US3643327A - Method of making a series of electrical connections - Google Patents

Method of making a series of electrical connections Download PDF

Info

Publication number
US3643327A
US3643327A US888095A US3643327DA US3643327A US 3643327 A US3643327 A US 3643327A US 888095 A US888095 A US 888095A US 3643327D A US3643327D A US 3643327DA US 3643327 A US3643327 A US 3643327A
Authority
US
United States
Prior art keywords
connector
staking
electrical
machine
index wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US888095A
Inventor
David L Jackson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Installation Products Inc
Original Assignee
Thomas and Betts Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomas and Betts Corp filed Critical Thomas and Betts Corp
Application granted granted Critical
Publication of US3643327A publication Critical patent/US3643327A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R43/00Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors
    • H01R43/04Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors for forming connections by deformation, e.g. crimping tool
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49174Assembling terminal to elongated conductor
    • Y10T29/49181Assembling terminal to elongated conductor by deforming
    • Y10T29/49183Assembling terminal to elongated conductor by deforming of ferrule about conductor and terminal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining
    • Y10T29/49908Joining by deforming
    • Y10T29/49925Inward deformation of aperture or hollow body wall
    • Y10T29/49927Hollow body is axially joined cup or tube
    • Y10T29/49929Joined to rod
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/5313Means to assemble electrical device
    • Y10T29/532Conductor
    • Y10T29/53209Terminal or connector
    • Y10T29/53213Assembled to wire-type conductor
    • Y10T29/53235Means to fasten by deformation

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Of Electrical Connectors (AREA)

Abstract

The connectors are deposited in the rotary wheel at the rear of the machine and fed to the staking station at the front of the machine. The staking jaws come together to stake the connector on a pair of conductors by crimping the notched ends of the connector over the conductors. The index system indexes the rotary wheel in synchronism with the staking jaws to sequentially advance another connector into the staking station after a connection has been made with a previous connector.

