US3647929A - Apparatus for reproducing musical notes from an encoded record - Google Patents

Apparatus for reproducing musical notes from an encoded record Download PDF

Info

Publication number
US3647929A
US3647929A US79045A US3647929DA US3647929A US 3647929 A US3647929 A US 3647929A US 79045 A US79045 A US 79045A US 3647929D A US3647929D A US 3647929DA US 3647929 A US3647929 A US 3647929A
Authority
US
United States
Prior art keywords
signal
fundamentals
representations
musical
recorded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US79045A
Inventor
Karl F Milde Jr
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3647929A publication Critical patent/US3647929A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H1/00Details of electrophonic musical instruments
    • G10H1/0033Recording/reproducing or transmission of music for electrophonic musical instruments
    • G10H1/0041Recording/reproducing or transmission of music for electrophonic musical instruments in coded form
    • G10H1/005Recording/reproducing or transmission of music for electrophonic musical instruments in coded form on magnetic tape

Definitions

  • the reproducing ap- References Cited paratus includes the combination of means for reading the representations of the fundamentals, UNITED STATES PATENTS means for decoding these representations and means for ta (1 od th 2,907,989 /1959 Guerber ..179/100.2 MD gifij gfi fgj represe Hons 6 3,195,389 7/1965 Percy .1 ..84/5 3,377,716 4/1968 Schmoyer ..84/470 X 2 Claims, 5 Drawing Figures f F5567 00M AEJEI a M i???
  • the present invention relates to apparatus for reproducing music from a record medium, such as a magnetic tape or a phonograph disc, which may be read by conventional sound reproducing equipment.
  • the present invention relates to apparatus for reproducing music from a record medium having at least one and no more than eight recording channels or tracks and having recorded on these channels encoded representations of the fundamentals of the individual notes of the music without inclusion of representations of the harmonics of these notes.
  • a record and a method and apparatus for producing such a record, is described in the two related applications referred to above.
  • Music has also been recorded on magnetic and mechanical records in a variety of ways. Most often used is the simple analog recording; the signal that is recorded corresponds in frequency and intensity to the acoustical vibrations of which the music is formed. Music has been recorded on magnetic tape in digital form by converting an analog signal representing the music to a pulse modulated signal before writing it on the tape.
  • both magnetic tape and phonograph recordings have a limited number of available recording channels.
  • Magnetic tape is normally divided into two, four and at most, eight tracks while phonograph discs have a maximum of two channels per spiral groove.
  • phonograph discs have a maximum of two channels per spiral groove.
  • the second system of encoding is referred to as reproducing music from a record medium having recorded, on a maximum of eight recording channels thereon, encoded representations of the fundamentals of the individual notes of the music without inclusion of representations of the harmonies of these notes.
  • This apparatus may comprise a conventional reading device, such as a read head in the case of a magnetic tape recording or a phonograph pickup" in the case of a mechanical recording, for reading the representations of the fundamentals of the musical notes from the record medium; a relatively simple electronic device, the construction of which will depend upon the manner in which the representations of the fundamentals are encoded, for decodreproducing the musical notes.
  • a conventional reading device such as a read head in the case of a magnetic tape recording or a phonograph pickup" in the case of a mechanical recording, for reading the representations of the fundamentals of the musical notes from the record medium
  • a relatively simple electronic device the construction of which will depend upon the manner in which the representations of the fundamentals are encoded, for decodreproducing the musical notes.
  • the record medium reading device and the music reproducing device are well-known elements which are readily available commercially. Only the decoding device and the apparatus combining the decoding device with the reading and reproducing devices is new" and must be described in detail herein.
  • the particular construction of the decoding device will depend upon the manner in which the representations of the fundamental of the musical notes are encoded.
  • Ser. No. 79,046 referred to above two different systems of encoding are described as preferred embodiments.
  • the first system of encoding is referred to in that application as serial encoding" frequency encoding".
  • the decoding device may simply include a plurality of flip-flops, one for each note of the welltempered scale, for periodically storing the fundamentals read by the reading device, and a plurality of gates, one for each flip-flop, for gating to a like number of output terminals the existence of each fundamental stored in the flip-flops.
  • the decoding device may simply include a plurality of filters, arranged to pass each separate recording frequency to aseparateoutput terminal.
  • FIG. I is a schematic diagram of the general plan of the apparatus, according to the present invention, for reproducing music recorded in encoded form-on magnetic tape.
  • FIG. 3 is a detailed schematic diagram of a second preferred embodiment of the decoding device shown in block form in FIG. 1.
  • FIG. 4 is a schematic diagram of apparatus, shown in block 9 DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • FIG. 1 illustrates the general plan of the apparatus according to the present invention for reproducing music recorded in encoded form on a limited number of channels of a record medium, in this case a magnetic tape 1.
  • the apparatus includes read heads 2 and 3 arranged to read each recorded track of the magnetic tape 1. These heads are connected to a device 4 which decodes the musical pitch, quality and level information read from the tape by the heads 2 and 3.
  • the decoder device is connected via a switch 5 to apparatus 7, such as an electronic organ or a player piano, for playing the musical composition read from the tape 1.
  • the decoder device is also connected via a switch 6 to apparatus 8 for printing the score of the musical composition read from the magnetic tape.
  • the switches 5 and 6 are operative to connect or disconnect the decoding device from the player 7 or printer 8, respectively.
  • the musical composition read from the magnetic tape may therefore be reproduced by playing, or printing, or both playing and printing the musical score.
  • FIG. 2 schematically illustrates the preferred embodiment of apparatus which decodes a musical composition recorded on a magnetic tape 9 in frequency form in the manner described in the above-mentioned copending application, Ser. No. 79,046.
  • This decoding apparatus operates to one or selectively pass the various encoding frequencies.
  • the level or loudness of the notes of the musical composition may be recorded either in digital or analog form. If the level is to be digitalized-that is, divided into a plurality of discrete levels-it may be recorded as the presence or absence of a signal of a particular one of a number of discrete frequencies. If the level is to be recorded in analog form it may be recorded as the amplitude of a single at a separate single frequency, or as the amplitude of the signals of various frequency representing the existence of notes of particular .pitch.
  • the magnetic tape 9 shown in FIG. 2 is illustrated as a three-track record read by the three heads l0, l1 and 12.
  • the heads 10 and 12 are arranged to read tracks containing an encoded record (E.R.") while the head 11 is arranged to read a track containing a conventional recording (C.R.”),
  • the encoded record contains the information required to operate a player organ or piano while the conventional record may contain, for example, voice or instrumental music for reproduction by a conventional loudspeaker simultaneously with the operation of the organ or piano.
  • the read heads 10, 11 and 12 are connected to preamplifiers l3, l4 and 15, respectively.
  • the output of the preamplifier 14 is directed to conventional sound reproducing equipment such as an amplifier, filter and loudspeaker.
  • the outputs of the preamplifiers 13 and 15 are directed to separate decoding circuits containing a plurality (n) of band-pass filters arranged in parallel. That is, the output of the preamplifier 13 is supplied to the inputs of n band-pass filters l6, l7, 18 while the output of the preamplifier 15 is supplied to the inputs of n band-pass filters 19, 20, 21, 22 and 23.
  • each encoded record may contain a greater or fewer number of band-pass filters than the n filters shown in FIG. 2.
  • the band-pass filters 16-23 in the apparatus of FIG. 2 may be constructed as conventional series or parallel or series/parallel LC circuits. If the decoding device isto be connected to a player piano having an electromagnet arranged beneath each piano key to actuate the key (for example, as in the arrangement disclosed in the copending application, Ser. No. 79,043 filed concurrently with this application, by Karl F. Milde, Jr.) the inductance of each LC circuit (band-pass filter) may be formed by the coil of each piano key actuating electromagnet. In this case, it is preferable if the loudness of each note to be played is encoded as the amplitude of the signal representing that note.
  • a very loud C would be represented by a high amplitude signal while a soft C would be represented by a low amplitude signal at the frequency f
  • a signal of high amplitude would cause the piano key representing middle C to be depressed with great force to produce a loud piano note.
  • a signal of minimum amplitude at frequency f would cause the piano key to be depressed with a minimum force thus producing a soft musical note.
