US3624822A - Gas separator for a submersible oil pump - Google Patents

Gas separator for a submersible oil pump Download PDF

Info

Publication number
US3624822A
US3624822A US29474A US3624822DA US3624822A US 3624822 A US3624822 A US 3624822A US 29474 A US29474 A US 29474A US 3624822D A US3624822D A US 3624822DA US 3624822 A US3624822 A US 3624822A
Authority
US
United States
Prior art keywords
well fluid
gas
impeller
well
inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US29474A
Inventor
Joseph T Carle
Charles L Choate
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oil Dynamics Inc
Original Assignee
Oil Dynamics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oil Dynamics Inc filed Critical Oil Dynamics Inc
Application granted granted Critical
Publication of US3624822A publication Critical patent/US3624822A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/34Arrangements for separating materials produced by the well
    • E21B43/38Arrangements for separating materials produced by the well in the well
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D9/00Priming; Preventing vapour lock
    • F04D9/001Preventing vapour lock
    • F04D9/002Preventing vapour lock by means in the very pump

Definitions

  • a gas separator interposed between a submersible pump and electric motor includes a plurality of flow diversion means including a coaxial impeller for impelling well fluid through a spiral gas separator chamber wherein entrained gas is centrifugally separated from the well fluid. The disentrained gas is subsequently returned to the well fluid basin while the well fluid passes from the gas separator chamber into the inlet ofa submersible pump.
  • This invention relates to gas separators and more particularly to a gas separator for use with a submersible pump for oil and gas wells.
  • the gas separator of this invention is interposed between a pump and the electric driving motor therefor and comprises a housing containing within the interior thereof an impeller which assists the propulsion of well fluid normally on its flow to the pump intake through a separation chamber where gas is centrifugally disentrained from the well fluid.
  • the disentrained gas passes into and through a gas-collecting receptacle and subsequently is returned back into the well fluid basin while the well fluid progresses from the gas separation chamber into the inlet of the pump.
  • the inlet to the impeller includes a plurality of vertically nested inlet cylinders or cups through which the flow of fluids is controlled.
  • FIG. I of the drawings is a partial cross-sectional view of the lower segment of the gas separator of this invention showing the same longitudinally disposed within a well casing.
  • FIG. 2 of the drawings is a partial cross-sectional view of an intermediate portion of the gas separator.
  • FIG. 3 is a partial cross-sectional view of the upper portion of the gas separator of this invention.
  • the gas separator of this invention generally denoted as the numeral is interposed between a pump designated as block 12 on the drawings and pump-driving motor denoted as block 14.
  • the pump is driven by motor 14 through a coaxial shaft 16 extending longitudinally through gas separator 10.
  • Suitable splines 18 are provided on shaft 16 for appropriate connections with the respective shafts of the pump and motor.
  • the interconnected pump, gas separator 10, and pump driving motor 14, form an integral unit for insertion within the casing 20 of an oil or gas well.
  • the outer wall of separator 10 When received within the well casing 20, the outer wall of separator 10 is spaced relative to the inner wall of the well casing so as to permit flow of well fluid 22 therebetween.
  • Well fluids may include oil, gas and water or combinations thereof.
  • gas separator 10 is at least partially submerged in the well fluid basin and preferably totally submerged therein.
  • the separator I0 is composed of a plurality of inlet cup members coaxially assembled or nested.
  • a base member 24 is provided at the lower end thereof with a flange 26 for connection with a mating flange on the housing of pump-driving motor 14 in a conventional manner and includes a hollow interior within which shaft I6 is splined or otherwise coupled to the shaft of motor 14.
  • base member 24 is provided with an upstanding circular flange having, in this instance, outer peripheral threads for engaging the lower end of an elongated cylindrical housing 28 which terminates its upper end by connection with a tubular adapter 30 having a plurality of longitudinal fluid apertures 32.
  • the adapter 30 is outwardly notched to form a circular receiving surface 34 which receives and carries the lower edge of a cylindrical cup support 36.
  • a plurality of transverse oval ports 38 are adjacent the upper end of support 36.
  • cup support 36 The upper peripheral edge of cup support 36 is flat to receive longitudinally nested cylindrical cup members 40A, 40B, 40C, 40D and 40E.
  • Each cylindrical cup member includes an upper portion and at the lower end thereof a downwardly projecting inset portion 42 with an interlocking surface 44 to receive the next adjacent cup member therebetween.
  • Lip portion 42 of lowest cup member 40A projects downwardly into the interior of cup support 36.
  • the interlocking surface 44 of the highest cup member 40E receives the lower end of a head member 46 which in turn is appropriately secured to the housing of pump 12.
  • Each of the cup members 42A-42E contains therein a plurality of rectangular transverse inlet ports 48 providing access means for well fluid 22 to enter the interior of gas separator 10. Progressing upwardly from the lowest to the highest cup member the area of ports on each succeeding cup member increases to that the volume of well fluid 22 capable of entering the interior of the gas separator through each of the ports also increases from the lowest to the highest cup member.