Description

United States Jackson ieni [ 1 i eh,22,i9/2
[54] METHOD UF MAMHNG A SERIES (11F ELECTRICAL iIUNNECTliUNfi [72] Inventor: David L. .llaekson, Doylestown, Pa.
[73] Assignee: Thomas & Betts Corporation, Elizabeth,
[22] Filed: Dec. 17, 1969 [21] App1.1 lo.: 888,095
Related US. Application Data [62] Division of Ser No. 648,795,,June 26, 1967, Pat. No.
[52] 11.5. C1. ..29/628 1R, 29/203 DT, 29/517 R, 29/629 R, 29/630 A, 29/630 F, 72/407 [51] Int. Cl. ..H0llr 9/00 [58] Field of Search ..29/630 A, 628, 203 DT, 629; 72/407, 410
[56] References (Iited UNITED STATES PATENTS 1,836,497 12/1931 Phelps et a1 ..29/203 DT X 2,534,867 12/1950 Hennessey ..29/203 D'l" UX 3,239,924 3/1966 Wagner ..29/203 3,263,316 8/1966 Schrader ..29/203 3,406,247 10/1968 Papsons ..29/628 Primary Examiner-John F. Campbell Assistant Examinerl1obert W. Church Attorney-Thomas 1V1. Marshall The connectors are deposited in the rotary wheel at the rear of the machine and fed to the staking station at the front of the machine. The staking jaws come together to stake the connector on a pair of conductors by crimping the notched ends of the connector over the conductors. The index system indexes the rotary wheel in synchronism with the staking jaws to sequentially advance another connector into the staking station after a connection has been made with a previous connector.
5 Claims, 14 Drawing Figures PAIENTEnmzz I972 3, 643 327 SHEET 0F 8 EMMY? INVENTOR. 0/41 10 L decKso v amaam PATENTED FEB 2 2 I972 SHEET 3 UF 8 IINVEN'IOR. DAV/0 L JACKSON TTOPAf) Pmmmm 22 m2 SHEET 5 BF 3 INVENTOR.
DA V/D Z J /y PMENTEDFEB 2 2 19?? SHEET BF 8 INVliN/UR DAV/D Z. rJ/QcKSOv PATENTEUFEB22 I972 30 6A8 337 SHEET or 8 1 Z INVENTOR.
1 DAV/0 Z. L/MSO Y METHOD OF MAKING A SERIES OF ELECTRICAL CONNECTIONS This is a division of application Ser. No. 648,795, filed June 26, 1967 by David L. Jackson for a FEEDING AND STAK- ING MACHINE FOR MAKING A CONNECTION, now U.S. Pat. No. 3,509,615 issued May 5, 1970.
The invention relates to a feeding and staking machine. More particularly, the invention relates to a feeding and staking machine and method for forming an electrical and mechanical connection between a pair of conductor wires and a connector. Still more particularly, the invention relates to a machine and method for making a solderless electrical and mechanical connection between a pair of conductor wires and a solderless connector.
Generally, the feeding and staking machine of the invention is constructed to segregate a series of solderless electrical connectors, such as the connectors described in copending U.S. Pat. application Ser. No. 555,745, filed June 7, 1966, and to sequentially feed each connector into a staking station. The machine is further constructed to stake a pair of conductors within the confines of each connector so as to form an electrical and mechanical connection.
The connectors which are staked onto the conductors are fed to the machine through means of a magazine mounted to the rear ofthe machine. An index wheel is rotatably mounted within the machine and is formed with a series of peripheral grooves to receive the connectors from the magazine. As the index wheel rotates toward the front of the machine, each received connector is brought into the staking station while being positively held in a groove. The wheel remains stationary while a pair of conductor wires are inserted into receiving notches at the ends of the connector in the staking station and a pair ofjaws are directed against the notched ends of the con nector in opposition to each other. The jaws are shaped so as to stake or crimp the walls of each notch about a conductor wire so as to mechanically and electrically join the connector to each conductor. The connection ofconductors and connector is then removed from the machine. The jaws are actuated in synchronism with the index wheel so that as the jaws are moved away from the formed connection at the staking station, the index wheel is rotated to bring the next connector into the staking station.
Since the connectors to be staked by the machine have a slot centrally of the notches, a mandrel is positioned within each groove of the wheel of the machine to project into the slot of a connector so as to maintain the contour of the slot during staking of the conductors to the connector. The mandrel is further used to positively position a connector in the staking station. This is accomplished by initially having the mandrel project into the connector slot upon deposition of the connector in a groove and by subsequently having the mandrel cammed outwardly of the index wheel during rotation of the index wheel toward the staking station. As the index wheel is brought into position adjacent the staking station, the mandrel moves the connector out of the groove so that the wheel cannot interfere with the reciprocating movements of the staking jaws. After the connection is formed and the index wheel continues to rotate, the mandrel is retracted into the index wheel to position another connector.
Accordingly, it is an object of the invention to provide a machine for staking a solderless connector onto an electrical conductor.
It is another object of the invention to make a solderless electrical connection between a connector and an electrical conductor.
It is another object of the invention to provide a machine for automatically making a solderless electrical connection between a deformable connector and a pair of electrical conductors.
It is another object of the invention to provide a machine and method for making a rapid series of electrical and mechanical connections between a series of sequentially fed deformable connectors and a plurality of conductors.
It is another object of the invention to maintain the slot contour ofa centrally slotted connector during staking of the connector onto a conductor at least one notched end thereof.
These and other objects and advantages of the invention will become more apparent from the following detailed description and appended claims taken in conjunction with the accompanying drawings in which:
FIG. 1 illustrates a side view of a feeding and staking machine according to the invention;
FIG. 2 illustrates a front view of the machine of FIG. 1;
FIG. 3 illustrates a fragmentary front view of the machine of FIG. I with a connector in the staking station;
FIG. 4 illustrates a view taken on line 44 of FIG. 2 of the index wheel and mandrels;
FIG. 5 illustrates a fragmentary view taken on line 5-5 of FIG. 3 of an index system for the index wheel and a cam groove for the mandrels;
FIG. 6 illustrates a view taken on line 6-6 of FIG. 5 of an access opening and cam insert plate;
FIG. 7 illustrates a view taken on line 7-7 of FIG. 4;
FIG. 8 illustrates a perspective view of the index wheel and index system prior to indexing of the index wheel;
FIG. 9 illustrates a perspective view of the index wheel and index system after indexing of the index wheel;
FIG. 10 illustrates a perspective view ofa connector and the staking jaws in the staking station prior to staking onto a pair ofconductors;
FIG. 11 illustrates a perspective view of a connection and the stakingjaws in staking position;
FIG. 12 illustrates a perspective view of a connection formed by the machine; I
FIG. 13 illustrates a view of a connector utilized by the machine; and
FIG. I4 schematically illustrates an electrical circuit of the machine of the invention.
Referring to FIG. I, the feed and staking machine I5 is supplied with a series of aligned connectors through a magazine I6 mounted to the rear of the machine. The magazine 16 may be of a replaceable type so that after a series of connectors have been deposited into the machine IS the magazine 16 can be removed for refilling while another like magazine I6 is mounted on the machine I5. Alternatively, the magazine 16 can be of a permanent type insofar as the magazine 16 can be continuously fed with connectors from a suitable source 17, for example, a sorting apparatus as disclosed in copending patent application Ser. No. 648,674 filed June 26, 1967, now U.S. Pat. No. 3,457,693.