  • level encoding format is not limited to the case where the band-pass filters are formed, in part, by piano key actuating electromagnets. Accordingly, separate terminals 24, 25, 26, 27 and 28 are shown as pitch and level representing outputs in the decoding device of FIG. 2.
  • the band-pass filters 16-20 which pass the pitch information and the band-pass filters 21, 22 which pass the quality information may each be connected to a threshold gate 29, 30, 31, 32, 33, 34 and 35.
  • These threshold gates eliminate noise by producing an output signal if and only if an input signal exceeds a given threshold level.
  • the gates are preferably constructed with a variable threshold level to permit the decoding device to be adjusted for optimum performance.
  • the outputs of the threshold gates are indicated as terminals 36, 37, 38, 39, 40, 41 and 42. If a signal appears at a terminal, say, terminal 37, of the pitch representing terminals 36-40, this signal indicates that a particular note, say, middle C, is being played. When a signal appears at a terminal, say, terminal 41, of the terminals 41, 42 representing the musical quality information, this signal indicates that the notes which are being played have a particular characteristic quality. Examples of musical quality may be the type of note (e.g., with a soft or a sharp attack characteristic) or the type of musical instrument (e.g., a particular organ stop or piano pedal).
  • the decoding device shown in FIG. 2 it is assumed that the level information is recorded on the track of the magnetic tape 9 read by the head 12 at a separate frequency f, since only this frequency is passed by the band-pass filter 23 the level will be indicated by the amplitude of the signal appearing at the output terminal 43.
  • the apparatus shown in FIG. 2 has been simplified, where possible, so as not to obscure the novel features characteristic of the present invention. As will be understood by those skilled in the art, it may be necessary to add additional circuit elements such as rectifiers and the like to produce a practical operative circuit.
  • FIG. 3 schematically illustrates the preferred embodiment of apparatus which decodes a musical composition recorded on a magnetic tape 44 in serial form in the manner described in the above-mentioned copending application, Ser. No. 79,046.
  • This decoding apparatus operates to convert the serially arranged pitch information back into the parallel form.
  • each note of at least a portion of the well-tempered scale is repeatedly scanned and, if a note is present, it is recorded on one trackof the magnetic tape in the form of a pulse.
  • This track, on which the pitch information is recorded, is read" by the read head 47 and-the signal passed through a preamplifier 49 to a negative pulse detector 51.
  • This detector which can consist, for example, of a rectifier arrangement,
  • the negative pulse detector 51 is connected to a frequency multiplier 52 and to an output terminal 70 labeled Reset.
  • the frequency multiplier produces an output pulse signal which is in phase with, and which is n times the frequency of the output of the pulse detector 51, where n is chosen so that the output signal of the frequency multiplier will equal the 53, which produces a pulse at a different output upon receipt of each count and which may be reset byapplying a pulse at a separate input.
  • the next counting pulse that is received will cause it to produce a signal at its first output, the following counting pulse will cause it to produce a signal at its second output, etc.
  • the counter 53 can be operated in synchronism with the incoming information which was placed in serial formon the magnetic tape.
  • the counter 53 receives its reset pulses from the output of the negative pulse detector 51; that is, the counter is reset every time a negative pulse is read from the magnetic tape 44.
  • All but one of the outputs of the counter 53 are connected to an individual one of a plurality of AND-gates S4, 55 and 56. As these outputs are consecutively activated by the counter 53, the AND-gates consecutively pass any pulse which appears on their other inputs; i.e., the inputs connected to the output of the preamplifier 49. This arrangement thus provides a reverse scan" which places the serially incoming pulses in parallel form.
  • Each of the AND-gates 54 to 56 are connected, in turn, to one input of a respective flip-flop 57, 58 and 59. These flipflops store the pitch information during each complete reverse scan until they are reset to their no output" state by a pulse from the negative pulse detector 51. After each scan, and during the time that the counter 53 produces a signal at its last output, the information held in all the flip-flops is simultaneously gated out via AND-gates 60, 61 and 62 to separate output terminals 71, 72 and 77.
  • the information which has been serially stored on the magnetic tape 44' has therefor been rearranged and is now presented in parallel form again.
  • Information regarding the level of the recorded music which is stored in analog form on a separate track of the magnetic tape 44, is read by the read head-"48, amplified in the preamplifier 50 and supplied to a separate output terminal 81.
  • This information can be digitalized, if desired, by passing the analog level signal through any desired number of threshold gates, each adjusted to produce an output when the signal exceeds a different threshold level.
  • FIG. 3 illustest sounds will cause at least one of the three gates to produce an output. If the high threshold gate 63 produces an output, the signal appears on the terminal 78 labeled I-Ii" and inhibits the signal produced by the threshold gate 64 from appearing at the terminal 79 with the aid of the INHIBIT-gate 66. If a signal appears at the output of the threshold gate 64, it will inhibit the appearance of the signal produced by the threshold gate 65 at the terminal 80 labeled Lo" and, unless the threshold gate 63 has been activated, will appear at the terminal 79 labeled Med.
  • the printer illustratedin FIG. 4 and the player piano device illustrated in FIGS are both designed to be attached directly to the output terminals 70 to 81 of the apparatus of FIG. 3 or to the output terminals 36-43 of the apparatus of FIG. 2. If the printer is to be used, it must be connected to level outputs, such as outputs 78-80, which present the level information in digital form. Thus if the apparatus of FIG. 2 is to be used, a
  • the printer shown is of the type normally employed on line" as an output device for an electronic computer. It comprises a plurality of drivers 82 each connected to a separate printing head 83. However, each printing head is capable of printing only. oneletter; namely, the letter of the alphabet designating the, pitch of a single musical note or the letters I-I", M and L" which designate the level of the music as high, medium and low, respectively.
  • the drivers are connected, as shown, to the terminals 71-80 of the apparatus of FIG. 3 or to the terminals 36-42 of the apparatus of FIG. 2.
  • the paperadvance device 84 is connected to the Reset terminal 70 when the printer is connected to the apparatus of FIG. 3, .or to a variable frequency pulse generator when the printer is connected to-the apparatus of FIG. 2.
  • the printer indicates the presence of all notes which were played during one printing cycle (e.g., the notes C and A shown in FIG. 4) in addition to thelevel of the music (shown as *M).
  • the reset pulse which appears at-the terminal 70 causes the paper to advance.
  • the score thus printed therefore indicates the pitch of each note .by a printed letter and the position of the letter on the page;
  • Each of the gain-controlled amplifiers 85 is fed by one of the pitch indicating outputs 36 to 40 (FIG. 2) or 71 to 77 (FIG. 3) and controlled by the signal level at the level indicating outputs 43 or 81, respectively.
  • the amplifiers are constructed in the manner well known in the art to increase their gain, and produce an output signal of greater voltage, with increasing signal level at their gain control input. In this way, the higher the level of the music recorded on tape, the louder will be the music played by the player piano.
  • Each controlled amplifier 85 is connected to a separate smoothing circuit86, and then to the coil of an electromagnet arranged beneath a piano key 91 to draw the key downward.
  • Each smoothing circuit 86 functions to smooth separate consecutive pulses produced by the apparatus of FIG. 3'which indicate the presence of a single note, so that the switches of the manual keyboard.
  • the specific apparatus necessary for modifying the quality of the notes played will depend upon the nature of the quality information. For example, if the presence of a signal at the terminal 41 indicates that a particular piano pedal is to be depressed, this terminal may be connected to operate an electromagnetic pedal actuating device. Similarly, if the presence of a signal at the terminal 41 indicates that a particular organ stop is to be turned on, this terminal may be connected to operate this organ stop.
  • the decoding apparatus of FIG. 3 may be operated to arrange serially encoded quality information in parallel form in a manner identical to that described in connection with the pitch information, if the quality information is also recorded on the magnetic tape 44.
  • This quality information may be recorded on a separate track of the magnetic tape or may be interlaced on the same track or tracks with the pitch and/or level information.
  • Apparatus for reproducing music from a record of a musical composition said record having at least one and no more than eight recording channels and having recorded, on a maximum of eight recording channels thereon, representations of the fundamentals of the musical notes of said composition encoded in serial form without inclusion of representations of the harmonics of said musical notes, said apparatus comprising, in combination:
  • said decoding means including:
  • scanning means connected to the other of the input terminals of each of said signal gates, for gating individual ones of said signal gates in succession.