  • a longitudinal sleeve 50 coaxially received over the shaft 16 is a longitudinal sleeve 50, which may be comprised of a plurality of separate nested sleeves.
  • Impeller 54 has therein a plurality of Iongitudinal openings 57 defining an impeller inlet and outlet.
  • a gas separation chamber 58 Coaxially received over shaft 16 directly above impeller 54 is a gas separation chamber 58 composed of an elongated core 60 and possessing an internal gas annulus 62 which communicates with the well basin through upper port 64, and with the outlet of impeller 54 through port 66.
  • an upwardly inclined spiraled flange 68 Progressing horizontally outwardly and upwardly from the bottom of the top of the outer wall of core 60 is an upwardly inclined spiraled flange 68 the outer edge of which is bounded by a coaxial encompassing member 70 sleeved thereover and extending downwardly to rest on impeller support 52.
  • the coaxial superpositioning of encompassing member 70 over core 60 and flange 68 creates an annular impeller outlet chamber 72 for accepting fluid expelled by impeller 54 and a continuous enclosed upwardly spiraled passageway 74 through gas separation chamber 58 communicating at the lower end thereof with impeller outlet chamber 72.
  • transverse ports 76 enable passageway 74 to communicate with gas receptacle 68 at a plurality of points.
  • Gas separation chamber 58 terminates with an upwardly progressing circular flange 78 having the upper outer peripheral edge thereof notched to engage the inner lower edge of tubular adapter 30.
  • Tubular member 80 Threadably received in the inner threads of adapter 30 is the lower end of a tubular member 80 projecting upwardly through cup support 36 and cup members 40A-40E to threadably engage at the upper end thereof the internal threads of head member 46.
  • Tubular member 80 divides the upper portion of the gas separator into an elongated annular well fluid outlet passageway 82 communicating with the inlet of the pump and an elongated annular well fluid inlet passageway 84 which communicates through apertures 32 in adapter 30 with the annular spacing between encompassing member 70 and cup support 36 to provide a well fluid flow route to the inlet of impeller 54.
  • ports 48 and the lip portions 42 associated therewith form tributaries feeding well fluid 22 into inlet passage 84.
  • well fluid entering through inlet ports 48 in the cup members is channeled downwardly into inlet passageway 84 and subsequently into the inlet of impeller 54.
  • a stream of well fluid 22 along with any free and entrained gas molecules enters the separator through inlet ports 48-in the longitudinal cup members 40A-40E (depending on the level) and also through the ports 38 in cup supports 36.
  • the fluid is then channeled downwardly by lip portions 42 into well fluid inlet passageway 84 and continues downwardly through the spacing between the encompassing member 70 and the wall of cup support 36 to the inlet of the impeller 54.
  • a portion of the entrained gas molecules becomes disentrained for which reason the receiving of the greatest volume of well fluid in ports 48 in the upper cup members is desirable.
  • lmpeller 54 rotating at same revolutions per minute as the shaft 16, creates a suction force of sufficient magnitude to reverse the flow of well fluid 22 and to draw the same upwardly into the inlet thereof.
  • the well fluid exiting from the outlet of impeller 54 into outlet chamber 72 has imparted thereto a centrifugal force which frees an additional portion of the gas molecules entrained in the well fluid and also drives well fluid 22 upwardly into spiraled passageway 74.
  • the freed gas molecules due to the high pressure thereof pass through port 66 into gas receptacle 62 and from thence through port 64 back into the well basin.
  • Substantially gas-free well fluid 22 exits from spiraled passageway 74 into outlet passageway 82 where the suction of pump 12 draws the well fluid into the pump inlet from whence the fluid is pumped into fluid-gathering systems.
  • a gas separator for a submersible well pump for pumping well fluid from a well basin comprising:
  • a housing having at least one inlet adapted to admit well fluid within the interior thereof and at least one outlet in communication with the inlet of said submersible well a rotatable impeller within said housing and within the flow path of said well fluid and adapted to assist said submersible pump in transferring well fluid from said inlet to said outlet, said impeller including means for imparting centrifugal force to said well fluid during transfer thereof whereby gases entrained in said well fluid are disentrained therefrom;
  • a cylindrical gas separator chamber disposedwithin said housing between said impeller and said outlet and adapted to receive well fluid from said impeller and conduct same to said inlet of said pump; said gas separation chamber including an internal gas-collecting receptacle in communication with the well fluid basin and the output of said impeller for receiving gas centrifugally separated from said well fluid; said gas separation chamber further including outwardly of said gas-collecting receptacle a spiraled passageway through which said well fluid upwardly passes from said impeller to said pump unit; said passageway being in communication with said gas-collecting receptacle whereby gas disentrained from said well fluid during passage therethrough enters said receptacle and subsequently back into said well basin.
  • said housing rs comprised of:
  • each cup including a downwardly extending inset portion, said cups being longitudinally nested to form said cylindrical longitudinal housing such that said inset portions on each cup extend downwardly into the next lower cup; each cup including at least one transverse aperture for admitting well fluid within the interior of said housing whereby said well fluid flows downwardly into the inlet of said impeller.

