US3624760A - Sonic apparatus for installing a pile jacket, casing member or the like in an earthen formation - Google Patents

Sonic apparatus for installing a pile jacket, casing member or the like in an earthen formation Download PDF

Info

Publication number
US3624760A
US3624760A US873298A US3624760DA US3624760A US 3624760 A US3624760 A US 3624760A US 873298 A US873298 A US 873298A US 3624760D A US3624760D A US 3624760DA US 3624760 A US3624760 A US 3624760A
Authority
US
United States
Prior art keywords
jacket
mandrel
sonic
oscillator
coupled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US873298A
Inventor
Albert G Bodine
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3624760A publication Critical patent/US3624760A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D7/00Methods or apparatus for placing sheet pile bulkheads, piles, mouldpipes, or other moulds
    • E02D7/18Placing by vibrating
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D7/00Methods or apparatus for placing sheet pile bulkheads, piles, mouldpipes, or other moulds
    • E02D7/28Placing of hollow pipes or mould pipes by means arranged inside the piles or pipes
    • E02D7/30Placing of hollow pipes or mould pipes by means arranged inside the piles or pipes by driving cores
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/24Drilling using vibrating or oscillating means, e.g. out-of-balance masses

Definitions

  • a jacket member is placed over a bar which forms a mandrel and is acoustically coupled thereto by means of adjustable couplers at a plurality of points therealong.
  • a sonic oscillator of the orbiting mass type is coupled to the mandrel and driven at a frequency such as to set up resonant standing-wave vibration of the mandrel. Sonic energy is thus coupled to the jacket and in turn into the earthen formation into which the jacket is to be installed, thereby fluidizing the earthen material and causing the jacket to be driven into the ground.
  • WI 8 WOHLGEMUTH ATTORNEYS SONIC APPARATUS FOR INSTALLING A FILE JACKET. CASING MEMBER OR THE LIKE IN AN EARTIIEN FORMATION
  • This invention relates to the driving of jacket or casing members into the ground and more particularly to the use of sonic energy for implementing suchdriving action.
  • a mandrel which may be tapered or stepped, has a thin steel jacket placed thereover, the two members then being driven into the ground together by means of a hammer drive.
  • the mandrel and jacket are in position, the mandrel is then removed, leaving the steel jacket in the ground, this jacket then being filled with concrete to form a cast-inplace" pile.
  • the use of a tapered or stepped construction has an advantage in this type of prior art device in that is provides an optimum use of the steel in that the smaller diameter lower sections of the jacket are held in the solider, lower-down portions of the earthen formation, while a larger diameter portion is provided closer to the surface where the earthen formation is generally not quite as dense.
  • the device of this invention is concerned with an improved technique for coupling the sonic energy to the earthen formation by transferring such energy from the mandrel to the jacket at a plurality of optimum coupling points therealong, and in an optimum manner, so as to provide higher efficiency in the utilization of the sonic energy in driving the jacket member into position.
  • a stepped mandrel and a correspondingly stepped jacket is utilized, the mandrel providing heavy mass at one end for good impedance coupling to a relatively large orbiting mass oscillator and a much lower mass at the opposite driving end which thus has a high vibrational output for optimum driving action.
  • the device of the invention further utilizes sonic rectification of the energy at its coupling between the mandrel and the jacket to increase the efiiciency of the driving operation to assure its maximum utilization.
  • FIG. I is an elevational drawing indicating the general operation of one embodiment of the device of the invention.
  • FIG. 2 is an elevational view in cross section illustrating the details of construction of this first embodiment
  • FIG. 3 is an elevational view with partial cutaway section illustrating a coupling bushing member which may be used in the embodiment of FIG. I,
  • FIG. 4 is an elevational view with partial cutaway section illustrating a removable tip portion which may be used in the embodiment of FIG. I
  • FIG. 5 is an elevational view in cross section of a second embodiment of the device of the invention.
  • FIG. 6 is a cross-sectional view taken along the plane indicated by 6-6 in FIG. 5.
  • the device of the invention comprises a mandrel member over which is placed a relatively thin-wall elastic jacket member.
  • the jacket member is coupled to the mandrel member at several spaced points thereaiong.
  • An orbiting mass oscillator is coupled to one end of the mandrel member and driven at a frequency such as to set up standingwave resonant vibration therein, the coupler points between the mandrel and the jacket preferably being spaced to provide optimum overall energy utilization.
  • the jacket and mandrel are placed in the ground, the sonic energy causing these members to be driven therein.
  • the mandrel and jacket have a stepped configuration, the driving end having a much smaller diameter than the end being driven by the oscillator, thus providing optimum coupling between the oscillator and the mandrel with an impedance transformation being provided at the driving end to provide optimum coupling of the sonic energy from the driving tip to the ground.
  • the coupler members for coupling the sonic energy from the mandrel to the jacket are adjustable so that they can be positioned for optimum transfer of energy from the jacket to such mandrel.
  • a special tip attachment is provided to adapt the mandrel to various lengths of jacket in the field.
  • the couplers are arranged so that they provide sonic rectification in the transfer of the sonic energy from the mandrel to the jacket for optimum utilization of this energy.
  • the Q of an acoustically vibrating circuit is defined as the sharpness of resonance thereof and is indicative of the ratio of the energy stored in each vibration cycle to the energy used in each such cycle.
  • Q is mathematically equated to the ratio between (0M and R,,,.
  • orbiting mass oscillators are utilized in the implementation of the invention that automatically adjust their output frequency and phase to maintain resonance with changes in the characteristics of the load.
  • the system automatically is maintained in optimum resonant operation by virtue of the lock-in" characteristic of applicant's unique orbiting mass oscillators.
  • the orbiting mass oscillator automatically changes not only its frequency but its phase angle and therefore its power factor with changes in the resistive impedance load, to assure optimum efficiency of operation at all times.
  • This automatic adjustment to load impedance works particularly well with the rectifier feature of this invention.
  • the vibrational output from such orbiting mass oscillators also tends to be constrained by the resonator to be generated along a controlled predetermined coherent path to provide maximum output along a desired axis.
  • Mandrel 11 includes stepped sections Ila, llb and llc, which are fixedly joined together by suitable means such as welding, or interference fit, to form a onepiece integral unit.
  • Mandrel 11 may be formed of cylindrical, thick-walled pipe of a highly elastic material such as steel.
  • Placed over the mandrel sections 11a, 11b and 110 are thinwall steel corrugated tubing sections 12a, 12b and 120, which form a jacket around the mandrel.
  • the jacket sections are coupled to each other by corrugated couplings 14 and 15, as to be described in connection with FIG. 2.