Referring to FIG. 13, the connectors deposited into the feeding and staking machine are of the type disclosed in copending patent application Ser. No. 555,745, filed June 7, 1966. For example, each connector I8 is formed in a generally oval shape with a pair of notches I9, 20, one at each end, and a central slot 21 disposed on axes perpendicular to the plane of the connector 18. The slot 21 can be chamfered at each end to facilitate mounting of a tab therein. The connector 18 can be made of a material such as a sintered powder metal which has a compressive-tensile loading characteristic determined by a degree of ductility which enables the connector to be crimped about each notch 19, 20 to close each notch upon being subjected to a compressive load directed substantially in alignment with the common axis of the notches I9, 20 and a degree of frangibility which enables the connector to be compressed centrally between the notches I9, 20 to initially open each notch upon being subjected to a compressive load directed substantially perpendicular to the common axis of the notches I9, 20 between the notches and to be shattered upon being subjected to a subsequent compressive load directed substantially perpendicular to the common axis of the opened notches 19, 20 therebetween. Alternatively, the connector 18 can be made of a material which has a loading characteristic which only enables the connector to close around the notches I9, 20 upon being subjected to a compressive crimping load applied substantially in alignment with the common axis of the notches I9, 20.
Referring again to FIG. 1, magazine 16 deposits each connector sequentially into an index wheel 22 rotatably mounted within the machine 15. The index wheel 22 is indexed to rotate in a clockwise manner as viewed in FIG. 1 by an index system 23 so as to bring each deposited connector to a staking station at the front of the machine 15. A staking assembly 24 is mounted at the front of the machine to crimp the connector onto a pair of conductors. The staking assembly 24 and index system 23 are in synchronism with each other to effect crimping of aconnector after the index wheel 22 has been advanced clockwise.
Referring to FIGS. 4, 5 and 7, index wheel 22 is fixed on a bushing 25 which is journaled on a stationary shaft 26 mounted within and between a pair of side plates 27, 28. The sideplates 27, 28 are fixed to a baseplate 29 at the bottom as by bolts (not shown) and are bridged by a shroud assembly 30 at the top in order to cover the index wheel 22 along the topmost surface from a point substantially adjacent the magazine 16 (FIG. 4) to a point beyond the topmost point of the index wheel.
The shroud assembly 30 includes a flat plate 31 bolted to the sideplates 27, 28 and a formed plate 32 which is fastened as by bolts (not shown) within a recess 33 in flat plate 31. The formed plate 32 projects from flat plate 31 toward the mounting position ofthe magazine 16 and has a lower curved surface 34 conforming to the contour of the index wheel periphery. In addition, the formed plate 32 has a longitudinal slot 35 in the lower curved surface 34 for a purpose hereinafter described.
Referring to FIGS. 4 and 7, index wheel 22 is provided with a plurality of circumferentially spaced recesses 36 to one side of the wheel. Each recess 36 is open with respect to the adjacent sideplate 28 and with respect to a radially outward direction. A ring 37 is press-fitted or otherwise secured to the index wheel 22 about the periphery of recesses 36 so as to close off the recesses radially. The ring 37 is formed with a series of circumferentially spaced grooves 38 in the outer radial surface, each of which is disposed over a recess 36 in the index wheel 22. Each groove 38 is substantially as deep as the thickness ofa connector 18, e.g., 3/32 inch, at one end and is formed with a base 39 which intersects with the peripheral surface of the ring 37 at the other end. Additionally, each groove is substantially as wide as a connector 18. The ring 37 has holes 40 passing radially through the ring 37 to communicate each groove 38 with a recess 36 radially inwardly of the groove. A mandrel assembly 41 is slidably positioned in each recess 36 around the circumference of the index wheel. Each mandrel assembly 41 includes a block 42 which is sized to be guided by the walls of a recess 36, a mandrel 43 which extends from the block 42 through a hole 40 in ring 37 into a groove 38 and a cam follower 44 which extends from the block 41 toward side plate 28. The mandrel 43 is sized at the free end .with a rectangular cross-sectional shape to extend into the central slot 21 ofa connector 18 with a relatively close fit. In order to facilitate entry into a connector 18, the tip of the mandrel 43 is chamfered on all four sides.
Referring to FIGS. 5 and 7, sideplate 28 is provided with a cam ring 45 which is set into the inside of the sideplate 28 in facing relation to the index wheel 22. The cam ring 45 has a cam groove 46 formed therein into which each cam follower 44 of each mandrel assembly 41 projects. The cam groove 46 is sized with respect to the cam followers 44 to cause the mandrel assemblies 41 to reciprocate within the recesses 36 relative to ring 37. The cam groove 46 is formed with opposite working edges so as to move each mandrel assembly 41. from an innermost position at a point substantially coincident with the point at which the magazine 16 deposits the connectors 18 into the index wheel 22 to an outmost position at a point coincident with the staking station at the front of the machine 15.
Referring to FIGS. 5 and 6, the sideplate 28 is formed with a passageway 47 which is positioned within the plane of index wheel 22 and sized to permit insertion or removal ofa mandrel assembly 41 through the sideplate 28 into or from the index wheel. The passageway 47 is closed off by a cam insert 48 which has a cam groove 49 coincident with cam groove 46 in cam ring 45 to forma continuous cam groove. In addition, the cam insert 48 is formed in a T-shaped manner with an enlarged flange 50 which is secured, as by bolts, to the exterior ofsideplate 28.
Referring to FIGS. 1, 4 and 7, index system 23 cooperates with a series of circumferentially spaced chamfer-faced dowel pins 51 secured on index wheel 22 to rotate index wheel 22 in a clockwise manner as viewed in FIG. 4. The pitch of dowel pins 51 corresponds with the pitch of the mandrel assemblies 41 so that each movement of the index wheel brings the next mandrel assembly under magazine 16 or into the staking position. The index system 23 includes a slide 52 slidably mounted on baseplate 29 between sideplates 27, 28 both of which are recessed to guide the slide 52. The slide 52 has a mounting block 53 secured thereon in which a reciprocal piston 54 ofa cylinder assembly 55 is mounted, as by threading. The cylinder assembly 55is suitably mounted on the base plate 29 by a mounting block 56 to the rear of the slide 52. The slide 52 has a side recess 57 near the forward end in which a vertical plate 58 is pivotally mounted as by pin 59. The plate 58 has a thinned section which extends upwardly from slide 52 into the projected path of the dowel pins 51 ofindex wheel 22. In addition, a bore 60 is formed in slide 52 within recess 57 to contain a compression spring 61 which spring biases the upper section of plate 58 toward the index wheel 22 and against the slide 52.
The index system 23 also includes a lever 62 which is pivotally mounted on a pin 63 secured in sideplate 27 and spring biased by a spring 64 about pin 63 toward the slide 52. The free end of lever 62 has a depending chamfered tang 65 which contacts slide 52 and which is sized to project into a chamfered groove 66 disposed in the upper surface of slide 52. The lever 62 cooperates with the slide 52 and plate 58 to act as a stop for the dowel pins 51 of the index wheel 22 upon completion of an indexing stroke by the slide 52 as well as a lock to retain the index wheel in position.
Additionally, a kickback pin 67 (FIG. 7) is mounted in the sideplate 27 to project into the path of the dowel pins 51 at a position downstream of lever 62. The pin 67 is secured to one end ofa spring 68 which is fixed at the other end to the exterior of sideplate 27 (FIG. 5) and is provided with a chamfered end to permit passage of the dowel pins 51 in a clockwise direction as viewed in FIG. 4.