Abstract

A gas separator interposed between a submersible pump and electric motor includes a plurality of flow diversion means including a coaxial impeller for impelling well fluid through a spiral gas separator chamber wherein entrained gas is centrifugally separated from the well fluid. The disentrained gas is subsequently returned to the well fluid basin while the well fluid passes from the gas separator chamber into the inlet of a submersible pump.

Description

waited States Patent lnventors Joseph T. Carle;
Charles L. Choate, both 01' Tulsa, Okla. Appl. No. 29,474 Filed Apr. 17, 1970 Patented Nov. 30, 1971 Assignee 011 Dynamics, Inc.
Tulsa, Okla.
GAS SEPARATOR FOR A SUBMERSIBLE OIL PUMP 3 Claims, 3 Drawing Figs.
1.1.8. Cl 417/313, 166/ 105.5 Int. Cl ..F04b 21/00, F28d 15/00 Field oISearch 417/313;
[56] References Cited UNITED STATES PATENTS 2,311,963 2/1943 Pyle loo/105.5 2,843,053 7/1958 Carle 166/1055 Primary Examiner-Robert M. Walker Attorney-Head & Johnson ABSTRACT: A gas separator interposed between a submersible pump and electric motor includes a plurality of flow diversion means including a coaxial impeller for impelling well fluid through a spiral gas separator chamber wherein entrained gas is centrifugally separated from the well fluid. The disentrained gas is subsequently returned to the well fluid basin while the well fluid passes from the gas separator chamber into the inlet ofa submersible pump.
GAS SEPARATOR FOR A SUBMERSIBLE OIL PUMP BACKGROUND OF THE INVENTION This invention relates to gas separators and more particularly to a gas separator for use with a submersible pump for oil and gas wells.
ln oil and gas well operation, it is common practice to utilize a submersible pump having therebelow and coupled thereto an electric driving motor.
In oil and/or gas wells in which the submersible pump is to be installed, free and/or entrained gas is produced along with the well fluid being pumped. If this gas enters the submersible pump the volumetric and mechanical efficiency of the pump is reduced and in some instances produces a gas lock of the pump.
It is therefore an object of this invention to present a gas separator for use with a submersible pump which substantially prohibits entrance of the gas into the inlet of the submersible pump.
SUMMARY OF THE INVENTION Generally the gas separator of this invention is interposed between a pump and the electric driving motor therefor and comprises a housing containing within the interior thereof an impeller which assists the propulsion of well fluid normally on its flow to the pump intake through a separation chamber where gas is centrifugally disentrained from the well fluid. The disentrained gas passes into and through a gas-collecting receptacle and subsequently is returned back into the well fluid basin while the well fluid progresses from the gas separation chamber into the inlet of the pump. The inlet to the impeller includes a plurality of vertically nested inlet cylinders or cups through which the flow of fluids is controlled.
DETAILED DESCRIPTION OF THE DRAWINGS FIG. I of the drawings is a partial cross-sectional view of the lower segment of the gas separator of this invention showing the same longitudinally disposed within a well casing.
FIG. 2 of the drawings is a partial cross-sectional view of an intermediate portion of the gas separator.
FIG. 3 is a partial cross-sectional view of the upper portion of the gas separator of this invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT The gas separator of this invention generally denoted as the numeral is interposed between a pump designated as block 12 on the drawings and pump-driving motor denoted as block 14. The pump is driven by motor 14 through a coaxial shaft 16 extending longitudinally through gas separator 10. Suitable splines 18 are provided on shaft 16 for appropriate connections with the respective shafts of the pump and motor.
The interconnected pump, gas separator 10, and pump driving motor 14, form an integral unit for insertion within the casing 20 of an oil or gas well. When received within the well casing 20, the outer wall of separator 10 is spaced relative to the inner wall of the well casing so as to permit flow of well fluid 22 therebetween. Well fluids may include oil, gas and water or combinations thereof. In operation gas separator 10 is at least partially submerged in the well fluid basin and preferably totally submerged therein.