Abstract

Apparatus for reproducing music, either by playing or by printing a musical score. The music is recorded on a record medium, such as magnetic tape, which has at least one and no more than eight recording channels or tracks. Representations of the fundamentals of the individual notes of the music are recorded on the record medium without inclusion of representations of the harmonics of these notes. The reproducing apparatus, according to the invention, includes the combination of means for reading the representations of the fundamentals, means for decoding these representations and means for receiving the decoded representations and reproducing the musical notes.

Description

United States Patent Milde, Jr. 5] Mar. 7, 1972 [54] APPARATUS FOR REPRODUCING 3,421,403 1/1969 MUSICAL NOTES FROM AN ENCODED RECORD 872:267 11/1907 [72] Inventor: Karl F. Milde, 11:, 198 Baltic St t, 3,544,695 12/1970 Dijksterhuis ..84/l.26 X
kl .Y. N FOREIGN PATENTS OR APPLICATIONS 22 F1 d: Oct. 1970 l 1 1,123,614 8/1968 Great Britain ..84/l.26 [21] Appl. No.: 79,045
Primary Examiner-Laramie E. Askin Related 0.8. Application Data ASSEl-an't Examine,fwygggwelqqm [63] fgggmuation-m-part of Ser. No. 756,857, Sept. 3, ABSTRACT Apparatus for reproducing music, either by playing or by [52] US. Cl ..84/ 1.01, 84/ 1.02, 84/l.03, printing a musical score. The music is recorded on a record 84/ 1 .28, 179/ 100.2 MD medium, such as magnetic tape, which has at least one and no [51] Int. Cl. ..Glh l/00 more than eight recording channels or tracks. Representations [58] Field of Search ..84/5, 470, 1.26, 1.27, 1.28, of the fundamentals of the individual notes of the music are 134/462, 1.01; 346/35; 179/100}, 1002 MD recorded on the record medium without inclusion of representations of the harmonics of these notes. The reproducing ap- References Cited paratus, according to the invention, includes the combination of means for reading the representations of the fundamentals, UNITED STATES PATENTS means for decoding these representations and means for ta (1 od th 2,907,989 /1959 Guerber ..179/100.2 MD gifij gfi fgj represe Hons 6 3,195,389 7/1965 Percy .1 ..84/5 3,377,716 4/1968 Schmoyer ..84/470 X 2 Claims, 5 Drawing Figures f F5567 00M AEJEI a M i??? P F if r/ n: fPAflUf/Vt) i 1.55 fil/lr/Pl/ P PIEANPl/HEPS flirt-m? E i J? i 4/ firm g g 1 f! g l F y i6 77 Y 17/ E M-a FIRES/I010 TIMES/I010 7 WIPES/10:06AM [5 7/ Na 63' 0 a0 5 if 07 Patented March 7 1972 3 Sheets-Sheet 1 7 m W J0 w m N) 4 7% W 5 r m 3 p j J y 4 ,7 A, f 4 W, .L ,i 7 T T 7; r
l; I. s w fl z v f T f 1% m n N 5 fi A y M 2 m F Patented March? 1972 3 Sheets-Sheet 2 RR mm ED VL mw F m m Patented March 7 1972 3,647,929
7 3 Sheets-Sheet 5 PIP/firm: Qooooooooooo/ [DIP/V5195 [[VfZJ II] 60: 7/ 1 Ann/r7595 [fl EL i/ I N YEN TOR F/ G, 5 KARL E M/LDE, JR.
APPARATUS FOR REPRODUCING MUSICAL NOTES FROM AN ENCODED RECORD CROSS-REFERENCE TO RELATED APPLICATIONS This application is a continuation-in-part of the application, Ser. No. 756,857, filed Sept. 3, 1968, by Karl F. Milde, Jr.
This application is also related to the application, Ser. No. 79,046, filed concurrently with this application by Karl F. Milde, Jr. entitled Method and Apparatus for Recording Music".
BACKGROUND OF THE INVENTION The present invention relates to apparatus for reproducing music from a record medium, such as a magnetic tape or a phonograph disc, which may be read by conventional sound reproducing equipment.
More particularly, the present invention relates to apparatus for reproducing music from a record medium having at least one and no more than eight recording channels or tracks and having recorded on these channels encoded representations of the fundamentals of the individual notes of the music without inclusion of representations of the harmonics of these notes. Such a record, and a method and apparatus for producing such a record, is described in the two related applications referred to above.
There are a number of different techniques of recording music known in the art. For example, music has been recorded on paper with ink as a conventional score, or with holes in a form which is suitable for machine reading. The recordings of the former type are the recordings most frequently read by musicians, while those of the latter type have been used in the familiar player piano.
Music has also been recorded on magnetic and mechanical records in a variety of ways. Most often used is the simple analog recording; the signal that is recorded corresponds in frequency and intensity to the acoustical vibrations of which the music is formed. Music has been recorded on magnetic tape in digital form by converting an analog signal representing the music to a pulse modulated signal before writing it on the tape.
So far as is known, however, none of the prior art techniques of magnetic or mechanical recording have employed the type of writing that makes recordings on paper possible. In particular, none of the techniques of magnetic recording utilize the fact that music is structured sound and can be described by information giving the duration, the pitch, the level and the quality of its individual notes.
Since most home entertainment systems include either a magnetic tape playback deck or a phonograph record turntable or both, it would be convenient to record the duration, pitch, level and quality of musical notes on a magneticor mechanical recording for playback in the home. Such a recording would permit already existing playback equipment to be used as an input device for a player piano, a player organ or even an on-line printer for printing a musical score.
However, unlike the paper roll recordings which have previously been universally employed to operate playerpianos, both magnetic tape and phonograph recordings have a limited number of available recording channels. Magnetic tape is normally divided into two, four and at most, eight tracks while phonograph discs have a maximum of two channels per spiral groove. As a result, it is necessary if music is to be recorded on these limited channel record media, to encode the musical information to squeeze it into the available space.
Two techniques for encoding representations of musical notes are disclosed in the abovementioned copending application, Ser. No. 79,046. This copending application describes a record, and a methodand apparatus for producing such a record, which has recorded, on a limited number of channels thereon, encoded representations of the fundamentals of the individual notes without inclusion of representations of the harmonics as well as representations of the level and/or'quality of these notes.
SUMMARY OF THE INVENTION It is a general object of the present invention, therefor, to combine the mechanical readability which is associated with a musical paper roll recording with the advantages of magnetic tape and mechanical phonograph recordings; namely, the ability to accurately record a large quantity of information for playback by inexpensive and readily available equipment.
It is a more particular object of the present invention to provide apparatus which utilizes conventional equipment for reading encoded musical information from a magnetic tape or mechanical phonograph recording in a system for operating a player piano, a player organ or an on-line printer for printing a musical score.
