm, the most likely collision is between the collimator housing and the edge of the couch top which can occur if:
where Y represents couch lateral translation and R is the radius to the collimator housing from isocenter in millimeters. 10 is the thickness of the couch table top and 229 is half the width of the couch. If collision is impossible, the motion control sub-routine (6.1.1) is called.
(1.3.1) If S 0 but Z is between 84 and 278 mm,-the most likely collision is between the collimator housing and the edge of a couch rail, possible if:
If collision is not possible, the motions control subroutine (6.l.l) is called. 61 is the thickness of the rail and table and 213 is half the distance between the outer edges of the rails. (1.4.1) If rail/collimator collision is possible, Z is greater than 242 mm, and G is between and 279, the possibility of collision between the couch rails and the beamstopper is examined:
where R is the radius to the beamstopper from isocenter in millimeters. (2.1.2) Couch rail edge and collimator housing:
IYI 213 x |sec 3 254 ltan (s)|] R; (Z+ 61) (2.1.3) Couch top edge and collimator housing:
[Y 213 x Isec (s)| +2s4l tan (s). 1 R:- (Z 10) (2.1.4) Couch rail edge and beamstopper:
lyl +213 x see s +470ltan (s) {1 12, (Z+ 61 (2.1.5) Couch top edge and beamstopper:
(2.1.6) Couch rail corner and collimator housing:
IYI +213 XIcos(s) I +x Isin(s) I 1 R (Z 61) I (2.1.7) Couch top corner and collimator housing:
IYI +229 Icos(s) I +XI sin (s)I R z +10) (2.2.2) Couch rail corner and beam stopper:
[(IYI +213 Icos(s)I+X Isin (s) I 1 R,,(Z +6l (2.2.3) Couch top corner and beam stopper:
(2.3.1) Beam stopper and elevator side:
Itan (s) Icos (A)+ I cos(G) Isin (A) 1 I csc (G) I where:
A ATN Icot (s) I I cos (G) I 1, A is a cushion factor of l"., 280 is half the elevator width, R is the radius of the beam stopper in mm and if S 17; and
R, 1 A Isin G I --R,, 1+A I sin B I 585I sin (s) I 0 where B=ATN[tan (A)I cos (G) I]and A 2 ACS[585 I cos (G) and R,,1(l +A) if 6 s 17 (2.3.2) Beam stopper and elevator end:
R,I csc (s) I 794 I sin (G) I 12,, 1 A [cos (A)I cot (s) I+sin (A) I cos (G) I 0 where A ATN{ Itan (s)I I cos (G)I 1 and R, is the radius from turntable axis to the elevator end, and R is the radius of the farside of the beamstopper from beam axis 13. (2.4.1) If G is between 270 and 90, collimator housing and couch rail:
R Ic0s(G) I -R,, 1 +A I sin (G) I Z+61 where R is the radius of the collimator housing (2.4.2)Beamstopper and patient:
R, 1 +A I sin G I -R,, 1 A)Icos G I z 250 where 250 is the assumed thickness of the patient (2.4.3) If G is between 90 and 270, collimator housing and patient:
R,, 1+A I sin G I+R, 1A I cos(G)I z- 250 (2.4.4) Beamstopper and couch rail:
R,(l-A)Icos(G)I-R,, (1+A)Isin(G)I 2+ 61 (3.2.1) Gantry corner and elevator side:
750 I sin (G) I 407 I cos (G) I Icos (s)I 31s sin (s) I 280 o (3.2.2) Gantry corner and elevator end:
514] sec (s) I. 318[ I cot (s) I 985 I sin (G) I 407 Icos (G) I 0 (4.2.1) Collimator housing and elevator corner: I
Collision imminent if S 36 and G is between 80 and 90 or S 36 and G is between 270 and 280. If this test indicates impending collision and the arc flag is not set, the collision avoidance sub-routine is called. If the arc flag is set and collision is indicated, the program exits with an error message display. If no collision is possible, the motion control sub-routine is called. (5.1.1) Beamstopper vs. float table edge:
IYI +2s0 I sec (s)I +470I tan (s)I R, z 210) (5.1 .2) Beamstopper vs. float table sides:
R, 1 A I tan (s) I cos (.4) I cos (G) I sin (A)I csc (G) I 0 where A =ATNI cot (s)I I cos (s)I (6.1.1) Motion control sub-routine Monitors each of the eight mechanical positions and compares each against its respective setpoint. Each motion is assigned a tolerance band and a proportional control band. For each motion, if the error between the setpoint and measured position exceeds the tolerance band, voltage is applied to direct the motion toward the setpoint. If no control voltage is currently being applied, a timed voltage increase to maximum is applied to provide soft acceleration, thereby reducing peak current to within the limits of the control circuitry. Proximity to each setpoint is continually monitored, and when a motion moves within the proportional control band, control voltage is reduced linearly to zero 7 within the tolerance band.