The separator I0 is composed of a plurality of inlet cup members coaxially assembled or nested. A base member 24 is provided at the lower end thereof with a flange 26 for connection with a mating flange on the housing of pump-driving motor 14 in a conventional manner and includes a hollow interior within which shaft I6 is splined or otherwise coupled to the shaft of motor 14.
The upper end of base member 24 is provided with an upstanding circular flange having, in this instance, outer peripheral threads for engaging the lower end of an elongated cylindrical housing 28 which terminates its upper end by connection with a tubular adapter 30 having a plurality of longitudinal fluid apertures 32. The adapter 30 is outwardly notched to form a circular receiving surface 34 which receives and carries the lower edge of a cylindrical cup support 36. A plurality of transverse oval ports 38 are adjacent the upper end of support 36.
The upper peripheral edge of cup support 36 is flat to receive longitudinally nested cylindrical cup members 40A, 40B, 40C, 40D and 40E. Each cylindrical cup member includes an upper portion and at the lower end thereof a downwardly projecting inset portion 42 with an interlocking surface 44 to receive the next adjacent cup member therebetween.
Lip portion 42 of lowest cup member 40A projects downwardly into the interior of cup support 36. The interlocking surface 44 of the highest cup member 40E receives the lower end of a head member 46 which in turn is appropriately secured to the housing of pump 12. Each of the cup members 42A-42E contains therein a plurality of rectangular transverse inlet ports 48 providing access means for well fluid 22 to enter the interior of gas separator 10. Progressing upwardly from the lowest to the highest cup member the area of ports on each succeeding cup member increases to that the volume of well fluid 22 capable of entering the interior of the gas separator through each of the ports also increases from the lowest to the highest cup member.
Turning now to the internal components of gas separator 10, coaxially received over the shaft 16 is a longitudinal sleeve 50, which may be comprised of a plurality of separate nested sleeves.
Secured to base member 24 by bolts and extending upwardly therefrom is a coaxial impeller support 52 which rotatably carries an impeller 54 coaxially affixed to shaft 18 for common rotation therewith. Bearings 56 support the rotation of the impeller. Impeller 54 has therein a plurality of Iongitudinal openings 57 defining an impeller inlet and outlet.
Coaxially received over shaft 16 directly above impeller 54 is a gas separation chamber 58 composed of an elongated core 60 and possessing an internal gas annulus 62 which communicates with the well basin through upper port 64, and with the outlet of impeller 54 through port 66.
Progressing horizontally outwardly and upwardly from the bottom of the top of the outer wall of core 60 is an upwardly inclined spiraled flange 68 the outer edge of which is bounded by a coaxial encompassing member 70 sleeved thereover and extending downwardly to rest on impeller support 52. The coaxial superpositioning of encompassing member 70 over core 60 and flange 68 creates an annular impeller outlet chamber 72 for accepting fluid expelled by impeller 54 and a continuous enclosed upwardly spiraled passageway 74 through gas separation chamber 58 communicating at the lower end thereof with impeller outlet chamber 72. Intermediate the convolutions of flange 78 transverse ports 76 enable passageway 74 to communicate with gas receptacle 68 at a plurality of points.
Gas separation chamber 58 terminates with an upwardly progressing circular flange 78 having the upper outer peripheral edge thereof notched to engage the inner lower edge of tubular adapter 30.
Threadably received in the inner threads of adapter 30 is the lower end of a tubular member 80 projecting upwardly through cup support 36 and cup members 40A-40E to threadably engage at the upper end thereof the internal threads of head member 46. Tubular member 80 divides the upper portion of the gas separator into an elongated annular well fluid outlet passageway 82 communicating with the inlet of the pump and an elongated annular well fluid inlet passageway 84 which communicates through apertures 32 in adapter 30 with the annular spacing between encompassing member 70 and cup support 36 to provide a well fluid flow route to the inlet of impeller 54.