Referring to FIGS. 1, 2 and 4, the staking assembly 24 is mounted on the shroud assembly 30 to extend in front of the machine 15. The staking assembly 24 includes a guide plate 69 secured by bolts 70 to the front of sideplate 27, 28, a cover plate 71 secured to the face of guide plate 69, a pair of staking jaws 72 slidably positioned between the guide plate 70 and cover plate 71, and a pair of cam blades 73 for moving the stakingjaws 72 toward the connector 18 in the staking station.
The guide plate 69 is formed with a pair of cruciform grooves 74, 75 which receive and guide the staking jaws 72 and cam blades 73 in crosswise manner. Each stakingjaw 72 is formed with a reduced forward end 76 which has a staking groove 77 in the face thereof. The staking groove 77 is formed, for example, in a semihexagonal shape, to be complementary to the staking groove of the opposed staking jaw 72. In addition, each staking jaw 72 has a sloped edge 78 near the end opposite the forward end 76 and is secured to a headed pin 79 which extends outwardly of guide plate 69. The headed pin 79 passes through a washer 80 abutting the guide plate 69 through a compression spring 81 between the washer 80 and head 82 so as to be biased outwardly of the guide plate 69. Each cam blade 73 is formed with a sloped forward end 83 which is complementary to the sloped edge 78 of the staking jaw 72 and which is sized to contact the sloped edge 78 of a staking jaw 72.
The cam blades 73 are secured at the upper ends within the notches 84 of a cam blade holder 85 by a clamp plate 86 secured, as by bolts 87, to the cam blade holder 85. In addition, a cam cover adjusting plate 88 is secured to the cam blade holder 85 and clamp plate 86 to form a weighted unit. A reciprocal piston 89 ofa cylinder assembly 90 is secured as by threading in the cam blade holder 85 and passes through the adjusting plate 88 and a locknut 91. The cylinder assembly 98 includes a mounting plate 92 which is secured by means of plates 93, 931, 93' and bolts 94 to the flat plate 31 of shroud assembly 30.
The operation of the machine is described in the following. Referring to FIG. 4, with the magazine 16 in place on the machine 15, a connector 18 is deposited into the deep end of groove 38 in a position to permit the mandrel 13 ofa mandrel assembly 41 to pass through the central slot 21 in the connector 18. Next, referring to FIGS. 8 and 9, the slide 52 of the index system 23 moves toward the front of the machine 15 due to the movement of piston 54 out of cylinder assembly 55. During this movement the spring'biased plate 58 initially contacts the chamfered face ofthe dowel pin 51 in the path of the plate 58 and then slides over the dowel pin 51. while pivoting on pin 59 away from the dowel pin 51'. Upon passing by the dowel pin 51, the plate 58 springs back behind the dowel pin 51' under the bias of spring 60. At the same time as the slide 52 moves toward the front of the machine 15, lever 62 drops into the groove 66 in the slide 52 under the spring-biasing force of spring 64. The slide 52 then returns toward the back of the machine 15 as the piston 54 retracts into cylinder assembly 55 with the plate 58 pushing the dowel pin 51. This causes the index wheel 22 to rotate in a clockwise manner as viewed in FIG. 8 toward the connector receiving station. As
I the index wheel 22 rotates, dowel pin 51' moves over the lever 62 while the lever 62 is in the groove 66.Upon passing of the dowel pin 51., lever 62 is pivoted upwardly under the force of the slide 52 by means of the chamferedwall of groove 66 to again project into the path of the dowel pins 51. The slide 52 continues to move until dowel pin 51 abuts the lever 62. Dowel pin 51' is then locked in place between lever 62 and plate 58 (FIG. 9). As the index wheel 22 rotates, the dowel pin 51' nearest the kickback pin 67 in the sense of rotation moves against the chamfered end of the pin 67 to force the pin 67 outwardly of the machine. This permits dowel pin 51" to pass by the kickback pin 67. When the index wheel 22 is brought to a stop, the dowel pin 51 is positioned on the side of the pin 67 remote from dowel pin 51" in contact with pin 67. Since the kickback pin 67 and dowel pin 51" have abutting walls perpendicular to index wheel 22, the index wheel 22 is prevented from rotating, or kicking back, in a counterclockwise direction as viewed in FlG. 9 especially during forward movements ofslide 52.
The index wheel 22 is repeatedly indexed in the above described manner until the received connector 18 is moved to the staking position.
Referring to FIGS. 4, 5 and 7, as the index wheel 22 rotates, the mandrel assembly 41 which receives the deposited connector under magazine 16 is moved radially of the index wheel 22 through the cam follower 44 positioned in the cam groove 46 in cam ring 45. Initially, the mandrel assembly 41 is positioned under the magazine 16 so that mandrel 43' projects into the groove 38 a sufficient amount to pass into the slot 21 of the deposited connector 18. Thereafter, as the index wheel 22 rotates, the connector 18 moves under the formed plate 32 while the mandrel assembly 41' begins to move radially outwardly of the index wheel 22. As the mandrel assembly 41 moves radially, the mandrel 43 passes completely through the connector 18 into the groove 35 of formed plate 32 while the connector 18 is slidably confined between the shroud assembly and index wheel 22. Upon continued rotation of index wheel 22, the mandrel assembly 41 moves radially outwardly until reaching the staking station. Upon reaching the staking station, the connector 18 on mandrel 43' is in a position centrally between the opened staking jaws 72 of the staking assembly 24 (FIG. 4).
Continued rotation ofindex wheel 22 allows the mandrel assembly 41 at the staking station to be moved radially inwardly under the influence of cam groove 46 until reaching the position under magazine 16.
Referring to FIGS. 2, 3, 10 and 11, when a connector 18 is broughtinto thestaking station, the staking jaws 72 are in an open position. Thereafter, with the index wheel 22 stopped in a locked position by virtue of the index system 23 and pin 67, the bared wire ends 95 of a pair of conductors 96 are inserted into the notches 19, 20 of the connector 18 (FIG. 10). Next, the cylinder assembly is actuated to move piston 89 and, consequently, the cam blades 73 downwardly. As the cam blades 73 move downwardly, the sloped forward ends 83 move along the sloped edges 78 ofthe staking jaws 72 to cause the staking jaws to close on the connector 18 (FIG. 11). As the staking jaws 72 close on the connector 18, the walls of the notches 19-, 20 are crimped over the wire ends to firmly secure the wire ends within the connector 18 to form an electrical and mechanical connection. During this time, the connector 18 is subjected to compressive forces substantially parallel to the common axis of notches 19, 20 which deform the connector 18 from the original ovate shape to the contour of the staking grooves 77, i.e., a generally hexagonal shape.
. Also, during this time, the mandrel 43 remains in slot 21 so as to maintain the contour ofthe slot 21.
After a pair of conductors 96 have: been staked within a connector 18, the piston 89 moves upwardly causing the cam blades 73 to do likewise. This allows the springs 81 to move the pins 79 and staking jaws 72 outwardly to open the staking jaws 72. The formed connection is then removed, e.g., manually. Therefore, the index wheel 22 is indexed to bring another connector 18 into the staking station for repeated operations.
Referring to FIG. 12, a connection 97 formed by the machine includes a connector 18 having a central slot 21, e.g., for connection to a tab (not shown) of an electrical system, and a pair of electrical conductors 96 electrically and mechanically secured therein.
While the feeding and staking machine of the invention is capable of manual operation, it is intended to operate the machine automatically. In this latter regard, the machine 15 can be operated through an electrical system. For example, referring to FIG. 1, the index system 23 is provided with a pair of spaced switches 98, 99, one of which :is mounted on mounting block 56 with a switch-actuating lever 100 in the path of the mounting block 53 of slide 52 and the other of which is mounted on sideplate 27 with a switch-actuating lever 101 in the path of the mounting block 53. Similarly, the staking assembly 24 is provided with a pair of spaced switches 102, 103, one of which is mounted on the mounting plate 92 with a switch-actuating lever 104 in the path of the adjusting plate 88 of cam blades 73 and the other of which is mounted to the shroud assembly 30 with a switch-actuating lever 105 in the path ofthe adjusting plate 88.