(7.1.1) Collision avoidance sub-routine first stops all mechanical motions and resets a counter. For a timed interval, the turntable, gantry and couch X and Z motions are driven toward their respective zero positions. Another attempt is then made to achieve the intended setup. If, after a preset number of trials imminent collision remains indicated, all motions are stopped and an error message displayed.
Since many changes could be made in the above construction and many apparently widely different embodiments of this invention could be made without departing from the scope thereof, it is intended that all matter contained in the above description or shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.
What is claimed is:
1. In a radiation apparatus, couch means for supporting a patient to receive radiation, radiation source means for directing a beam of radiation onto the patient, rotatable support means for supporting said radiation source, means for rotating said support means in a locus of points about said couch means, means for translating said couch mea'ns relative to the locus of points traversable by said support means, means for establishing signals corresponding to prescribed positions of said support means and said couch means, means for generating positional signals representative of the actual positions of said support means and said couch means, means for comparing the respective prescribed position signals with the respective actual position signals to derive control signals, and means for applying the control signals to said support rotation means and said couch translation means for simultaneously rotating and translating said support and couch means to the desired positions, whereby the setup time to set the prescribed positions of said support means and said couch means is minimized, and wherein said couch means is translatable over a locus of points in interference with the locus of points traversable by said support means such that collisions between said couch means and said support means is possible, means for monitoring simultaneous translation of said couch and support means, taking into account the prescribed positional signals for said support and couch means, for determining when said support and couch means are on collision courses and producing an output determinative of the collision course.
2. The apparatus of claim 1 including, means responsive to the collision determinative output signal for controlling said support rotation means and said couch translation means for averting the collision.
3. The apparatus of claim 2 wherein said control means responsive to the collision signal for averting the collision includes, means for stopping translation of said support and couch means, and means for controlling said support and couch translating means for translating said support and couch means toward predetermined neutral positions for a given time, and means for causing said support and couch means to resume tracking towards the prescribed positions.
4. The apparatus of claim 5 wherein said control means for averting the collision includes, computer means programmed to avert the collision.
5. The apparatus of claim 3 wherein said control means for averting the collision includes; computer means programmed for averting the collision.
6. The apparatus for claim 1 wherein said means for determining when the said support and couch means are on collision courses includes, computer means prorammed to determine such collision.
UNITED STATES PATENT AND TRADEMARK OFFICE QERTKHCATE 0F CORRECTION PATENT NO. 3, 720, 817
DATED March 13, 1973 INVENTOR(S) I KENDALL L. DINWIDDIE It rs certified that error appears in the ab0ve-identitied patent and that said Letters Patent are hereby corrected as shown below:
Column 10, line 6: change "5" to -2- gigncd and Sealed this fif D3) 0f August1975 [SEAL] Arrest:
RUTN C. MASON Allesling ()jfirer C. MARSHALL DANN ('unmzisxiuncr uj'lan'nls and Trademarks UNITED STATES PATENTOFFICE CERTIFICATE OF CDRRECTION Patent No. 3, 720,817 Dated March 13, 1973 I v KENDALL L. DINWIDDIE s in the above-identified patent It is certified that error appear hown below:
and that said Letters Patent are hereby corrected as s On the Abstract page, on the line reciting the name of the assignee:
Change: "Jarian" to --Va.rian
Signed and sealed this 2nd day of July 1974.
(SEAL) Attest:
EDWARD M.FLETCHER,J R. C. MARSHALL DANN Attesting Officer Commissioner of Patents