As can be best seen by FIGS. 2 and 3 of the drawings ports 48 and the lip portions 42 associated therewith form tributaries feeding well fluid 22 into inlet passage 84. Thus well fluid entering through inlet ports 48 in the cup members is channeled downwardly into inlet passageway 84 and subsequently into the inlet of impeller 54.
OPERATION In operation, a stream of well fluid 22 along with any free and entrained gas molecules enters the separator through inlet ports 48-in the longitudinal cup members 40A-40E (depending on the level) and also through the ports 38 in cup supports 36. The fluid is then channeled downwardly by lip portions 42 into well fluid inlet passageway 84 and continues downwardly through the spacing between the encompassing member 70 and the wall of cup support 36 to the inlet of the impeller 54. During the downward flow of well fluid 22, a portion of the entrained gas molecules becomes disentrained for which reason the receiving of the greatest volume of well fluid in ports 48 in the upper cup members is desirable.
lmpeller 54, rotating at same revolutions per minute as the shaft 16, creates a suction force of sufficient magnitude to reverse the flow of well fluid 22 and to draw the same upwardly into the inlet thereof. The well fluid exiting from the outlet of impeller 54 into outlet chamber 72 has imparted thereto a centrifugal force which frees an additional portion of the gas molecules entrained in the well fluid and also drives well fluid 22 upwardly into spiraled passageway 74. The freed gas molecules due to the high pressure thereof pass through port 66 into gas receptacle 62 and from thence through port 64 back into the well basin.
During the passage of well fluid through passageway 74 the centrifugal force disentrains from the well fluid substantially all of the remaining gas molecules which due to the high pres- 4 sure thereof pass through apertures 76 into gas receptacle 62 .and subsequently back into the well fluid basin.
Substantially gas-free well fluid 22 exits from spiraled passageway 74 into outlet passageway 82 where the suction of pump 12 draws the well fluid into the pump inlet from whence the fluid is pumped into fluid-gathering systems.
During the description of preferred embodiments specific language has been used for the sake of clarity, however, it is to be understood that the words used are not words of limitation and include all equivalents which operate in a similar manner to accomplish a similar purpose.
What is claimed is:
l. A gas separator for a submersible well pump for pumping well fluid from a well basin comprising:
a housing having at least one inlet adapted to admit well fluid within the interior thereof and at least one outlet in communication with the inlet of said submersible well a rotatable impeller within said housing and within the flow path of said well fluid and adapted to assist said submersible pump in transferring well fluid from said inlet to said outlet, said impeller including means for imparting centrifugal force to said well fluid during transfer thereof whereby gases entrained in said well fluid are disentrained therefrom;
a cylindrical gas separator chamber disposedwithin said housing between said impeller and said outlet and adapted to receive well fluid from said impeller and conduct same to said inlet of said pump; said gas separation chamber including an internal gas-collecting receptacle in communication with the well fluid basin and the output of said impeller for receiving gas centrifugally separated from said well fluid; said gas separation chamber further including outwardly of said gas-collecting receptacle a spiraled passageway through which said well fluid upwardly passes from said impeller to said pump unit; said passageway being in communication with said gas-collecting receptacle whereby gas disentrained from said well fluid during passage therethrough enters said receptacle and subsequently back into said well basin. 2. A gas separator as in claim 1 wherein said housing rs comprised of:
a plurality of cylindrical cups each including a downwardly extending inset portion, said cups being longitudinally nested to form said cylindrical longitudinal housing such that said inset portions on each cup extend downwardly into the next lower cup; each cup including at least one transverse aperture for admitting well fluid within the interior of said housing whereby said well fluid flows downwardly into the inlet of said impeller.
3. A gas separator of claim 2 wherein the transverse apertures of each cup increase in area progressively upward.