These objects, as well as other objects which will become apparent in the discussion thatfollows, are achieved, according to the present invention, by providing apparatus for .while the second system of encoding is referred to as reproducing music from a record medium having recorded, on a maximum of eight recording channels thereon, encoded representations of the fundamentals of the individual notes of the music without inclusion of representations of the harmonies of these notes. This apparatus may comprise a conventional reading device, such as a read head in the case of a magnetic tape recording or a phonograph pickup" in the case of a mechanical recording, for reading the representations of the fundamentals of the musical notes from the record medium; a relatively simple electronic device, the construction of which will depend upon the manner in which the representations of the fundamentals are encoded, for decodreproducing the musical notes.
It will be appreciated that, of the three elements of the apparatus just described, the record medium reading device and the music reproducing device are well-known elements which are readily available commercially. Only the decoding device and the apparatus combining the decoding device with the reading and reproducing devices is new" and must be described in detail herein.
As mentioned above, the particular construction of the decoding device will depend upon the manner in which the representations of the fundamental of the musical notes are encoded. In the copending application, Ser. No. 79,046 referred to above, two different systems of encoding are described as preferred embodiments. The first system of encoding is referred to in that application as serial encoding" frequency encoding".
With serialencoding the instantaneous existence and pitch of each of a plurality of notes of the well-tempered scale is rapidly and repeatedly scanned and the information obtained from the .scan is recorded on the record medium on a single channel. With frequency encoding the instantaneous existence and pitch of. each of a plurality of notes of the welltempered scale is recorded on one or more channels of the record medium at a different frequency.
In the case where the representations of the musical notes are encoded in serial form, the decoding device may simply include a plurality of flip-flops, one for each note of the welltempered scale, for periodically storing the fundamentals read by the reading device, and a plurality of gates, one for each flip-flop, for gating to a like number of output terminals the existence of each fundamental stored in the flip-flops.
Where the representations of the fundamentals are encoded in frequency form, the decoding device may simply include a plurality of filters, arranged to pass each separate recording frequency to aseparateoutput terminal.
BRIEF -DESCRIPTION OFTHE DRAWINGS FIG. I is a schematic diagram of the general plan of the apparatus, according to the present invention, for reproducing music recorded in encoded form-on magnetic tape.
FIG. 3 is a detailed schematic diagram of a second preferred embodiment of the decoding device shown in block form in FIG. 1.
FIG. 4 is a schematic diagram of apparatus, shown in block 9 DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring now to the drawings, FIG. 1 illustrates the general plan of the apparatus according to the present invention for reproducing music recorded in encoded form on a limited number of channels of a record medium, in this case a magnetic tape 1.
The apparatus includes read heads 2 and 3 arranged to read each recorded track of the magnetic tape 1. These heads are connected to a device 4 which decodes the musical pitch, quality and level information read from the tape by the heads 2 and 3. The decoder device is connected via a switch 5 to apparatus 7, such as an electronic organ or a player piano, for playing the musical composition read from the tape 1. The decoder device is also connected via a switch 6 to apparatus 8 for printing the score of the musical composition read from the magnetic tape. The switches 5 and 6 are operative to connect or disconnect the decoding device from the player 7 or printer 8, respectively. The musical composition read from the magnetic tape may therefore be reproduced by playing, or printing, or both playing and printing the musical score.
FIG. 2 schematically illustrates the preferred embodiment of apparatus which decodes a musical composition recorded on a magnetic tape 9 in frequency form in the manner described in the above-mentioned copending application, Ser. No. 79,046. This decoding apparatus operates to one or selectively pass the various encoding frequencies.
As described in the application, Ser. No. 79,046 the existence of each note of at least a portion of the well-tempered scale is recorded on track of the magnetic tape as a signal of a particular unique frequency. If desired, information regarding the quality of the music, such as the presence or absence of one or more organ stops or the operation of one r more piano pedals, may likewise be recorded on the magnetic tape as the presence or absence of further signals of different frequencies.
The level or loudness of the notes of the musical composition may be recorded either in digital or analog form. If the level is to be digitalized-that is, divided into a plurality of discrete levels-it may be recorded as the presence or absence of a signal of a particular one of a number of discrete frequencies. If the level is to be recorded in analog form it may be recorded as the amplitude of a single at a separate single frequency, or as the amplitude of the signals of various frequency representing the existence of notes of particular .pitch.
The magnetic tape 9 shown in FIG. 2 is illustrated as a three-track record read by the three heads l0, l1 and 12. The heads 10 and 12 are arranged to read tracks containing an encoded record (E.R.") while the head 11 is arranged to read a track containing a conventional recording (C.R."), The encoded record contains the information required to operate a player organ or piano while the conventional record may contain, for example, voice or instrumental music for reproduction by a conventional loudspeaker simultaneously with the operation of the organ or piano.
The read heads 10, 11 and 12 are connected to preamplifiers l3, l4 and 15, respectively. The output of the preamplifier 14 is directed to conventional sound reproducing equipment such as an amplifier, filter and loudspeaker. The outputs of the preamplifiers 13 and 15 are directed to separate decoding circuits containing a plurality (n) of band-pass filters arranged in parallel. That is, the output of the preamplifier 13 is supplied to the inputs of n band-pass filters l6, l7, 18 while the output of the preamplifier 15 is supplied to the inputs of n band- pass filters 19, 20, 21, 22 and 23.