  • the mandrel is coupled to the jacket, with rectifier action, by means of adjustable or selected bushings l7 and 18, as shown in FIG. 2 and later to be described in connection therewith. Suffice. it to say at this point that the couplings may be adjusted to provide the rectified coupling (unidirectional portion of the elastic displacement cycle) of sonic energy in an optimum manner from the mandrel to the jacket.
  • An orbiting mass oscillator 16 has its casing attached to the top end of mandrel 11 and is rotatably driven by drive means (not shown) coupled to the oscillator through drive shaft 20.
  • Oscillator 16 may be of the type described in my U.S. Pat. No. 3,379,263, which utilizes a pair of eccentric rotors which are rotated in opposite directions so that they produce vibration of mandrel 11 along the longitudinal axis thereof.
  • the speed of rotation of oscillator 16 is adjusted to a frequency whereat resonant standing-wave vibration of the mandrel occurs.
  • the resonant energy is coupled from the mandrel through jacket 12 to earthen formation 25 to fiuidize the formation thereby causing the mandrel and the jacket to be driven therein.
  • FIGS. 2-4 the details of construction of a first embodiment of the device of the invention are illustrated.
  • cylindrical corrugated steel jackets 12a12c fit over associated mandrel sections Ila-11c respectively.
  • Jacket section 120 is joined to jacket section 12b by means of cylindrical corrugated coupler 14, which matingly engages the ends of these sections in the manner of screw threads.
  • Jacket section 12b is similarly coupled to section 12c by means of coupler 15.
  • Acoustical coupling is provided between mandrel section 11a and jacket section 12a by means of adjustable or selected bushing coupler member 17, the details of which are illustrated in F IG. 3.
  • Bushing 17 includes a cylindrical tapered spacer member 170.
  • the bushing may be held to the mandrel in a desired position opposite shoulder portion 14a of coupler 14 by means of the wedge action provided by collet 17b with the tightening of screws 17d. Further holding action for retaining the bushing to the mandrel is provided by setscrew 17:. Prior to the time that jacket section 12a is placed over mandrel section 110, bushing 17 is placed in the desired position for coupling energy therebetween and attached to the mandrel in this position by means of collet 17b and setscrew 17c.
  • This adjustment should be made to provide a small rectifier gap 19 between the jacket and the mandrel so that only unidirectional pulses of sonic energy are transferred to the jacket (i.e., the half-cycle of the sonic energy which provides a downward pulse), the mandrel being substantially uncoupled from the jacketon the upward vibratory excursion.
  • the device thus functions as a sonic rectifier, downward driving pulses of sonic energy being provided from the mandrel to the jacket.
  • Bushing 17 should be positioned in place or dimensioned so that gap 19 is such as to afiord optimum transfer of downward pulsating energy. This gap has to be less than the longitudinal distance traversed by the mandrel in an elastic half-cycle.
  • Coupler bushing 18 is similarly adjusted in position for optimum coupling of unidirectional sonic energy between mandrel section 11b and the shoulder portion a of jacket coupler l5.
  • the frequency of oscillator 16 is adjusted to provide a standing-wave pattern in the mandrel as indicated by graph lines 30.
  • the resonant vibration as shown should be at a frequency whereby any two of the coupling points, i.e., in this instance those at coupler bushings 17 and 18, are spaced within a quarter wavelength of the standing-wave pattern so that the sonic drives on the jacket at these various points are in unison, thereby minimizing the stress on jacket.
  • a removable tip portion 37 is utilized, various lengths of these tip portions being available for installation at the end of the mandrel to match various lengths of jackets so as to provide rectifier action as the need may arise in the field.
  • Tip portion 37 may have a tongue 37a thereon which fits into cavity 38 in the center portion of the adjoining portion of the mandrel, joinder between the two members being attained by means of a tapered key 40 which fits through apertures in tongue 37a and mandrel 11c and is held to the mandrel by means of bolt 42 and nut 43.
  • the stepped mandrel structure provides a heavy mass at one end for optimum coupling to a large massive oscillator, and a much lower mass at the opposite end to provide an effective step-up transformation of the vibration resulting in high-amplitude vibration at the driving end, where it is most needed.
  • the adjustable or selected bushings 17 and 18 provide means for adjusting the coupling between the mandrel and the corrugated jacket to optimum rectifier advantage for each particular installation requirement.
  • the use of a removable driving tip enables the use of a tip member which provides optimum driving.
  • the adjustment of the coupling between the mandrel and the jacket through the adjustable bushings to provide sonic rectification, i.e., vibrational drive only in the downward direction provides the advantages of minimizing the stress placed on the jacket and further makes for better utilization of the sonic energy in that it is not dissipated in an upward loaded excursion, which provides no useful effect in the driving action.
  • the sonic vibrational system by virtue of the sonic rectifier action is made to have a higher efiective Q in view of the fact that the ratio between the energy stored to the energy dissipated in each vibrational cycle is thereby increased.
  • the mandrel When the jacket has been installed in the desired position, the mandrel is lifted out therefrom and the jacket filled with concrete to form the piling.
  • FIGS. 5 and 6 a second embodiment of the device of the invention is illustrated. ln this embodiment, the tapered mandrel and jacket of the first embodiment are not used, the mandrel being coupled to the corrugated jacket by means of a plurality of specially designed coupler devices.
  • Mandrel 51 has a plurality of coupler units 53 installed therein at spaced intervals therealong.
  • Each coupler unit 53 may include three piston units 54, slidably supported in radial cylinders 56 formed in the mandrel.
  • Pistons 54 are hydraulically actuated by pressurized fluid fed through line 58 to charlnel 59 formed in the center of the mandrel. With the pistons 54 unactuated, jacket member 60 is placed over the mandrel. The pistons 54 are then hydraulically actuated to drive them to the position indicated by the dotted lines in FIG.
  • the device of this invention thus provides improved means for acoustically driving a pile jacket in which unidirectional sonic driving pulses are applied to the jacket in the driving direction at several points therealong.
  • sonic oscillator means coupled to one end of said bar member, said oscillator means being driven at a frequency such as to set up resonant standing-wave vibration in said bar member, and
  • said bar member is a mandrel having a plurality of successively stepped sections along the length thereof, running between the oscillator and the end opposite said one end thereof.
  • each of said coupling means being positioned with an end thereof longitudinally spaced from one of the jacket member corrugations to form a rectifier gap therebetween.
  • each of said coupling means comprising a bushing member removably attached to the mandrel, each of said bushing members being placed along said mandrel with one end thereof ,at a position where a pair of said sections join, a rectifier gap being formed between said one end of said bushing member and a corrugation of said jacket.
  • each of said coupling means comprises piston means mounted in said bar member for motion radially thereof and means for driving said piston means to a position spaced from an associated corrugation of said jacket member so as to form said gap.