Claims (3)

1. A gas separator for a submersible well pump for pumping well fluid from a well basin comprising: a housing having at least one inlet adapted to admit well fluid within the interior thereof and at least one outlet in communication with the inlet of said submersible well pump; a rotatable impeller within said housing and within the flow path of said well fluid and adapted to assist said submersible pump in transferring well fluid from said inlet to said outlet, said impeller including means for imparting centrifugal force to said well fluid during transfer thereof whereby gases entrained in said well fluid are disentrained therefrom; a cylindrical gas separator chamber disposed within said housing between said impeller and said outlet and adapted to receive well fluid from said impeller and conduct same to said inlet of said pump; said gas separation chamber including an internal gas-collecting receptacle in communication with the well fluid basin and the outPut of said impeller for receiving gas centrifugally separated from said well fluid; said gas separation chamber further including outwardly of said gascollecting receptacle a spiraled passageway through which said well fluid upwardly passes from said impeller to said pump unit; said passageway being in communication with said gascollecting receptacle whereby gas disentrained from said well fluid during passage therethrough enters said receptacle and subsequently back into said well basin.
2. A gas separator as in claim 1 wherein said housing is comprised of: a plurality of cylindrical cups each including a downwardly extending inset portion, said cups being longitudinally nested to form said cylindrical longitudinal housing such that said inset portions on each cup extend downwardly into the next lower cup; each cup including at least one transverse aperture for admitting well fluid within the interior of said housing whereby said well fluid flows downwardly into the inlet of said impeller.
3. A gas separator of claim 2 wherein the transverse apertures of each cup increase in area progressively upward.
US29474A 1970-04-17 1970-04-17 Gas separator for a submersible oil pump Expired - Lifetime US3624822A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US2947470A 1970-04-17 1970-04-17

Publications (1)

Publication Number Publication Date
US3624822A true US3624822A (en) 1971-11-30

Family

ID=21849191

Family Applications (1)

Application Number Title Priority Date Filing Date
US29474A Expired - Lifetime US3624822A (en) 1970-04-17 1970-04-17 Gas separator for a submersible oil pump

Country Status (1)