It has been assumed, for the purposes of this illustrative embodiment, that there are two recording channels on the magnetic tape 9 containing encoded records and that each encoded record contains information defining a musical composition recorded at n different frequencies. It will be understood that themagnetic tape 9 may have encoded records on one track only or may have separate encoded records on three, four or up to eight separate tracks. The fewer or greater number of encoded records may be accommodated by fewer or added decoding systems containing band-pass filters in parallel.
It will also be appreciated that each encoded record may contain a greater or fewer number of band-pass filters than the n filters shown in FIG. 2.
The band-pass filters 16-23 in the apparatus of FIG. 2 may be constructed as conventional series or parallel or series/parallel LC circuits. If the decoding device isto be connected to a player piano having an electromagnet arranged beneath each piano key to actuate the key (for example, as in the arrangement disclosed in the copending application, Ser. No. 79,043 filed concurrently with this application, by Karl F. Milde, Jr.) the inductance of each LC circuit (band-pass filter) may be formed by the coil of each piano key actuating electromagnet. In this case, it is preferable if the loudness of each note to be played is encoded as the amplitude of the signal representing that note. For example, if middle C were recorded on the track read by the head 10 at the frequency f a very loud C would be represented by a high amplitude signal while a soft C would be represented by a low amplitude signal at the frequency f With the electromagnetic piano key actuating device mentioned above, a signal of high amplitude would cause the piano key representing middle C to be depressed with great force to produce a loud piano note. Similarly, a signal of minimum amplitude at frequency f would cause the piano key to be depressed with a minimum force thus producing a soft musical note. I
The use of such a level encoding format is not limited to the case where the band-pass filters are formed, in part, by piano key actuating electromagnets. Accordingly, separate terminals 24, 25, 26, 27 and 28 are shown as pitch and level representing outputs in the decoding device of FIG. 2.
Where the musical level information is recorded in analog form on one or more separate frequencies, or in quantized form at a plurality of frequencies, the band-pass filters 16-20 which pass the pitch information and the band- pass filters 21, 22 which pass the quality information may each be connected to a threshold gate 29, 30, 31, 32, 33, 34 and 35. These threshold gates eliminate noise by producing an output signal if and only if an input signal exceeds a given threshold level. As indicated by the arrow in each of the threshold gate boxes, the gates are preferably constructed with a variable threshold level to permit the decoding device to be adjusted for optimum performance.
The outputs of the threshold gates are indicated as terminals 36, 37, 38, 39, 40, 41 and 42. If a signal appears at a terminal, say, terminal 37, of the pitch representing terminals 36-40, this signal indicates that a particular note, say, middle C, is being played. When a signal appears at a terminal, say, terminal 41, of the terminals 41, 42 representing the musical quality information, this signal indicates that the notes which are being played have a particular characteristic quality. Examples of musical quality may be the type of note (e.g., with a soft or a sharp attack characteristic) or the type of musical instrument (e.g., a particular organ stop or piano pedal).
With the decoding device shown in FIG. 2 it is assumed that the level information is recorded on the track of the magnetic tape 9 read by the head 12 at a separate frequency f,, Since only this frequency is passed by the band-pass filter 23 the level will be indicated by the amplitude of the signal appearing at the output terminal 43. The apparatus shown in FIG. 2 has been simplified, where possible, so as not to obscure the novel features characteristic of the present invention. As will be understood by those skilled in the art, it may be necessary to add additional circuit elements such as rectifiers and the like to produce a practical operative circuit.
FIG. 3 schematically illustrates the preferred embodiment of apparatus which decodes a musical composition recorded on a magnetic tape 44 in serial form in the manner described in the above-mentioned copending application, Ser. No. 79,046. This decoding apparatus operates to convert the serially arranged pitch information back into the parallel form.
As described in the application, Ser. No. 79,046, the presence of each note of at least a portion of the well-tempered scale is repeatedly scanned and, if a note is present, it is recorded on one trackof the magnetic tape in the form of a pulse. This track, on which the pitch information is recorded, is read" by the read head 47 and-the signal passed through a preamplifier 49 to a negative pulse detector 51. This detector, which can consist, for example, of a rectifier arrangement,
passes only negative reference pulses which appear at its input. These negative pulses signal the beginning and end of each complete scan.
The negative pulse detector 51 is connected to a frequency multiplier 52 and to an output terminal 70 labeled Reset. The purpose of this output terminal will be discussed in detail below. The frequency multiplier produces an output pulse signal which is in phase with, and which is n times the frequency of the output of the pulse detector 51, where n is chosen so that the output signal of the frequency multiplier will equal the 53, which produces a pulse at a different output upon receipt of each count and which may be reset byapplying a pulse at a separate input. Whenever the counter is reset, the next counting pulse that is received will cause it to produce a signal at its first output, the following counting pulse will cause it to produce a signal at its second output, etc. In this way, the counter 53 can be operated in synchronism with the incoming information which was placed in serial formon the magnetic tape. The counter 53 receives its reset pulses from the output of the negative pulse detector 51; that is, the counter is reset every time a negative pulse is read from the magnetic tape 44.
All but one of the outputs of the counter 53 are connected to an individual one of a plurality of AND-gates S4, 55 and 56. As these outputs are consecutively activated by the counter 53, the AND-gates consecutively pass any pulse which appears on their other inputs; i.e., the inputs connected to the output of the preamplifier 49. This arrangement thus provides a reverse scan" which places the serially incoming pulses in parallel form.
Each of the AND-gates 54 to 56 are connected, in turn, to one input of a respective flip-flop 57, 58 and 59. These flipflops store the pitch information during each complete reverse scan until they are reset to their no output" state by a pulse from the negative pulse detector 51. After each scan, and during the time that the counter 53 produces a signal at its last output, the information held in all the flip-flops is simultaneously gated out via AND- gates 60, 61 and 62 to separate output terminals 71, 72 and 77. The information which has been serially stored on the magnetic tape 44'has therefor been rearranged and is now presented in parallel form again.