Referring to FIG. 14, the electrical circuit in which the switches 98, 99, 102, 103 are connected also connects to a pair ofcoils106, 106', 107, 107 in each cylinder assembly 90, 55 of the respective staking assembly 24 and index system 23. In this regard, it is noted that the cylinder assemblies 90, 55 are of the type wherein the respective pistons 89, 541 are reciprocated upon energization of each respective coil. The electrical circuit also includes a manual on-off switch 188 for actuating the circuit to enable the machine 15 to perform the functions offeeding and staking.
The electrical circuit has powerlines 109, 110 connected to a power source (e.g., a 120-volt, 60-cycle source). In addition, a transformer 111 of a stepdown type (e.g., 10 volts, 6O cycles) is connected to the circuit to connect the cylinder assem blies 55, 90 into the circuit. A line 112 having a normally closed relay contact 113 and a relay 11 1 is connected across the powerlines. Line 115 having a normally open relay contact 116 and a normally closed relay contact 117 connects between powerline 109 and terminal 118 :in line 112. Line 119 containing manual switch 108 and relay 120 and line 121 having a normally closed relay contact 122 and relay 123 connect between the powerlines. Line 12 1 having normally open relay contact 125 and normally closed relay contact 126 connects between powerline 109 and terminal 127 in line 121. Line 128 having switch 102 and relay 129 and line 130 having switch 103 and relay 131 connect between the powerlines. Line 132 having normally closed relay contact 133 and normally open relay contact 134 connects between powerline 109 and ter-' minal 135 in line 130. Line 136 having switch 137 connects between the powerlines.
Additionally, the powerlines 138, 139 of transformer 111 have a line 140 having switches 98, 102, normally closed relay contact 141, normally open relay contacts 142, 143, and coil 106' connected thereacross. Line 144 having switch 103 and coil 106, line 145 having normally open relay contacts 146, 147 and coil 107, and line 148 having normally open relay contact 149 and coil 107 between the powerlines 138, 139 complete the circuit.
Before switch 108 is closed, the piston 89 of the staking as sembly 24 and the piston 54 of the index system 23 are in retracted positions while the index wheel 22 has a groove 38 positioned under magazine 16 and a mandrel assembly 41 positioned at the staking station. Also, the switches 98 and 102 are closed.
Upon closing of switch 108, relay 120 is activated to open contact 113 and close contact 143. Relay 114 remains ac tivated through contacts 116 and 117, thereby holding contact 142 closed. The closing of contact 143 allows coil 106 to be energized. As coil 106 is energized, piston 86 is caused to move downwardly together with the cam blades 70. As piston 86 moves downwardly, switch 102 is opened thereby deenergizing coil 106'.
Simultaneously, as switch 102 opens, relay 129 becomes deactivated causing contact 122 to close and contact 147 to open. As contact 122 closes, relay 123 becomes activated causing contacts 125 and 146 to close. Contact 125 permits relay 123 to be maintained in an activated state.
At the point at which staking jaws 72 close on each other, plate 88 causes lever 105 to close switch 103'. This energizes coil 106 to return piston 89 toward the cylinder assembly 90.
Further, as switch 103 closes, relay 131 is activated to open contacts 117 and 141 and close contact 134. Opening of contact 117 deactivates relay 114 and consequently opens contacts 116 and 142, Closing of contact 134 maintains relay 131 in an activated state.
Upon the return of piston 89 to cylinder assembly 90, switch 102 now closes activating relay 129. With relay 129 activated contact 122 opens and contact 147 closes energizing coil 107'. With coil 107' energized piston 54 is caused to move outwardly of cylinder assembly 55. Thus, slide 52 moves toward the front ofthe machine,
As slide 52 moves to its outermost extent, it causes block 53 to trip lever 101 causing switch 99 to close. When switch 99 closes, it activates relay 137 which opens contacts 133 and 136. At the same time it closes contact 149. With the opening of contacts 133 and 136, relays 123 and 131 become activated. Contacts 125 and 134 open and contacts 117 and 141 close.
When contact 149 closes, coil 107 becomes energized and causes piston 54 to retract toward cylinder assembly 55.
99 and relay our Meanwhile, since relay 131 is maintained activated, contact 141 is held open and coil 106 cannot be energized until piston 54 has retracted to cylinder assembly 55 and caused switch 98 to close.
With the closing of switch 98 by piston 54, the circuit completes one cycle and is now in condition for recycling.
The invention provides a feeding and staking machine which is capable of rapidly making a great number of electrical connections between the feed connectors and conductors, for example, up to 5,000 connections per -hour day. The machine further makes a reliable solderless electrical and mechanical connection between the connector as described above and the conductors inserted therein.
It is to be noted that while the staking jaws of the machine have been described as having hexagonal staking grooves it is contemplated that other shaped staking grooves can be used de ending upon the connector to be crimp ed.
aving thus described the invention, it IS not intended that it be so limited as changes may be readily made therein without departing from the scope of the invention. Accordingly, it is intended that the foregoing Abstract of the Disclosure, and the subject matter described above and shown in the drawings be interpreted as illustrative and not in a limiting sense. v
What is claimed is:
1. A method of making a series of electrical connections, each between at least one electrical conductor and a compressible connector having a slot therethrough and an outwardly opening notch therein, which comprises the steps of positioning an aligned array of a plurality of said electrical connectors over a first position, separating the foremost connector of the array from the remainder of the connectors in the array in said first position by projecting a mandrel through the slot therein, moving the separated connector to a second position spaced from said first position, inserting at least one electrical conductor into the outwardly opening notch of the separated connector in said second position,
subsequently compressing the separated connector about the inserted conductor to form an electrical and mechani- .cal connection therewith, and removing the mandrel from the slot in the connector.
2. A method as set forth in claim 1 wherein the separated connector is moved on an arcuate path from said first position to said second position.
3. A method as set forth in claim 1 sequently compressing the separated serted conductor is performed in said second position.
4. A method as set forth in claim 1 wherein each electrical connector includes two outwardly opening notches and two electrical connectors are inserted into said notches of the separated connector and the connector is subsequently compressed about the inserted conductors to form an electrical and mechanical connection therein.
5. A method as set forth in claim 1 wherein the movement of the separated connector is cam controlled.
wherein said step of subconnector about the in- UNITED STATES PATENT UFFICE @ERTIFICATE @F COREQTWN Patent No. 3 I 643 I 327 Dated February 22 1972 Inventor(s) David L Jackson It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
Column 5, line 4, "93, 93, 93"" should be 93, 93' 93 Column 5, line 28, "dowel pin 51'" should be dowel pin 51' Column 6, line 28, "Therefore," should be Thereafter,
Signed and sealed this 19th day of September 1972 (SEAL) Attest:
EDWARD MJLETCHERJR. ROBERT GOT'I'SCHALK Attesting Officer Commissioner" of Patents FORM PO-1050 (10-69) UsCOMM-DC 60376P69 fl us GOVERNMENT PRINTING OFFICE: I969 0-366-334