Country Link
US (1) US3624822A (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3887342A (en) * 1972-11-10 1975-06-03 Fmc Corp Liquid-gas separator unit
US4088459A (en) * 1976-12-20 1978-05-09 Borg-Warner Corporation Separator
US4097201A (en) * 1976-01-02 1978-06-27 Nussbaum Gerald F Combined well pump housing and aeration means
US4131161A (en) * 1977-08-25 1978-12-26 Phillips Petroleum Company Recovery of dry steam from geothermal brine
US4241788A (en) * 1979-01-31 1980-12-30 Armco Inc. Multiple cup downwell gas separator
USRE30836E (en) * 1972-11-10 1981-12-29 Kobe, Inc. Liquid-gas separator unit
US4330306A (en) * 1975-10-08 1982-05-18 Centrilift-Hughes, Inc. Gas-liquid separator
US4407360A (en) * 1981-12-14 1983-10-04 Well-Pack Systems, Inc. Borehole water pumping system with sandtrap
US4481020A (en) * 1982-06-10 1984-11-06 Trw Inc. Liquid-gas separator apparatus
DE3622130A1 (en) * 1986-07-02 1988-01-07 Klein Schanzlin & Becker Ag CENTRIFUGAL PUMP FOR CONVEYING GAS-CONTAINING MEDIA
US4981175A (en) * 1990-01-09 1991-01-01 Conoco Inc Recirculating gas separator for electric submersible pumps
US5129452A (en) * 1990-02-23 1992-07-14 Oil Dynamics, Inc. Flexible electrical submersible motor pump system for deviated wells
US5154588A (en) * 1990-10-18 1992-10-13 Oryz Energy Company System for pumping fluids from horizontal wells
US5271725A (en) * 1990-10-18 1993-12-21 Oryx Energy Company System for pumping fluids from horizontal wells
US5474601A (en) * 1994-08-02 1995-12-12 Conoco Inc. Integrated floating platform vertical annular separation and pumping system for production of hydrocarbons
US5516360A (en) * 1994-04-08 1996-05-14 Baker Hughes Incorporated Abrasion resistant gas separator
US6066193A (en) * 1998-08-21 2000-05-23 Camco International, Inc. Tapered flow gas separation system
US6322616B1 (en) * 2000-02-24 2001-11-27 Sdh, Inc. Gas separator for an oil well production line
US6723158B2 (en) * 2001-05-30 2004-04-20 Baker Hughes Incorporated Gas separator improvements
US20040244987A1 (en) * 2003-06-04 2004-12-09 Crews Gregory A. Oil anchor
US6860921B2 (en) * 2000-09-26 2005-03-01 Cooper Cameron Corporation Method and apparatus for separating liquid from a multi-phase liquid/gas stream
US7357186B1 (en) * 2005-04-15 2008-04-15 Wood Group Esp, Inc. Recirculation gas separator
US20090065202A1 (en) * 2007-09-10 2009-03-12 Baker Hughes Incorporated Gas separator within esp shroud
US20090194295A1 (en) * 2008-02-04 2009-08-06 Baker Hughes Incorporated System, method and apparatus for electrical submersible pump with integrated gas separator
US20100147514A1 (en) * 2008-12-12 2010-06-17 Ron Swaringin Columnar downhole gas separator and method of use
US20110027072A1 (en) * 2005-05-24 2011-02-03 Franklin Electric Company, Inc. Bypass system for purging air from a submersible pump
US20170138167A1 (en) * 2015-11-12 2017-05-18 Jason Y. Wang Horizontal Well Production Apparatus And Method For Using The Same
US10883354B2 (en) 2017-09-19 2021-01-05 Texas Tech University System Rod pump gas anchor and separator for horizontal wells and method of use
US11428091B2 (en) * 2018-12-26 2022-08-30 Odessa Separator, Inc. Above packer gas separation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2311963A (en) * 1939-07-11 1943-02-23 Union Oil Co Gas anchor
US2843053A (en) * 1956-03-26 1958-07-15 Joseph T Carle Gas anchor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2311963A (en) * 1939-07-11 1943-02-23 Union Oil Co Gas anchor
US2843053A (en) * 1956-03-26 1958-07-15 Joseph T Carle Gas anchor