Abstract

A jacket member is placed over a bar which forms a mandrel and is acoustically coupled thereto by means of adjustable couplers at a plurality of points therealong. A sonic oscillator of the orbiting mass type is coupled to the mandrel and driven at a frequency such as to set up resonant standing-wave vibration of the mandrel. Sonic energy is thus coupled to the jacket and in turn into the earthen formation into which the jacket is to be installed, thereby fluidizing the earthen material and causing the jacket to be driven into the ground.

Description

United States Patent [72] lnventor Albert G. Bodine 7877 Woodley Av e., Van Nuys, Calif. 91406 [21 Appl. No. 873,298
[22] Filed Nov. 3, 1969 [45] Patented Nov. 30, 1971 i [54] SONIC APPARATUS FOR INSTALLING A PILE JACKET, CASING MEMBER OR THE LIKE IN AN EARTIIEN FORMATION 6 Claims, 6 Drawing Figs. 7
(52] US. Cl 175/56, 175/171 [51] Int. Cl 1306b 1/10, E21b 5/00 [50] FieldolSearch 175/19, 22, 23, 56, 171
[56] Relerences Cited UNITED STATES PATENTS 869,336 10/1907 Stewart 175/23 1,342,424 6/1920 Cotten 175/171 1,880,218 10/1932 Simmons 175/23 1,966,446 7/1934 Hayes 175/56 2,390,646 12/1945 Hays 175/56 2,830,791 4/1958 Smith 175/56 2,989,130 6/1961 Mathewson, Jr. 175/56 3,151,687 10/1964 Sato et a1. 175/56 3,379,262 4/1968 Bodine, .Ir. 175/19 Primary Examiner-James A. Leppink Attorney-Sokolski & Wohlgemuth ABSTRACT: A jacket member is placed over a bar which forms a mandrel and is acoustically coupled thereto by means of adjustable couplers at a plurality of points therealong. A sonic oscillator of the orbiting mass type is coupled to the mandrel and driven at a frequency such as to set up resonant standing-wave vibration of the mandrel. Sonic energy is thus coupled to the jacket and in turn into the earthen formation into which the jacket is to be installed, thereby fluidizing the earthen material and causing the jacket to be driven into the ground.
PATENTEllunv 30 Ian SHEEI 10F 2 FIG.6
INV ENTOR ALBERT G. BODlNE FIG.4
WI 8: WOHLGEMUTH ATTORNEYS SONIC APPARATUS FOR INSTALLING A FILE JACKET. CASING MEMBER OR THE LIKE IN AN EARTIIEN FORMATION This invention relates to the driving of jacket or casing members into the ground and more particularly to the use of sonic energy for implementing suchdriving action.
In the prior art, apparatus is utilized for forming piles in which a mandrel, which may be tapered or stepped, has a thin steel jacket placed thereover, the two members then being driven into the ground together by means of a hammer drive. When the mandrel and jacket are in position, the mandrel is then removed, leaving the steel jacket in the ground, this jacket then being filled with concrete to form a cast-inplace" pile. The use of a tapered or stepped construction has an advantage in this type of prior art device in that is provides an optimum use of the steel in that the smaller diameter lower sections of the jacket are held in the solider, lower-down portions of the earthen formation, while a larger diameter portion is provided closer to the surface where the earthen formation is generally not quite as dense.
A considerable improvement in the efficiency of the driving action of this type of device can be achieved by utilizing sonic energy to fluidize the earthen formation and thus implement the driving action. This type of sonic driving is described, for example, in my US. Pat. Nos. 2,975,846 and 3,379,263.
The device of this invention is concerned with an improved technique for coupling the sonic energy to the earthen formation by transferring such energy from the mandrel to the jacket at a plurality of optimum coupling points therealong, and in an optimum manner, so as to provide higher efficiency in the utilization of the sonic energy in driving the jacket member into position. Further, in one embodiment of my invention, a stepped mandrel and a correspondingly stepped jacket is utilized, the mandrel providing heavy mass at one end for good impedance coupling to a relatively large orbiting mass oscillator and a much lower mass at the opposite driving end which thus has a high vibrational output for optimum driving action. The device of the invention further utilizes sonic rectification of the energy at its coupling between the mandrel and the jacket to increase the efiiciency of the driving operation to assure its maximum utilization.
It is therefore the principal object of this invention to improve the efficiency of the driving of a jacket or casing member into an earthen formation.
Other objects of the invention will become apparent as the description proceeds in connection with the accompanying drawings, of which:
FIG. I is an elevational drawing indicating the general operation of one embodiment of the device of the invention,
FIG. 2 is an elevational view in cross section illustrating the details of construction of this first embodiment,
FIG. 3 is an elevational view with partial cutaway section illustrating a coupling bushing member which may be used in the embodiment of FIG. I,
FIG. 4 is an elevational view with partial cutaway section illustrating a removable tip portion which may be used in the embodiment of FIG. I
FIG. 5 is an elevational view in cross section of a second embodiment of the device of the invention, and
FIG. 6 is a cross-sectional view taken along the plane indicated by 6-6 in FIG. 5.
Briefly described, the device of the invention comprises a mandrel member over which is placed a relatively thin-wall elastic jacket member. The jacket member is coupled to the mandrel member at several spaced points thereaiong. An orbiting mass oscillator is coupled to one end of the mandrel member and driven at a frequency such as to set up standingwave resonant vibration therein, the coupler points between the mandrel and the jacket preferably being spaced to provide optimum overall energy utilization. The jacket and mandrel are placed in the ground, the sonic energy causing these members to be driven therein. In one embodiment of the device of the invention, the mandrel and jacket have a stepped configuration, the driving end having a much smaller diameter than the end being driven by the oscillator, thus providing optimum coupling between the oscillator and the mandrel with an impedance transformation being provided at the driving end to provide optimum coupling of the sonic energy from the driving tip to the ground. The coupler members for coupling the sonic energy from the mandrel to the jacket are adjustable so that they can be positioned for optimum transfer of energy from the jacket to such mandrel. A special tip attachment is provided to adapt the mandrel to various lengths of jacket in the field. In addition, the couplers are arranged so that they provide sonic rectification in the transfer of the sonic energy from the mandrel to the jacket for optimum utilization of this energy.