Claims (6)

1. In a radiation apparatus, couch means for supporting a patient to receive radiation, radiation source means for directing a beam of radiation onto the patient, rotatable support means for supporting said radiation source, means for rotating said support means in a locus of points about said couch means, means for translating said couch means relative to the locus of points traversable by said support means, means for establishing signals corresponding to prescribed positions of said support means and said couch means, means for generating positional signals representative of the actual positions of said support means and said couch means, means for comparing the respective prescribed position signals with the respective actual position signals to derive control signals, and means for applying the control signals to said support rotation means and said couch translation means for simultaneously rotating and translating said support and couch means to the desired positions, whereby the setup time to set the prescribed positions of said support means and said couch means is minimized, and wherein said couch means is translatable over a locus of points in interference with the locus of points traversable by said support means such that collisions between said couch means and said support means is possible, means for monitoring simultaneous translation of said couch and support means, taking into account the prescribed positional signals for said support and couch means, for determining when said support and couch means are on collision courses and producing an output determinative of the collision course.
1. In a radiation apparatus, couch means for supporting a patient to receive radiation, radiation source means for directing a beam of radiation onto the patient, rotatable support means for supporting said radiation source, means for rotating said support means in a locus of points about said couch means, means for translating said couch means relative to the locus of points traversable by said support means, means for establishing signals corresponding to prescribed positions of said support means and said couch means, means for generating positional signals representative of the actual positions of said support means and said couch means, means for comparing the respective prescribed position signals with the respective actual position signals to derive control signals, and means for applying the control signals to said support rotation means and said couch translation means for simultaneously rotating and translating said support and couch means to the desired positions, whereby the setup time to set the prescribed positions of said support means and said couch means is minimized, and wherein said couch means is translatable over a locus of points in interference with the locus of points traversable by said support means such that collisions between said couch means and said support means is possible, means for monitoring simultaneous translation of said couch and support means, taking into account the prescribed positional signals for said support and couch means, for determining when said support and couch means are on collision courses and producing an output determinative of the collision course.
2. The apparatus of claim 1 including, means responsive to the collision determinative output signal for controlling said support rotation means and said couch translation means for averting the collision.
3. The apparatus of claim 2 wherein said control means responsive to the collision signal for averting the collision includes, means for stopping translation of said support and couch means, and means for controlling said support and couch translating means for translating said support and couch means toward predetermined neutral positions for a given time, and means for causing said support and couch means to resume tracking towards the prescribed positions.
4. The apparatus of claim 5 wherein said control means for averting the collision includes, computer means programmed to avert the collision.
5. The apparatus of claim 3 wherein said control means for averting the collision includes, computer means programmed for averting the collision.
US00093327A 1970-11-27 1970-11-27 Automated radiation therapy machine Expired - Lifetime US3720817A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US9332770A 1970-11-27 1970-11-27

Publications (1)

Publication Number Publication Date
US3720817A true US3720817A (en) 1973-03-13

Family

ID=22238329

Family Applications (1)

Application Number Title Priority Date Filing Date
US00093327A Expired - Lifetime US3720817A (en) 1970-11-27 1970-11-27 Automated radiation therapy machine

Country Status (2)