Claims (5)

1. A method of making a series of electrical connections, each between at least one electrical conductor and a compressible connector having a slot therethrough and an outwardly opening notch therein, which comprises the steps of positioning an aligned array of a plurality of said electrical connectors over a first position, separating the foremost connector of the array from the remainder of the connectors in the array in said first position by projecting a mandrel through the slot therein, moving the separated connector to a second position spaced from said first position, inserting at least one electrical conductor into the outwardly opening notch of the separated connector in said second poSition, subsequently compressing the separated connector about the inserted conductor to form an electrical and mechanical connection therewith, and removing the mandrel from the slot in the connector.
2. A method as set forth in claim 1 wherein the separated connector is moved on an arcuate path from said first position to said second position.
3. A method as set forth in claim 1 wherein said step of subsequently compressing the separated connector about the inserted conductor is performed in said second position.
4. A method as set forth in claim 1 wherein each electrical connector includes two outwardly opening notches and two electrical connectors are inserted into said notches of the separated connector and the connector is subsequently compressed about the inserted conductors to form an electrical and mechanical connection therein.
5. A method as set forth in claim 1 wherein the movement of the separated connector is cam controlled.
US888095A 1967-06-26 1969-12-17 Method of making a series of electrical connections Expired - Lifetime US3643327A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US64879567A 1967-06-26 1967-06-26
US88809569A 1969-12-17 1969-12-17