It has been found most helpful in analyzing the device of this invention to analogize the acoustically vibrating circuit utilized to an equivalent electrical circuit. This sort of approach to analysis is well known to those skilled in the art and is described, for example, in Chapter 2 of Sonics" by Hueter and Bolt, published in I955 by John Wiley and Sons. In making such an analogy, force F is equated with electrical voltage E, velocity of vibration u is equated with electrical current i, mechanical compliance C,,, is equated with electrical capacitance C,., mass M is equated with electrical inductance L, mechanical resistance (friction) R is equated with electrical resistance R and mechanical impedance Z,.,, is equated with electrical impedance 2,.
Thus, it can be shown that if a member is elastically vibrated by means of an acoustical sinusoidal force F,,sinwr (to being equal to 21r times the frequency of vibration), that Where mM is equal to l/wC,,,, a resonant condition exists, and the efiective mechanical impedance Z,,, is equal to the mechanical resistance R,,,, the reactive impedance com ponents w(M and l/wC cancelling each other out. Under such a resonant condition, velocity of vibration u is at a maximum, power factor is unity, and energy is more efficiently delivered to a load to which the resonant system may be coupled.
It is important to note the significance of the attainment of high acoustical Q in the resonant system being driven, to increase the efficiency of the vibration thereof and to provide a maximum amount of power. As for an equivalent electrical circuit, the Q of an acoustically vibrating circuit is defined as the sharpness of resonance thereof and is indicative of the ratio of the energy stored in each vibration cycle to the energy used in each such cycle. Q is mathematically equated to the ratio between (0M and R,,,. Thus, the effective Q of the vibrating circuit can be maximized to make for highly efficient, high-amplitude vibration by minimizing the effect of friction in the circuit and/or maximizing the effect of mass in such circuit. The heavy, tapered pile gives good Q. Moreover, the rectifier action also increases the energy retention in the mandrel.
In considering the significance of the parameters described in connection with equation I, it should be kept in mind that the total effective resistance, mass, and compliance in the acoustically vibrating circuit are represented in the equation and that these parameters may be distributed throughout the system rather than being lumped in any one component or portion thereof.
It is also to be noted that orbiting mass oscillators are utilized in the implementation of the invention that automatically adjust their output frequency and phase to maintain resonance with changes in the characteristics of the load. Thus, in the face of changes in the effective mass and compliance presented by the load with changes in the conditions of the work material as it is sonically excited, the system automatically is maintained in optimum resonant operation by virtue of the lock-in" characteristic of applicant's unique orbiting mass oscillators. Furthermore in this connection the orbiting mass oscillator automatically changes not only its frequency but its phase angle and therefore its power factor with changes in the resistive impedance load, to assure optimum efficiency of operation at all times. This automatic adjustment to load impedance works particularly well with the rectifier feature of this invention. The vibrational output from such orbiting mass oscillators also tends to be constrained by the resonator to be generated along a controlled predetermined coherent path to provide maximum output along a desired axis.
Referring not to FIG. 1, a first embodiment of the device of the invention is illustrated. Mandrel 11 includes stepped sections Ila, llb and llc, which are fixedly joined together by suitable means such as welding, or interference fit, to form a onepiece integral unit. Mandrel 11 may be formed of cylindrical, thick-walled pipe of a highly elastic material such as steel. Placed over the mandrel sections 11a, 11b and 110 are thinwall steel corrugated tubing sections 12a, 12b and 120, which form a jacket around the mandrel. The jacket sections are coupled to each other by corrugated couplings 14 and 15, as to be described in connection with FIG. 2. The mandrel is coupled to the jacket, with rectifier action, by means of adjustable or selected bushings l7 and 18, as shown in FIG. 2 and later to be described in connection therewith. Suffice. it to say at this point that the couplings may be adjusted to provide the rectified coupling (unidirectional portion of the elastic displacement cycle) of sonic energy in an optimum manner from the mandrel to the jacket.
An orbiting mass oscillator 16 has its casing attached to the top end of mandrel 11 and is rotatably driven by drive means (not shown) coupled to the oscillator through drive shaft 20. Oscillator 16 may be of the type described in my U.S. Pat. No. 3,379,263, which utilizes a pair of eccentric rotors which are rotated in opposite directions so that they produce vibration of mandrel 11 along the longitudinal axis thereof. The speed of rotation of oscillator 16 is adjusted to a frequency whereat resonant standing-wave vibration of the mandrel occurs. The resonant energy is coupled from the mandrel through jacket 12 to earthen formation 25 to fiuidize the formation thereby causing the mandrel and the jacket to be driven therein.
Referring now to FIGS. 2-4, the details of construction of a first embodiment of the device of the invention are illustrated. As already noted, cylindrical corrugated steel jackets 12a12c fit over associated mandrel sections Ila-11c respectively. Jacket section 120 is joined to jacket section 12b by means of cylindrical corrugated coupler 14, which matingly engages the ends of these sections in the manner of screw threads. Jacket section 12b is similarly coupled to section 12c by means of coupler 15. Acoustical coupling is provided between mandrel section 11a and jacket section 12a by means of adjustable or selected bushing coupler member 17, the details of which are illustrated in F IG. 3. Bushing 17 includes a cylindrical tapered spacer member 170. The bushing may be held to the mandrel in a desired position opposite shoulder portion 14a of coupler 14 by means of the wedge action provided by collet 17b with the tightening of screws 17d. Further holding action for retaining the bushing to the mandrel is provided by setscrew 17:. Prior to the time that jacket section 12a is placed over mandrel section 110, bushing 17 is placed in the desired position for coupling energy therebetween and attached to the mandrel in this position by means of collet 17b and setscrew 17c. This adjustment should be made to provide a small rectifier gap 19 between the jacket and the mandrel so that only unidirectional pulses of sonic energy are transferred to the jacket (i.e., the half-cycle of the sonic energy which provides a downward pulse), the mandrel being substantially uncoupled from the jacketon the upward vibratory excursion. The device thus functions as a sonic rectifier, downward driving pulses of sonic energy being provided from the mandrel to the jacket. Bushing 17 should be positioned in place or dimensioned so that gap 19 is such as to afiord optimum transfer of downward pulsating energy. This gap has to be less than the longitudinal distance traversed by the mandrel in an elastic half-cycle. Coupler bushing 18 is similarly adjusted in position for optimum coupling of unidirectional sonic energy between mandrel section 11b and the shoulder portion a of jacket coupler l5.