Country Link
US (1) US3720817A (en)
CA (1) CA932883A (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3906324A (en) * 1972-05-06 1975-09-16 Herbert Ltd A Positional servo system having three phase speed, numerical control
US4702257A (en) * 1985-11-25 1987-10-27 Yokogawa Electric Corporation Operator console for imaging diagnostic apparatus
EP0283082A1 (en) * 1987-03-16 1988-09-21 Koninklijke Philips Electronics N.V. A patient support system for radiotherapy
EP0283083A1 (en) * 1987-03-16 1988-09-21 Koninklijke Philips Electronics N.V. A patient support system for radiotherapy
US4791934A (en) * 1986-08-07 1988-12-20 Picker International, Inc. Computer tomography assisted stereotactic surgery system and method
US4894855A (en) * 1985-10-09 1990-01-16 Siemens Aktiengesellschaft X-ray diagnostics system having suspended position adjustable components
US5078140A (en) * 1986-05-08 1992-01-07 Kwoh Yik S Imaging device - aided robotic stereotaxis system
EP0641545A1 (en) * 1993-09-02 1995-03-08 Sony Corporation Medical inspection system and method for locating position of patients table
WO1996003078A1 (en) * 1994-07-26 1996-02-08 Lunar Corporation Radiographic gantry with software collision avoidance
US5734692A (en) * 1994-03-25 1998-03-31 Kabushiki Kaisha Toshiba Radiotherapy system
WO1999008750A1 (en) * 1997-08-20 1999-02-25 Deutsches Krebsforschungszentrum Stiftung des öffentlichen Rechts Irradiation installation with several radiation sources directed to a central point
US5993373A (en) * 1997-08-08 1999-11-30 Sumitomo Heavy Industries, Ltd. Rotating radiation chamber for radiation therapy
US6527443B1 (en) 1999-04-20 2003-03-04 Brainlab Ag Process and apparatus for image guided treatment with an integration of X-ray detection and navigation system
US6724922B1 (en) 1998-10-22 2004-04-20 Brainlab Ag Verification of positions in camera images
US20050259786A1 (en) * 2002-05-31 2005-11-24 Mario Fantini Machine for intraoperative radiation therapy
US20110249088A1 (en) * 2010-04-13 2011-10-13 Varian Medical Systems, Inc. Systems and methods for monitoring radiation treatment
US20110299919A1 (en) * 2007-10-11 2011-12-08 Stark James M Applying a particle beam to a patient
EP2535086A1 (en) 2011-06-15 2012-12-19 Imris Inc. Integration of MRI into radiation therapy treatment
US20130090547A1 (en) * 2011-10-07 2013-04-11 Siemens Medical Solutions Usa, Inc. Combined Imaging Modalities for Radiation Treatment Planning
US20130151218A1 (en) * 2003-06-25 2013-06-13 Jeremy R. Myles Treatment planning simulation and verification system
US20130261371A1 (en) * 2010-05-03 2013-10-03 University Health Network Imageable activatable agent for radiation therapy and method and system for radiation therapy
US20170086758A1 (en) * 2015-09-29 2017-03-30 General Electric Company Methods and systems for cone-beam computed tomography
WO2017136551A1 (en) * 2016-02-03 2017-08-10 Varian Medical Systems, Inc. System and method for collision avoidance in medical systems
US20170303882A1 (en) * 2014-10-22 2017-10-26 Carestream Health, Inc. Mobile radiographic imaging apparatus
US20180125436A1 (en) * 2016-11-08 2018-05-10 Toshiba Medical Systems Corporation X-ray diagnostic apparatus
US20190099144A1 (en) * 2017-09-29 2019-04-04 Varian Medical Systems, Inc. Projection mapping of radiation suites
US10549116B2 (en) 2015-03-05 2020-02-04 The Regents Of The University Of California Radiotherapy utilizing the entire 4PI solid angle
US20210369216A1 (en) * 2020-05-28 2021-12-02 Our United Corporation Method and device for collision detection of radiotherapy equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2677285A (en) * 1950-11-07 1954-05-04 Siemens Ag Speed control apparatus for machine drives
US3082322A (en) * 1958-11-28 1963-03-19 Westinghouse Electric Corp Therapy unit
CA831597A (en) * 1967-08-10 1970-01-06 W. Tolmie Ronald Automatic positioning apparatus for irradiation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2677285A (en) * 1950-11-07 1954-05-04 Siemens Ag Speed control apparatus for machine drives
US3082322A (en) * 1958-11-28 1963-03-19 Westinghouse Electric Corp Therapy unit
CA831597A (en) * 1967-08-10 1970-01-06 W. Tolmie Ronald Automatic positioning apparatus for irradiation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Varian Clinac 4 Installation by Varian Radiation Div. Palo Alto, Calif., dated RAD 1575 2M 6 69. *