Information regarding the level of the recorded music, which is stored in analog form on a separate track of the magnetic tape 44, is read by the read head-"48, amplified in the preamplifier 50 and supplied to a separate output terminal 81.
This information can be digitalized, if desired, by passing the analog level signal through any desired number of threshold gates, each adjusted to produce an output when the signal exceeds a different threshold level. As an example, FIG. 3 illustest sounds will cause at least one of the three gates to produce an output. If the high threshold gate 63 produces an output, the signal appears on the terminal 78 labeled I-Ii" and inhibits the signal produced by the threshold gate 64 from appearing at the terminal 79 with the aid of the INHIBIT-gate 66. If a signal appears at the output of the threshold gate 64, it will inhibit the appearance of the signal produced by the threshold gate 65 at the terminal 80 labeled Lo" and, unless the threshold gate 63 has been activated, will appear at the terminal 79 labeled Med.
The printer illustratedin FIG. 4 and the player piano device illustrated in FIGS are both designed to be attached directly to the output terminals 70 to 81 of the apparatus of FIG. 3 or to the output terminals 36-43 of the apparatus of FIG. 2. If the printer is to be used, it must be connected to level outputs, such as outputs 78-80, which present the level information in digital form. Thus if the apparatus of FIG. 2 is to be used, a
.digitalizing device such as that shown in FIG. 3 (elements 78-80. thereof .connected to the printer.
The printer shown is of the type normally employed on line" as an output device for an electronic computer. It comprises a plurality of drivers 82 each connected to a separate printing head 83. However, each printing head is capable of printing only. oneletter; namely, the letter of the alphabet designating the, pitch of a single musical note or the letters I-I", M and L" which designate the level of the music as high, medium and low, respectively. The drivers are connected, as shown, to the terminals 71-80 of the apparatus of FIG. 3 or to the terminals 36-42 of the apparatus of FIG. 2. The paperadvance device 84 is connected to the Reset terminal 70 when the printer is connected to the apparatus of FIG. 3, .or to a variable frequency pulse generator when the printer is connected to-the apparatus of FIG. 2.
The printer indicates the presence of all notes which were played during one printing cycle (e.g., the notes C and A shown in FIG. 4) in addition to thelevel of the music (shown as *M). At the end of each cycle the reset pulse which appears at-the terminal 70 causes the paper to advance. The score thus printed therefore indicates the pitch of each note .by a printed letter and the position of the letter on the page;
piano which can likewise be connected to the outputs of the apparatus of FIGS. 2 or 3. Each of the gain-controlled amplifiers 85 is fed by one of the pitch indicating outputs 36 to 40 (FIG. 2) or 71 to 77 (FIG. 3) and controlled by the signal level at the level indicating outputs 43 or 81, respectively. The amplifiers are constructed in the manner well known in the art to increase their gain, and produce an output signal of greater voltage, with increasing signal level at their gain control input. In this way, the higher the level of the music recorded on tape, the louder will be the music played by the player piano.
Each controlled amplifier 85 is connected to a separate smoothing circuit86, and then to the coil of an electromagnet arranged beneath a piano key 91 to draw the key downward. Each smoothing circuit 86 functions to smooth separate consecutive pulses produced by the apparatus of FIG. 3'which indicate the presence of a single note, so that the switches of the manual keyboard.
Regarding the utilization of the quality information encoded on the record medium and presented, for example, at terminals 41 and 42 in the apparatus of FIG. 2, it will be appreciated that the specific apparatus necessary for modifying the quality of the notes played will depend upon the nature of the quality information. For example, if the presence of a signal at the terminal 41 indicates that a particular piano pedal is to be depressed, this terminal may be connected to operate an electromagnetic pedal actuating device. Similarly, if the presence of a signal at the terminal 41 indicates that a particular organ stop is to be turned on, this terminal may be connected to operate this organ stop.
It will be understood that the present invention is susceptible to various modifications, changes and adaptations as will occur to those skilled in the art. For example, the decoding apparatus of FIG. 3 may be operated to arrange serially encoded quality information in parallel form in a manner identical to that described in connection with the pitch information, if the quality information is also recorded on the magnetic tape 44. This quality information may be recorded on a separate track of the magnetic tape or may be interlaced on the same track or tracks with the pitch and/or level information.
It is therefore intended that the scope of the present invention be' limited only by the following claims or their equivalents.
I claim:
1. Apparatus for reproducing music from a record of a musical composition, said record having at least one and no more than eight recording channels and having recorded, on a maximum of eight recording channels thereon, representations of the fundamentals of the musical notes of said composition encoded in serial form without inclusion of representations of the harmonics of said musical notes, said apparatus comprising, in combination:
a. means for reading said representations of the fundamentals of said musical notes from said record medium;
b. means, connected to said reading means, for decoding said fundamentals of said musical notes, said decoding means including:
1. means for periodically storing said fundamentals;
2. a plurality of output terminals; and
3. means for periodically gating out said fundamentals from said storage means to said output terminals, whereby the existence of each fundamental is represented by the presence or absence of a signal on a separate one of said output terminals; and
c. means, connectedv to said output terminals of said decoding means, for reproducing said musical notes.
2. The apparatus defined in claim 2, wherein said means for periodically storing said fundamentals includes:
i. a plurality of signal gates each having two input terminals and one output terminal, one of said input terminals of each of said gates being connected to receive a signal from said reading means;
ii. a plurality of storage elements, each connected to the output of a separate one of said signal gates; and
iii. scanning means, connected to the other of the input terminals of each of said signal gates, for gating individual ones of said signal gates in succession.