The frequency of oscillator 16 is adjusted to provide a standing-wave pattern in the mandrel as indicated by graph lines 30. The resonant vibration as shown should be at a frequency whereby any two of the coupling points, i.e., in this instance those at coupler bushings 17 and 18, are spaced within a quarter wavelength of the standing-wave pattern so that the sonic drives on the jacket at these various points are in unison, thereby minimizing the stress on jacket. A removable tip portion 37 is utilized, various lengths of these tip portions being available for installation at the end of the mandrel to match various lengths of jackets so as to provide rectifier action as the need may arise in the field. Tip portion 37, or any of the other joints in the mandrel, may have a tongue 37a thereon which fits into cavity 38 in the center portion of the adjoining portion of the mandrel, joinder between the two members being attained by means of a tapered key 40 which fits through apertures in tongue 37a and mandrel 11c and is held to the mandrel by means of bolt 42 and nut 43.
Several significant features of this first embodiment should be noted at this point. First, the stepped mandrel structure provides a heavy mass at one end for optimum coupling to a large massive oscillator, and a much lower mass at the opposite end to provide an effective step-up transformation of the vibration resulting in high-amplitude vibration at the driving end, where it is most needed. Secondly, the adjustable or selected bushings 17 and 18 provide means for adjusting the coupling between the mandrel and the corrugated jacket to optimum rectifier advantage for each particular installation requirement. Likewise, the use of a removable driving tip enables the use of a tip member which provides optimum driving. Further, the adjustment of the coupling between the mandrel and the jacket through the adjustable bushings to provide sonic rectification, i.e., vibrational drive only in the downward direction, provides the advantages of minimizing the stress placed on the jacket and further makes for better utilization of the sonic energy in that it is not dissipated in an upward loaded excursion, which provides no useful effect in the driving action. The sonic vibrational system by virtue of the sonic rectifier action is made to have a higher efiective Q in view of the fact that the ratio between the energy stored to the energy dissipated in each vibrational cycle is thereby increased.
When the jacket has been installed in the desired position, the mandrel is lifted out therefrom and the jacket filled with concrete to form the piling.
Referring now to FIGS. 5 and 6, a second embodiment of the device of the invention is illustrated. ln this embodiment, the tapered mandrel and jacket of the first embodiment are not used, the mandrel being coupled to the corrugated jacket by means of a plurality of specially designed coupler devices.
Mandrel 51 has a plurality of coupler units 53 installed therein at spaced intervals therealong. Each coupler unit 53 may include three piston units 54, slidably supported in radial cylinders 56 formed in the mandrel. Pistons 54 are hydraulically actuated by pressurized fluid fed through line 58 to charlnel 59 formed in the center of the mandrel. With the pistons 54 unactuated, jacket member 60 is placed over the mandrel. The pistons 54 are then hydraulically actuated to drive them to the position indicated by the dotted lines in FIG. 6, the radial travel of the pistons being arrested by the abutment of piston shoulder 54a against shoulder 66a of retainer plate 66, which is fixedly retained in the mandrel. The travel of piston 54 is thereby arrested as shown by the dotted lines, in a position whereat there is a small gap between piston head 54b and the inner wall of corrugated jacket 60 both radially and longitudinally. This gap provides the rectifier gap necessary to achieve the desired sonic rectification. Thus, with the excitation of oscillator 16 at a frequency such as to cause longitudinal resonant standing-wave vibration of mandrel 51, and with pistons 54in their extended position, unidirectional sonic pulses are coupled from the mandrel to the corrugated jacket at the longitudinal gaps formed between the piston heads and the adjacent jacket corrugations. This second embodiment thus provides another way of transferring unidirectional sonic downward driving pulses to the jacket at several points therealong.
The device of this invention thus provides improved means for acoustically driving a pile jacket in which unidirectional sonic driving pulses are applied to the jacket in the driving direction at several points therealong.
I claim:
1. in combination,
an elastic bar member,
a jacket member surrounding said bar member,
sonic oscillator means coupled to one end of said bar member, said oscillator means being driven at a frequency such as to set up resonant standing-wave vibration in said bar member, and
means for acoustically coupling said bar member to said jacket member at a plurality of predetermined spaced points therealong, so as to rectify the sonic energy such that mainly unidirectional pulses of such energy are transferred to said jacket member.
2. The device of claim 1 wherein said bar member is a mandrel having a plurality of successively stepped sections along the length thereof, running between the oscillator and the end opposite said one end thereof.
3. The device of claim I wherein saidjacket member is corrugated. each of said coupling means being positioned with an end thereof longitudinally spaced from one of the jacket member corrugations to form a rectifier gap therebetween.
4. The device of claim 2 wherein said jacket member is corrugated, each of said coupling means comprising a bushing member removably attached to the mandrel, each of said bushing members being placed along said mandrel with one end thereof ,at a position where a pair of said sections join, a rectifier gap being formed between said one end of said bushing member and a corrugation of said jacket.
5. The device of claim 4 and additionally including removal tip means attached to the end of said mandrel opposite to the oscillator-coupled end thereof for providing a predetermined extension to the mandrel to adapt it to the length of the jacket.
6. The device of claim 3 wherein each of said coupling means comprises piston means mounted in said bar member for motion radially thereof and means for driving said piston means to a position spaced from an associated corrugation of said jacket member so as to form said gap.
* l i It i