Publications (1)

Publication Number Publication Date
US3643327A true US3643327A (en) 1972-02-22

Family

ID=27095467

Family Applications (1)

Application Number Title Priority Date Filing Date
US888095A Expired - Lifetime US3643327A (en) 1967-06-26 1969-12-17 Method of making a series of electrical connections

Country Status (1)

Country Link
US (1) US3643327A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2411744A1 (en) * 1973-04-17 1974-11-07 Loepfe Automation PRESS FOR PRESSING CONNECTING AT LEAST PARTIALLY WIRE-SHAPED PART WITH A TERMINAL PART
US4348806A (en) * 1980-03-17 1982-09-14 The Boeing Company Selective contact crimper
US4838069A (en) * 1988-02-12 1989-06-13 United Technologies Corporation Apparatus for fabricating integrally bladed rotors
US4841614A (en) * 1988-02-12 1989-06-27 United Technologies Corporation Method for fabricating integrally bladed rotors
US5046350A (en) * 1989-11-03 1991-09-10 United States Surgical Corporation Apparatus for attaching surgical suture components
US5099676A (en) * 1989-11-03 1992-03-31 United States Surgical Corporation Apparatus for attaching surgical suture components
US5131131A (en) * 1989-11-03 1992-07-21 United States Surgical Corporation Method for attaching surgical suture components
US5168619A (en) * 1989-11-03 1992-12-08 United States Surgical Corporation Method for attaching surgical suture components
US5350373A (en) * 1992-10-09 1994-09-27 United States Surgical Corporation Apparatus for attaching surgical suture components
US5383902A (en) * 1993-06-02 1995-01-24 United States Surgical Corporation Surgical needle-suture attachment for controlled suture release
US5394971A (en) * 1993-08-02 1995-03-07 United States Surgical Corporation Apparatus for attaching surgical suture components
US5707391A (en) * 1995-06-07 1998-01-13 United States Surgical Corporation Apparatus and method for attaching surgical needle suture components
US5722991A (en) * 1995-06-07 1998-03-03 United States Surgical Corporation Apparatus and method for attaching surgical needle suture components
US6330739B1 (en) * 1998-04-20 2001-12-18 Denso Corporation Caulking method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1836497A (en) * 1929-10-21 1931-12-15 Delco Remy Corp Conductor splicing machine
US2534867A (en) * 1945-01-11 1950-12-19 Western Electric Co Method of applying binding elements to cords
US3239924A (en) * 1965-02-09 1966-03-15 Amp Inc Electrical terminal applicator
US3263316A (en) * 1964-12-28 1966-08-02 Amp Inc Automatic terminal applicator mechanism
US3406247A (en) * 1967-10-09 1968-10-15 Amp Inc Electrical connections for pairs of conductors