Claims (4)

1. Apparatus for reproducing music from a record of a musical composition, said record having at least one and no more than eight recording channels and having recorded, on a maximum of eight recording channels thereon, representations of the fundamentals of the musical notes of said composition encoded in serial form without inclusion of representations of the harmonics of said musical notes, said apparatus comprising, in combination: a. means for reading said representations of the fundamentals of said musical notes from said record medium; b. means, connected to said reading means, for decoding said fundamentals of said musical notes, said decoding means including: 1. means for periodically storing said fundamentals; 2. a plurality of output terminals; and 3. means for periodically gating out said fundamentals from said storage means to said output terminals, whereby the existence of each fundamental is represented by the presence or absence of a signal on a separate one of said output terminals; and c. means, connected to said output terminals of said decoding means, for reproducing said musical notes.
2. a plurality of output terminals; and
2. The apparatus defined in claim 2, wherein said means for periodically storing said fundamentals includes: i. a plurality of signal gates each having two input terminals and one output terminal, one of said input terminals of each of said gates being connected to receive a signal from said reading means; ii. a plurality of storage elements, each connected to the output of a separate one of said signal gates; and iii. scanning means, connected to the other of the input terminals of each of said signal gates, for gating individual ones of said signal gates in succession.
3. means for periodically gating out said fundamentals from said storage means to said output terminals, whereby the existence of each fundamental is represented by the presence or absence of a signal on a separate one of said output terminals; and c. means, connected to said output terminals of said decoding means, for reproducing said musical notes.
US79045A 1970-10-08 1970-10-08 Apparatus for reproducing musical notes from an encoded record Expired - Lifetime US3647929A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US7904570A 1970-10-08 1970-10-08

Publications (1)

Publication Number Publication Date
US3647929A true US3647929A (en) 1972-03-07

Family

ID=22148073

Family Applications (1)

Application Number Title Priority Date Filing Date
US79045A Expired - Lifetime US3647929A (en) 1970-10-08 1970-10-08 Apparatus for reproducing musical notes from an encoded record

Country Status (1)

Country Link
US (1) US3647929A (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3789719A (en) * 1972-08-28 1974-02-05 J Maillet Tape activated piano and organ player
US3810106A (en) * 1972-10-05 1974-05-07 Apm Corp System for storing tone patterns for audible retrieval
US3828643A (en) * 1973-02-20 1974-08-13 Chicago Musical Instr Co Scanner for electronic musical instrument
US3844379A (en) * 1971-12-30 1974-10-29 Nippon Musical Instruments Mfg Electronic musical instrument with key coding in a key address memory
US3865002A (en) * 1972-12-29 1975-02-11 Pioneer Electric Corp Automatic performance system for electronic instruments
US3868882A (en) * 1972-11-17 1975-03-04 Pioneer Electronic Corp Automatic musical performance method and apparatus for a keyed instrument
US3871247A (en) * 1973-12-12 1975-03-18 Arthur R Bonham Musical instrument employing time division multiplexing techniques to control a second musical instrument
US3872766A (en) * 1972-12-20 1975-03-25 Pioneer Electronic Corp Synchronizing-pulse generating device for an apparatus for controlling the automatic musical performance of a keyed instrument
US3895554A (en) * 1974-07-10 1975-07-22 Joseph Maillet Tape activated keyboard-type instruments
US3898905A (en) * 1974-03-04 1975-08-12 Hammond Corp Monophonic electronic musical instrument
US3905267A (en) * 1974-02-04 1975-09-16 Raymond A Vincent Electronic player piano with record and playback feature
US3913443A (en) * 1971-06-30 1975-10-21 Aaron R Jewett Musical recording and method and apparatus therefor
US3915047A (en) * 1974-01-02 1975-10-28 Ibm Apparatus for attaching a musical instrument to a computer
US3916750A (en) * 1972-02-04 1975-11-04 Baldwin Co D H Electronic organ employing time position multiplexed signals
US3926088A (en) * 1974-01-02 1975-12-16 Ibm Apparatus for processing music as data
US3999456A (en) * 1974-06-04 1976-12-28 Matsushita Electric Industrial Co., Ltd. Voice keying system for a voice controlled musical instrument
US4022097A (en) * 1974-07-15 1977-05-10 Strangio Christopher E Computer-aided musical apparatus and method
US4104950A (en) * 1976-04-28 1978-08-08 Teledyne, Inc. Demultiplex and storage system for time division multiplexed frames of musical data
US4132142A (en) * 1976-04-28 1979-01-02 Teledyne Industries, Inc. Method and apparatus for reproducing a musical presentation
US4151775A (en) * 1977-08-31 1979-05-01 Merriman George W Electrical apparatus for determining the pitch or fundamental frequency of a musical note
US4177708A (en) * 1977-06-17 1979-12-11 Rochelle Pinz Combined computer and recorder for musical sound reproduction
US4300431A (en) * 1978-06-12 1981-11-17 Derocco Paul Pitch extractor circuit
WO1982000379A1 (en) * 1980-07-15 1982-02-04 Ellis D Sound signal automatic detection and display method and system
US4316401A (en) * 1979-09-07 1982-02-23 Donald L. Tavel Music synthesizer
US4351216A (en) * 1979-08-22 1982-09-28 Hamm Russell O Electronic pitch detection for musical instruments
US4392409A (en) * 1979-12-07 1983-07-12 The Way International System for transcribing analog signals, particularly musical notes, having characteristic frequencies and durations into corresponding visible indicia
US4479416A (en) * 1983-08-25 1984-10-30 Clague Kevin L Apparatus and method for transcribing music
US4627323A (en) * 1984-08-13 1986-12-09 New England Digital Corporation Pitch extractor apparatus and the like
US4633748A (en) * 1983-02-27 1987-01-06 Casio Computer Co., Ltd. Electronic musical instrument
US4690026A (en) * 1985-08-22 1987-09-01 Bing McCoy Pitch and amplitude calculator and converter which provides an output signal with a normalized frequency
US5038658A (en) * 1988-02-29 1991-08-13 Nec Home Electronics Ltd. Method for automatically transcribing music and apparatus therefore
US5440072A (en) * 1992-09-25 1995-08-08 Willis; Raymon A. System for rejuvenating vintage organs and pianos

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US872267A (en) * 1905-08-24 1907-11-26 James John Walker Recording music.
US2907989A (en) * 1956-03-13 1959-10-06 Rca Corp Signal staticizer
US3195389A (en) * 1963-05-27 1965-07-20 Percy Tom Musical instrument with audio signal to force translator
US3277245A (en) * 1961-08-08 1966-10-04 Sponga Imre Appliance for recording and/or transducing electric and/or acoustic oscillations of various frequencies
US3377716A (en) * 1965-01-12 1968-04-16 Don S Wenger Method of and apparatus for teaching the operation of a keyboard controlled machine or instrument
GB1123614A (en) * 1964-11-02 1968-08-14 Terence Michael Pamplin Electric system for playing a musical instrument
US3421403A (en) * 1965-05-25 1969-01-14 Jasper Electronics Mfg Corp Apparatus for making rolls for player pianos and organs
US3539701A (en) * 1967-07-07 1970-11-10 Ursula A Milde Electrical musical instrument
US3544695A (en) * 1967-04-08 1970-12-01 Philips Corp Circuit arrangement for imitating the touch of musical instruments with percussion