Claims (5)

  1. 2. The device of claim 1 wherein said bar member is a mandrel having a plurality of successively stepped sections along the length thereof, running between the oscillator and thE end opposite said one end thereof.
  2. 3. The device of claim 1 wherein said jacket member is corrugated, each of said coupling means being positioned with an end thereof longitudinally spaced from one of the jacket member corrugations to form a rectifier gap therebetween.
  3. 4. The device of claim 2 wherein said jacket member is corrugated, each of said coupling means comprising a bushing member removably attached to the mandrel, each of said bushing members being placed along said mandrel with one end thereof at a position where a pair of said sections join, a rectifier gap being formed between said one end of said bushing member and a corrugation of said jacket.
  4. 5. The device of claim 4 and additionally including removal tip means attached to the end of said mandrel opposite to the oscillator-coupled end thereof for providing a predetermined extension to the mandrel to adapt it to the length of the jacket.
  5. 6. The device of claim 3 wherein each of said coupling means comprises piston means mounted in said bar member for motion radially thereof and means for driving said piston means to a position spaced from an associated corrugation of said jacket member so as to form said gap.
US873298A 1969-11-03 1969-11-03 Sonic apparatus for installing a pile jacket, casing member or the like in an earthen formation Expired - Lifetime US3624760A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US87329869A 1969-11-03 1969-11-03

Publications (1)

Publication Number Publication Date
US3624760A true US3624760A (en) 1971-11-30

Family

ID=25361350

Family Applications (1)

Application Number Title Priority Date Filing Date
US873298A Expired - Lifetime US3624760A (en) 1969-11-03 1969-11-03 Sonic apparatus for installing a pile jacket, casing member or the like in an earthen formation

Country Status (1)

Country Link
US (1) US3624760A (en)

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4280558A (en) * 1979-11-23 1981-07-28 Bodine Albert G Sonic technique and system for facilitating the extraction of mineral material
US4665980A (en) * 1986-03-24 1987-05-19 Bodine Albert G Method for improving well production by sonically driving granular medium installed in well
US4836299A (en) * 1987-10-19 1989-06-06 Bodine Albert G Sonic method and apparatus for installing monitor wells for the surveillance and control of earth contamination
NL1008473C2 (en) * 1998-03-04 1999-09-07 Ihc Handling Systems Vof Pipe clamp for vibratory hammer blocks.
US6857487B2 (en) * 2002-12-30 2005-02-22 Weatherford/Lamb, Inc. Drilling with concentric strings of casing
US6896075B2 (en) 2002-10-11 2005-05-24 Weatherford/Lamb, Inc. Apparatus and methods for drilling with casing
US6899186B2 (en) 2002-12-13 2005-05-31 Weatherford/Lamb, Inc. Apparatus and method of drilling with casing
US20050183892A1 (en) * 2004-02-19 2005-08-25 Oldham Jack T. Casing and liner drilling bits, cutting elements therefor, and methods of use
US6953096B2 (en) 2002-12-31 2005-10-11 Weatherford/Lamb, Inc. Expandable bit with secondary release device
US20050274547A1 (en) * 2003-11-17 2005-12-15 Baker Hughes Incorporated Drilling systems and methods utilizing independently deployable multiple tubular strings
US6994176B2 (en) 2002-07-29 2006-02-07 Weatherford/Lamb, Inc. Adjustable rotating guides for spider or elevator
US7004264B2 (en) 2002-03-16 2006-02-28 Weatherford/Lamb, Inc. Bore lining and drilling
US7013997B2 (en) 1994-10-14 2006-03-21 Weatherford/Lamb, Inc. Methods and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells
US20060070771A1 (en) * 2004-02-19 2006-04-06 Mcclain Eric E Earth boring drill bits with casing component drill out capability and methods of use
US7036610B1 (en) 1994-10-14 2006-05-02 Weatherford / Lamb, Inc. Apparatus and method for completing oil and gas wells
US7040420B2 (en) 1994-10-14 2006-05-09 Weatherford/Lamb, Inc. Methods and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells
US7048050B2 (en) 1994-10-14 2006-05-23 Weatherford/Lamb, Inc. Method and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells
US7073598B2 (en) 2001-05-17 2006-07-11 Weatherford/Lamb, Inc. Apparatus and methods for tubular makeup interlock
US7090021B2 (en) 1998-08-24 2006-08-15 Bernd-Georg Pietras Apparatus for connecting tublars using a top drive
US7093675B2 (en) 2000-08-01 2006-08-22 Weatherford/Lamb, Inc. Drilling method
US7096982B2 (en) 2003-02-27 2006-08-29 Weatherford/Lamb, Inc. Drill shoe
US7100710B2 (en) 1994-10-14 2006-09-05 Weatherford/Lamb, Inc. Methods and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells
US7100713B2 (en) 2000-04-28 2006-09-05 Weatherford/Lamb, Inc. Expandable apparatus for drift and reaming borehole
US7108084B2 (en) 1994-10-14 2006-09-19 Weatherford/Lamb, Inc. Methods and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells
US7128154B2 (en) 2003-01-30 2006-10-31 Weatherford/Lamb, Inc. Single-direction cementing plug
US7128161B2 (en) 1998-12-24 2006-10-31 Weatherford/Lamb, Inc. Apparatus and methods for facilitating the connection of tubulars using a top drive
US7137454B2 (en) 1998-07-22 2006-11-21 Weatherford/Lamb, Inc. Apparatus for facilitating the connection of tubulars using a top drive
US7140445B2 (en) 1997-09-02 2006-11-28 Weatherford/Lamb, Inc. Method and apparatus for drilling with casing
US7147068B2 (en) 1994-10-14 2006-12-12 Weatherford / Lamb, Inc. Methods and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells
US7156189B1 (en) 2004-12-01 2007-01-02 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Self mountable and extractable ultrasonic/sonic anchor
US20070079995A1 (en) * 2004-02-19 2007-04-12 Mcclain Eric E Cutting elements configured for casing component drillout and earth boring drill bits including same
US7216727B2 (en) 1999-12-22 2007-05-15 Weatherford/Lamb, Inc. Drilling bit for drilling while running casing
US7219744B2 (en) 1998-08-24 2007-05-22 Weatherford/Lamb, Inc. Method and apparatus for connecting tubulars using a top drive
US20070193757A1 (en) * 2006-02-03 2007-08-23 California Institute Of Technology Ultrasonic/sonic jackhammer
US20070289782A1 (en) * 2006-05-15 2007-12-20 Baker Hughes Incorporated Reaming tool suitable for running on casing or liner and method of reaming
US20090084608A1 (en) * 2007-10-02 2009-04-02 Mcclain Eric E Cutting structures for casing component drillout and earth boring drill bits including same
US7650944B1 (en) 2003-07-11 2010-01-26 Weatherford/Lamb, Inc. Vessel for well intervention
US7712523B2 (en) 2000-04-17 2010-05-11 Weatherford/Lamb, Inc. Top drive casing system
US7730965B2 (en) 2002-12-13 2010-06-08 Weatherford/Lamb, Inc. Retractable joint and cementing shoe for use in completing a wellbore
US20100187011A1 (en) * 2007-10-02 2010-07-29 Jurica Chad T Cutting structures for casing component drillout and earth-boring drill bits including same
DE102009008581A1 (en) * 2009-02-12 2010-08-19 Thyssenkrupp Gft Tiefbautechnik Gmbh Tensioning device on a vibrator and method for tensioning a tube on this tensioning device
US7857052B2 (en) 2006-05-12 2010-12-28 Weatherford/Lamb, Inc. Stage cementing methods used in casing while drilling
US7938201B2 (en) 2002-12-13 2011-05-10 Weatherford/Lamb, Inc. Deep water drilling with casing
USRE42877E1 (en) 2003-02-07 2011-11-01 Weatherford/Lamb, Inc. Methods and apparatus for wellbore construction and completion
US8276689B2 (en) 2006-05-22 2012-10-02 Weatherford/Lamb, Inc. Methods and apparatus for drilling with casing
US20150204143A1 (en) * 2014-01-23 2015-07-23 Baker Hughes Incorporated Wired pipe erosion reduction