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1836497A (en) * 1929-10-21 1931-12-15 Delco Remy Corp Conductor splicing machine
US2534867A (en) * 1945-01-11 1950-12-19 Western Electric Co Method of applying binding elements to cords
US3263316A (en) * 1964-12-28 1966-08-02 Amp Inc Automatic terminal applicator mechanism
US3239924A (en) * 1965-02-09 1966-03-15 Amp Inc Electrical terminal applicator
US3406247A (en) * 1967-10-09 1968-10-15 Amp Inc Electrical connections for pairs of conductors

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2411744A1 (en) * 1973-04-17 1974-11-07 Loepfe Automation PRESS FOR PRESSING CONNECTING AT LEAST PARTIALLY WIRE-SHAPED PART WITH A TERMINAL PART
US4348806A (en) * 1980-03-17 1982-09-14 The Boeing Company Selective contact crimper
US4838069A (en) * 1988-02-12 1989-06-13 United Technologies Corporation Apparatus for fabricating integrally bladed rotors
US4841614A (en) * 1988-02-12 1989-06-27 United Technologies Corporation Method for fabricating integrally bladed rotors
US5046350A (en) * 1989-11-03 1991-09-10 United States Surgical Corporation Apparatus for attaching surgical suture components
US5099676A (en) * 1989-11-03 1992-03-31 United States Surgical Corporation Apparatus for attaching surgical suture components
US5131131A (en) * 1989-11-03 1992-07-21 United States Surgical Corporation Method for attaching surgical suture components
US5168619A (en) * 1989-11-03 1992-12-08 United States Surgical Corporation Method for attaching surgical suture components
US5350373A (en) * 1992-10-09 1994-09-27 United States Surgical Corporation Apparatus for attaching surgical suture components
US5462543A (en) * 1992-10-09 1995-10-31 United States Surgical Corporation Apparatus for attaching surgical suture components
US5608962A (en) * 1992-10-09 1997-03-11 United States Surgical Corporation Method and apparatus for attaching surgical suture components
US5383902A (en) * 1993-06-02 1995-01-24 United States Surgical Corporation Surgical needle-suture attachment for controlled suture release
US5568746A (en) * 1993-06-02 1996-10-29 United States Surgical Corporation Surgical needle-suture attachment for controlled suture release
US5394971A (en) * 1993-08-02 1995-03-07 United States Surgical Corporation Apparatus for attaching surgical suture components
US5707391A (en) * 1995-06-07 1998-01-13 United States Surgical Corporation Apparatus and method for attaching surgical needle suture components
US5722991A (en) * 1995-06-07 1998-03-03 United States Surgical Corporation Apparatus and method for attaching surgical needle suture components
US6330739B1 (en) * 1998-04-20 2001-12-18 Denso Corporation Caulking method

Similar Documents

Publication Publication Date Title
US3643327A (en) Method of making a series of electrical connections
US3570100A (en) Insulation stripping attachment for electrical connector crimping press and connector crimping press having insulation stripping means
US4979291A (en) Apparatus and method of terminating a wire to a two part insulated terminal
JP2815942B2 (en) Ram operating means of press for wire termination
US5174022A (en) Apparatus and method of terminating a wire to a two part insulated terminal
US3393438A (en) Crimping tool
US2812676A (en) Plier-type, magazine-feed crimping and cutting hand tool
US3328872A (en) Apparatus for making crimped electrical connections
US2789278A (en) Electrical connection and method of making the same
US2777345A (en) Magazine-type hand tool for crimping electrical connectors
US4332083A (en) Terminating apparatus for flat cable
US3611782A (en) Compression tool for electrical connectors
US2684004A (en) Tool for crimping electrical connectors
EP0004779B1 (en) Apparatus for applying electrical connectors to cables
GB1366626A (en) Machines for crimping connectors to wires
US3509615A (en) Feeding and staking machine for making a connection
US3416213A (en) Crimping apparatus for electrical terminals
US2897870A (en) Apparatus for applying terminals by crimping and severing lead terminal from connecting strip without severing said strip
US3141492A (en) Apparatus for forming leads attached to components
US3839787A (en) Assembling electrical components
US3420086A (en) Hand tool for crimping terminals
US3481018A (en) Electrical connector crimping apparatus
US3018679A (en) Apparatus for severing electrical leads from a continuous wire source
US4754536A (en) Apparatus and method for connectors of varying dimensions
US2839824A (en) Method of severing pin type connectors from strips thereof