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US872267A (en) * 1905-08-24 1907-11-26 James John Walker Recording music.
US2907989A (en) * 1956-03-13 1959-10-06 Rca Corp Signal staticizer
US3277245A (en) * 1961-08-08 1966-10-04 Sponga Imre Appliance for recording and/or transducing electric and/or acoustic oscillations of various frequencies
US3195389A (en) * 1963-05-27 1965-07-20 Percy Tom Musical instrument with audio signal to force translator
GB1123614A (en) * 1964-11-02 1968-08-14 Terence Michael Pamplin Electric system for playing a musical instrument
US3377716A (en) * 1965-01-12 1968-04-16 Don S Wenger Method of and apparatus for teaching the operation of a keyboard controlled machine or instrument
US3421403A (en) * 1965-05-25 1969-01-14 Jasper Electronics Mfg Corp Apparatus for making rolls for player pianos and organs
US3544695A (en) * 1967-04-08 1970-12-01 Philips Corp Circuit arrangement for imitating the touch of musical instruments with percussion
US3539701A (en) * 1967-07-07 1970-11-10 Ursula A Milde Electrical musical instrument

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3913443A (en) * 1971-06-30 1975-10-21 Aaron R Jewett Musical recording and method and apparatus therefor
US3844379A (en) * 1971-12-30 1974-10-29 Nippon Musical Instruments Mfg Electronic musical instrument with key coding in a key address memory
US3916750A (en) * 1972-02-04 1975-11-04 Baldwin Co D H Electronic organ employing time position multiplexed signals
US3789719A (en) * 1972-08-28 1974-02-05 J Maillet Tape activated piano and organ player
US3810106A (en) * 1972-10-05 1974-05-07 Apm Corp System for storing tone patterns for audible retrieval
US3868882A (en) * 1972-11-17 1975-03-04 Pioneer Electronic Corp Automatic musical performance method and apparatus for a keyed instrument
US3872766A (en) * 1972-12-20 1975-03-25 Pioneer Electronic Corp Synchronizing-pulse generating device for an apparatus for controlling the automatic musical performance of a keyed instrument
US3865002A (en) * 1972-12-29 1975-02-11 Pioneer Electric Corp Automatic performance system for electronic instruments
US3828643A (en) * 1973-02-20 1974-08-13 Chicago Musical Instr Co Scanner for electronic musical instrument
US3871247A (en) * 1973-12-12 1975-03-18 Arthur R Bonham Musical instrument employing time division multiplexing techniques to control a second musical instrument
US3915047A (en) * 1974-01-02 1975-10-28 Ibm Apparatus for attaching a musical instrument to a computer
US3926088A (en) * 1974-01-02 1975-12-16 Ibm Apparatus for processing music as data
US3905267A (en) * 1974-02-04 1975-09-16 Raymond A Vincent Electronic player piano with record and playback feature
US3898905A (en) * 1974-03-04 1975-08-12 Hammond Corp Monophonic electronic musical instrument
US3999456A (en) * 1974-06-04 1976-12-28 Matsushita Electric Industrial Co., Ltd. Voice keying system for a voice controlled musical instrument
US3895554A (en) * 1974-07-10 1975-07-22 Joseph Maillet Tape activated keyboard-type instruments
US4022097A (en) * 1974-07-15 1977-05-10 Strangio Christopher E Computer-aided musical apparatus and method
US4132142A (en) * 1976-04-28 1979-01-02 Teledyne Industries, Inc. Method and apparatus for reproducing a musical presentation
US4104950A (en) * 1976-04-28 1978-08-08 Teledyne, Inc. Demultiplex and storage system for time division multiplexed frames of musical data
US4177708A (en) * 1977-06-17 1979-12-11 Rochelle Pinz Combined computer and recorder for musical sound reproduction
US4151775A (en) * 1977-08-31 1979-05-01 Merriman George W Electrical apparatus for determining the pitch or fundamental frequency of a musical note
US4300431A (en) * 1978-06-12 1981-11-17 Derocco Paul Pitch extractor circuit
US4351216A (en) * 1979-08-22 1982-09-28 Hamm Russell O Electronic pitch detection for musical instruments
US4316401A (en) * 1979-09-07 1982-02-23 Donald L. Tavel Music synthesizer
US4392409A (en) * 1979-12-07 1983-07-12 The Way International System for transcribing analog signals, particularly musical notes, having characteristic frequencies and durations into corresponding visible indicia
WO1982000379A1 (en) * 1980-07-15 1982-02-04 Ellis D Sound signal automatic detection and display method and system
US4633748A (en) * 1983-02-27 1987-01-06 Casio Computer Co., Ltd. Electronic musical instrument
USRE33739E (en) * 1983-02-27 1991-11-12 Casio Computer Co., Ltd. Electronic musical instrument
US4479416A (en) * 1983-08-25 1984-10-30 Clague Kevin L Apparatus and method for transcribing music
US4627323A (en) * 1984-08-13 1986-12-09 New England Digital Corporation Pitch extractor apparatus and the like
US4690026A (en) * 1985-08-22 1987-09-01 Bing McCoy Pitch and amplitude calculator and converter which provides an output signal with a normalized frequency
US5038658A (en) * 1988-02-29 1991-08-13 Nec Home Electronics Ltd. Method for automatically transcribing music and apparatus therefore
US5440072A (en) * 1992-09-25 1995-08-08 Willis; Raymon A. System for rejuvenating vintage organs and pianos

Similar Documents

Publication Publication Date Title
US3647929A (en) Apparatus for reproducing musical notes from an encoded record
JP2965330B2 (en) Information playback device
US3683096A (en) Electronic player system for electrically operated musical instruments
US3905267A (en) Electronic player piano with record and playback feature
GB2120441A (en) Electronic apparatus with magnetic recrding and reproducing device
GB2304972A (en) An audio player for reproducing data as audio signals
US3671683A (en) Sentence oriented dictation system featuring random accessing of dictation segments
US3660616A (en) Dictating and transcribing systems featuring random sentence arrangement with recognition and location of sentences in a preferred sequence
US3652776A (en) Apparatus for simulating musical sound employing a scannable record and flying spot scanner
JP2655806B2 (en) Audio signal recording method for recording audio signal and audio signal reproducing method and apparatus
KR940012242A (en) How to play disc
GB1415987A (en) Keyboard instrument player system
JPS58164072A (en) Operating device for reproducing device of information recording disk
JPS6336066B2 (en)
JPS6252391B2 (en)
US3813472A (en) Electronic musical instrument with rhythm selection pulse generator
WO1992015087A1 (en) Musical data storage techniques
JPS6252390B2 (en)
CA1122448A (en) Dynamically adaptive player piano roll to magnetic tape formating system and playback
JPS5814189A (en) Performance recording controller
KR0136035B1 (en) Video music accompaniment recording medium recorded chorus signal and reproducing apparatus thereof
CA1085659A (en) Electronic player piano with record and playback feature
KR0184392B1 (en) Total song titles showing method of cdg player
CA1074158A (en) Electronic player piano with record and playback feature
JPS6132748B2 (en)