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US869336A (en) * 1907-02-15 1907-10-29 Simplex Concrete Piling Company Concrete pile and means for driving same.
US1342424A (en) * 1918-09-06 1920-06-08 Shepard M Cotten Method and apparatus for constructing concrete piles
US1880218A (en) * 1930-10-01 1932-10-04 Richard P Simmons Method of lining oil wells and means therefor
US1966446A (en) * 1933-02-14 1934-07-17 Harvey C Hayes Impact tool
US2390646A (en) * 1943-05-10 1945-12-11 Russell R Hays Well drilling apparatus
US2830791A (en) * 1954-02-12 1958-04-15 Edward W Smith Earth penetrating apparatus
US2989130A (en) * 1958-01-23 1961-06-20 Bodine Ag Isolator for sonic earth boring drill
US3151687A (en) * 1959-05-25 1964-10-06 Nippon Sharyo Seizo Kk Driving head with plural impact motors
US3379262A (en) * 1965-12-23 1968-04-23 Albert G. Bodine Jr. Stepped termination for sonic casing drive

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US869336A (en) * 1907-02-15 1907-10-29 Simplex Concrete Piling Company Concrete pile and means for driving same.
US1342424A (en) * 1918-09-06 1920-06-08 Shepard M Cotten Method and apparatus for constructing concrete piles
US1880218A (en) * 1930-10-01 1932-10-04 Richard P Simmons Method of lining oil wells and means therefor
US1966446A (en) * 1933-02-14 1934-07-17 Harvey C Hayes Impact tool
US2390646A (en) * 1943-05-10 1945-12-11 Russell R Hays Well drilling apparatus
US2830791A (en) * 1954-02-12 1958-04-15 Edward W Smith Earth penetrating apparatus
US2989130A (en) * 1958-01-23 1961-06-20 Bodine Ag Isolator for sonic earth boring drill
US3151687A (en) * 1959-05-25 1964-10-06 Nippon Sharyo Seizo Kk Driving head with plural impact motors
US3379262A (en) * 1965-12-23 1968-04-23 Albert G. Bodine Jr. Stepped termination for sonic casing drive