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3906324A (en) * 1972-05-06 1975-09-16 Herbert Ltd A Positional servo system having three phase speed, numerical control
US4894855A (en) * 1985-10-09 1990-01-16 Siemens Aktiengesellschaft X-ray diagnostics system having suspended position adjustable components
US4702257A (en) * 1985-11-25 1987-10-27 Yokogawa Electric Corporation Operator console for imaging diagnostic apparatus
US5078140A (en) * 1986-05-08 1992-01-07 Kwoh Yik S Imaging device - aided robotic stereotaxis system
US4791934A (en) * 1986-08-07 1988-12-20 Picker International, Inc. Computer tomography assisted stereotactic surgery system and method
EP0283082A1 (en) * 1987-03-16 1988-09-21 Koninklijke Philips Electronics N.V. A patient support system for radiotherapy
EP0283083A1 (en) * 1987-03-16 1988-09-21 Koninklijke Philips Electronics N.V. A patient support system for radiotherapy
US5825843A (en) * 1993-09-02 1998-10-20 Sony Corporation Medical inspection system and method for locating position of patient's table
EP0641545A1 (en) * 1993-09-02 1995-03-08 Sony Corporation Medical inspection system and method for locating position of patients table
US5734692A (en) * 1994-03-25 1998-03-31 Kabushiki Kaisha Toshiba Radiotherapy system
WO1996003078A1 (en) * 1994-07-26 1996-02-08 Lunar Corporation Radiographic gantry with software collision avoidance
US5993373A (en) * 1997-08-08 1999-11-30 Sumitomo Heavy Industries, Ltd. Rotating radiation chamber for radiation therapy
WO1999008750A1 (en) * 1997-08-20 1999-02-25 Deutsches Krebsforschungszentrum Stiftung des öffentlichen Rechts Irradiation installation with several radiation sources directed to a central point
US6259762B1 (en) 1997-08-20 2001-07-10 Deutsches Krebsforschungszentrum Stiftung Des Offentlichen Rechts Radiation system with several radiation sources directed to a control point
US6724922B1 (en) 1998-10-22 2004-04-20 Brainlab Ag Verification of positions in camera images
US6527443B1 (en) 1999-04-20 2003-03-04 Brainlab Ag Process and apparatus for image guided treatment with an integration of X-ray detection and navigation system
US20050259786A1 (en) * 2002-05-31 2005-11-24 Mario Fantini Machine for intraoperative radiation therapy
US20100278305A1 (en) * 2002-05-31 2010-11-04 R.A.Lin S.R.L. Machine for intraoperative radiation therapy
US8588368B2 (en) * 2002-05-31 2013-11-19 Sordina S.P.A. Machine for intraoperative radiation therapy
US20130151218A1 (en) * 2003-06-25 2013-06-13 Jeremy R. Myles Treatment planning simulation and verification system
US8681938B2 (en) * 2003-06-25 2014-03-25 Varian Medical Systems, Inc. Treatment planning simulation and verification system
US20110299919A1 (en) * 2007-10-11 2011-12-08 Stark James M Applying a particle beam to a patient
US8941083B2 (en) * 2007-10-11 2015-01-27 Mevion Medical Systems, Inc. Applying a particle beam to a patient
US20110249088A1 (en) * 2010-04-13 2011-10-13 Varian Medical Systems, Inc. Systems and methods for monitoring radiation treatment
US8730314B2 (en) * 2010-04-13 2014-05-20 Varian Medical Systems, Inc. Systems and methods for monitoring radiation treatment
US20130261371A1 (en) * 2010-05-03 2013-10-03 University Health Network Imageable activatable agent for radiation therapy and method and system for radiation therapy
US9138145B2 (en) 2011-06-15 2015-09-22 Imris Inc. Integration of MRI into radiation therapy treatment
EP2535086A1 (en) 2011-06-15 2012-12-19 Imris Inc. Integration of MRI into radiation therapy treatment
US9789337B2 (en) * 2011-10-07 2017-10-17 Siemens Medical Solutions Usa, Inc. Combined imaging modalities for radiation treatment planning
US20130090547A1 (en) * 2011-10-07 2013-04-11 Siemens Medical Solutions Usa, Inc. Combined Imaging Modalities for Radiation Treatment Planning
US20170303882A1 (en) * 2014-10-22 2017-10-26 Carestream Health, Inc. Mobile radiographic imaging apparatus
US10549116B2 (en) 2015-03-05 2020-02-04 The Regents Of The University Of California Radiotherapy utilizing the entire 4PI solid angle
US20170086758A1 (en) * 2015-09-29 2017-03-30 General Electric Company Methods and systems for cone-beam computed tomography
US10299740B2 (en) * 2015-09-29 2019-05-28 General Electric Company Methods and systems for cone-beam computed tomography
US9886534B2 (en) 2016-02-03 2018-02-06 Varian Medical Systems, Inc. System and method for collision avoidance in medical systems
WO2017136551A1 (en) * 2016-02-03 2017-08-10 Varian Medical Systems, Inc. System and method for collision avoidance in medical systems
GB2562944A (en) * 2016-02-03 2018-11-28 Varian Med Sys Inc System and method for collision avoidance in medical systems
GB2562944B (en) * 2016-02-03 2022-08-10 Varian Med Sys Inc System and method for collision avoidance in medical systems
US20180125436A1 (en) * 2016-11-08 2018-05-10 Toshiba Medical Systems Corporation X-ray diagnostic apparatus
US10893840B2 (en) * 2016-11-08 2021-01-19 Canon Medical Systems Corporation X-ray diagnostic apparatus
US10842454B2 (en) * 2017-09-29 2020-11-24 Varian Medical Systems, Inc. Projection mapping of radiation suites
US20200405250A1 (en) * 2017-09-29 2020-12-31 Varian Medical Systems, Inc. Projection mapping of radiation suites
US20190099144A1 (en) * 2017-09-29 2019-04-04 Varian Medical Systems, Inc. Projection mapping of radiation suites
US11872067B2 (en) * 2017-09-29 2024-01-16 Varian Medical Systems, Inc. Projection mapping of radiation suites
US20210369216A1 (en) * 2020-05-28 2021-12-02 Our United Corporation Method and device for collision detection of radiotherapy equipment