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3887342A (en) * 1972-11-10 1975-06-03 Fmc Corp Liquid-gas separator unit
USRE30836E (en) * 1972-11-10 1981-12-29 Kobe, Inc. Liquid-gas separator unit
US4330306A (en) * 1975-10-08 1982-05-18 Centrilift-Hughes, Inc. Gas-liquid separator
US4097201A (en) * 1976-01-02 1978-06-27 Nussbaum Gerald F Combined well pump housing and aeration means
US4088459A (en) * 1976-12-20 1978-05-09 Borg-Warner Corporation Separator
US4131161A (en) * 1977-08-25 1978-12-26 Phillips Petroleum Company Recovery of dry steam from geothermal brine
US4241788A (en) * 1979-01-31 1980-12-30 Armco Inc. Multiple cup downwell gas separator
US4407360A (en) * 1981-12-14 1983-10-04 Well-Pack Systems, Inc. Borehole water pumping system with sandtrap
US4481020A (en) * 1982-06-10 1984-11-06 Trw Inc. Liquid-gas separator apparatus
DE3622130A1 (en) * 1986-07-02 1988-01-07 Klein Schanzlin & Becker Ag CENTRIFUGAL PUMP FOR CONVEYING GAS-CONTAINING MEDIA
US4981175A (en) * 1990-01-09 1991-01-01 Conoco Inc Recirculating gas separator for electric submersible pumps
US5129452A (en) * 1990-02-23 1992-07-14 Oil Dynamics, Inc. Flexible electrical submersible motor pump system for deviated wells
US5154588A (en) * 1990-10-18 1992-10-13 Oryz Energy Company System for pumping fluids from horizontal wells
US5271725A (en) * 1990-10-18 1993-12-21 Oryx Energy Company System for pumping fluids from horizontal wells
US5516360A (en) * 1994-04-08 1996-05-14 Baker Hughes Incorporated Abrasion resistant gas separator
US5474601A (en) * 1994-08-02 1995-12-12 Conoco Inc. Integrated floating platform vertical annular separation and pumping system for production of hydrocarbons
US6066193A (en) * 1998-08-21 2000-05-23 Camco International, Inc. Tapered flow gas separation system
US6322616B1 (en) * 2000-02-24 2001-11-27 Sdh, Inc. Gas separator for an oil well production line
US6860921B2 (en) * 2000-09-26 2005-03-01 Cooper Cameron Corporation Method and apparatus for separating liquid from a multi-phase liquid/gas stream
US6723158B2 (en) * 2001-05-30 2004-04-20 Baker Hughes Incorporated Gas separator improvements
US20040244987A1 (en) * 2003-06-04 2004-12-09 Crews Gregory A. Oil anchor
US7000694B2 (en) 2003-06-04 2006-02-21 Crews Gregory A Oil anchor
US20060076143A1 (en) * 2003-06-04 2006-04-13 Crews Gregory A Oil anchor
US7357186B1 (en) * 2005-04-15 2008-04-15 Wood Group Esp, Inc. Recirculation gas separator
US8764386B2 (en) 2005-05-24 2014-07-01 Franklin Electric Co., Inc. Bypass system for purging air from a submersible pump
US20110027072A1 (en) * 2005-05-24 2011-02-03 Franklin Electric Company, Inc. Bypass system for purging air from a submersible pump
US7766081B2 (en) * 2007-09-10 2010-08-03 Baker Hughes Incorporated Gas separator within ESP shroud
US20090065202A1 (en) * 2007-09-10 2009-03-12 Baker Hughes Incorporated Gas separator within esp shroud
US20090194295A1 (en) * 2008-02-04 2009-08-06 Baker Hughes Incorporated System, method and apparatus for electrical submersible pump with integrated gas separator
US20100147514A1 (en) * 2008-12-12 2010-06-17 Ron Swaringin Columnar downhole gas separator and method of use
US20170138167A1 (en) * 2015-11-12 2017-05-18 Jason Y. Wang Horizontal Well Production Apparatus And Method For Using The Same
US10443370B2 (en) * 2015-11-12 2019-10-15 Exxonmobil Upstream Research Company Horizontal well production apparatus and method for using the same
US10883354B2 (en) 2017-09-19 2021-01-05 Texas Tech University System Rod pump gas anchor and separator for horizontal wells and method of use
US11428091B2 (en) * 2018-12-26 2022-08-30 Odessa Separator, Inc. Above packer gas separation

Similar Documents

Publication Publication Date Title
US3624822A (en) Gas separator for a submersible oil pump
US3887342A (en) Liquid-gas separator unit
US2311963A (en) Gas anchor
US4241788A (en) Multiple cup downwell gas separator
US2335109A (en) Combination centrifugal ejector pump
US4582131A (en) Submersible chemical injection pump
US4749034A (en) Fluid mixing apparatus for submersible pumps
CA2639428C (en) Gas separator within esp shroud
US2832292A (en) Pump assemblies
CN1327108C (en) Downhole separator and method
US5516360A (en) Abrasion resistant gas separator
US2215505A (en) Variable capacity pumping apparatus
US2969742A (en) Gas separator for submergible motorpump assemblies
US3300950A (en) Centrifugal gas separator
US3867056A (en) Recirculating gas separation means for submersible oil well pumps
USRE30836E (en) Liquid-gas separator unit
NO830328L (en) EQUIPMENT FOR AA PREVENT GAS WASTE IN A PUMP DOWN IN A BILL
US4606704A (en) Well point system and apparatus
US2368530A (en) Vapor expelling pump
US3291057A (en) Gas separator for submersible pump
US1891201A (en) Centrifugal pump
US3999965A (en) Liquid treating apparatus
US2269716A (en) Pump and clarifier
CN106224331A (en) The online air bubble eliminating device of combined type fluid
US4394140A (en) Degassing system and centrifugal pump