Also Published As

Publication number Publication date
CA932883A (en) 1973-08-28

Similar Documents

Publication Publication Date Title
US3720817A (en) Automated radiation therapy machine
US3777124A (en) Computer assisted radiation therapy machine
US5206893A (en) Radiotherapeutic apparatus having three dimensional light marks
US4705955A (en) Radiation therapy for cancer patients
US3783251A (en) Computer assisted radiation therapy machine
US6969194B1 (en) Stable rotatable radiation gantry
US4885998A (en) Patient support system for radiotherapy
EP0562585B1 (en) System for stereotactic radiotherapy with a computerized tomographic scanning system
EP1958663B1 (en) Medical device
CN111265229A (en) Omnidirectional movement type multi-degree-of-freedom double-source X-ray equipment and application thereof
US20050063510A1 (en) Radiotherapy system
US6094760A (en) Bed system for radiation therapy
EP0428348B1 (en) Helical scanning computed tomography
CN106344061A (en) Multi-leaf collimator leaf motion position control device and method and linear accelerator
CA2335071A1 (en) Device and method for controlling a raster scanner in ion-beam therapy
JPH0636807Y2 (en) Calculus crusher
US4652758A (en) Nuclear imaging tomography
JPH0638106B2 (en) Non-circular radial computed tomography method and apparatus
DE60031277T2 (en) MEDICAL DEVICE WITH A COMPOSITION SENSOR
CA2010136A1 (en) Method for reducing skew image artifacts in helical projection imaging
US20140233702A1 (en) Mobile x-ray diagnostic apparatus and method for controlling mobile x-ray diagnostic apparatus
US4943990A (en) Therapy simulator
US4924781A (en) Patient support system for radiotherapy
EP0430506A2 (en) Reducing patient translation artifacts in tomographic imaging
US20220265226A1 (en) An imaging method, a system and a radiotherapy device based on dual-energy cbct