Cited By (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4280558A (en) * 1979-11-23 1981-07-28 Bodine Albert G Sonic technique and system for facilitating the extraction of mineral material
US4665980A (en) * 1986-03-24 1987-05-19 Bodine Albert G Method for improving well production by sonically driving granular medium installed in well
US4836299A (en) * 1987-10-19 1989-06-06 Bodine Albert G Sonic method and apparatus for installing monitor wells for the surveillance and control of earth contamination
US7013997B2 (en) 1994-10-14 2006-03-21 Weatherford/Lamb, Inc. Methods and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells
US7108084B2 (en) 1994-10-14 2006-09-19 Weatherford/Lamb, Inc. Methods and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells
US7048050B2 (en) 1994-10-14 2006-05-23 Weatherford/Lamb, Inc. Method and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells
US7234542B2 (en) 1994-10-14 2007-06-26 Weatherford/Lamb, Inc. Methods and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells
US7040420B2 (en) 1994-10-14 2006-05-09 Weatherford/Lamb, Inc. Methods and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells
US7036610B1 (en) 1994-10-14 2006-05-02 Weatherford / Lamb, Inc. Apparatus and method for completing oil and gas wells
US7165634B2 (en) 1994-10-14 2007-01-23 Weatherford/Lamb, Inc. Method and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells
US7147068B2 (en) 1994-10-14 2006-12-12 Weatherford / Lamb, Inc. Methods and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells
US7100710B2 (en) 1994-10-14 2006-09-05 Weatherford/Lamb, Inc. Methods and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells
US7140445B2 (en) 1997-09-02 2006-11-28 Weatherford/Lamb, Inc. Method and apparatus for drilling with casing
NL1008473C2 (en) * 1998-03-04 1999-09-07 Ihc Handling Systems Vof Pipe clamp for vibratory hammer blocks.
EP0940506A1 (en) * 1998-03-04 1999-09-08 Ihc Handling Systems Vof Pipe clamp for vibrator rammer blocks
US6582158B1 (en) 1998-03-04 2003-06-24 Ihc Handling Systems Device and method for transferring vibrating movement to rigid pipe with pipe clamp for vibrator rammer block
US7137454B2 (en) 1998-07-22 2006-11-21 Weatherford/Lamb, Inc. Apparatus for facilitating the connection of tubulars using a top drive
US7090021B2 (en) 1998-08-24 2006-08-15 Bernd-Georg Pietras Apparatus for connecting tublars using a top drive
US7219744B2 (en) 1998-08-24 2007-05-22 Weatherford/Lamb, Inc. Method and apparatus for connecting tubulars using a top drive
US7128161B2 (en) 1998-12-24 2006-10-31 Weatherford/Lamb, Inc. Apparatus and methods for facilitating the connection of tubulars using a top drive
US7216727B2 (en) 1999-12-22 2007-05-15 Weatherford/Lamb, Inc. Drilling bit for drilling while running casing
US7712523B2 (en) 2000-04-17 2010-05-11 Weatherford/Lamb, Inc. Top drive casing system
US7100713B2 (en) 2000-04-28 2006-09-05 Weatherford/Lamb, Inc. Expandable apparatus for drift and reaming borehole
US7093675B2 (en) 2000-08-01 2006-08-22 Weatherford/Lamb, Inc. Drilling method
US7073598B2 (en) 2001-05-17 2006-07-11 Weatherford/Lamb, Inc. Apparatus and methods for tubular makeup interlock
US7004264B2 (en) 2002-03-16 2006-02-28 Weatherford/Lamb, Inc. Bore lining and drilling
US6994176B2 (en) 2002-07-29 2006-02-07 Weatherford/Lamb, Inc. Adjustable rotating guides for spider or elevator
US7090023B2 (en) 2002-10-11 2006-08-15 Weatherford/Lamb, Inc. Apparatus and methods for drilling with casing
US6896075B2 (en) 2002-10-11 2005-05-24 Weatherford/Lamb, Inc. Apparatus and methods for drilling with casing
US7938201B2 (en) 2002-12-13 2011-05-10 Weatherford/Lamb, Inc. Deep water drilling with casing
US6899186B2 (en) 2002-12-13 2005-05-31 Weatherford/Lamb, Inc. Apparatus and method of drilling with casing
US7730965B2 (en) 2002-12-13 2010-06-08 Weatherford/Lamb, Inc. Retractable joint and cementing shoe for use in completing a wellbore
US7083005B2 (en) 2002-12-13 2006-08-01 Weatherford/Lamb, Inc. Apparatus and method of drilling with casing
US20050133274A1 (en) * 2002-12-30 2005-06-23 Weatherford/Lamb, Inc. Drilling with concentric strings of casing
US7131505B2 (en) * 2002-12-30 2006-11-07 Weatherford/Lamb, Inc. Drilling with concentric strings of casing
US6857487B2 (en) * 2002-12-30 2005-02-22 Weatherford/Lamb, Inc. Drilling with concentric strings of casing
US6953096B2 (en) 2002-12-31 2005-10-11 Weatherford/Lamb, Inc. Expandable bit with secondary release device
US7128154B2 (en) 2003-01-30 2006-10-31 Weatherford/Lamb, Inc. Single-direction cementing plug
USRE42877E1 (en) 2003-02-07 2011-11-01 Weatherford/Lamb, Inc. Methods and apparatus for wellbore construction and completion
US7096982B2 (en) 2003-02-27 2006-08-29 Weatherford/Lamb, Inc. Drill shoe
US7650944B1 (en) 2003-07-11 2010-01-26 Weatherford/Lamb, Inc. Vessel for well intervention
US7757784B2 (en) 2003-11-17 2010-07-20 Baker Hughes Incorporated Drilling methods utilizing independently deployable multiple tubular strings
US20050274547A1 (en) * 2003-11-17 2005-12-15 Baker Hughes Incorporated Drilling systems and methods utilizing independently deployable multiple tubular strings
US7624818B2 (en) 2004-02-19 2009-12-01 Baker Hughes Incorporated Earth boring drill bits with casing component drill out capability and methods of use
US20050183892A1 (en) * 2004-02-19 2005-08-25 Oldham Jack T. Casing and liner drilling bits, cutting elements therefor, and methods of use
US20080223575A1 (en) * 2004-02-19 2008-09-18 Baker Hughes Incorporated Casing and liner drilling bits and reamers, cutting elements therefor, and methods of use
US20110203850A1 (en) * 2004-02-19 2011-08-25 Baker Hughes Incorporated Methods of drilling using differing types of cutting elements
US8205693B2 (en) 2004-02-19 2012-06-26 Baker Hughes Incorporated Casing and liner drilling shoes having selected profile geometries, and related methods
US20080149393A1 (en) * 2004-02-19 2008-06-26 Baker Hughes Incorporated Earth boring drill bits with casing component drill out capability and methods of use
US8167059B2 (en) 2004-02-19 2012-05-01 Baker Hughes Incorporated Casing and liner drilling shoes having spiral blade configurations, and related methods
US8191654B2 (en) 2004-02-19 2012-06-05 Baker Hughes Incorporated Methods of drilling using differing types of cutting elements
US8225887B2 (en) 2004-02-19 2012-07-24 Baker Hughes Incorporated Casing and liner drilling shoes with portions configured to fail responsive to pressure, and related methods
US20070079995A1 (en) * 2004-02-19 2007-04-12 Mcclain Eric E Cutting elements configured for casing component drillout and earth boring drill bits including same
US7748475B2 (en) 2004-02-19 2010-07-06 Baker Hughes Incorporated Earth boring drill bits with casing component drill out capability and methods of use
US7954570B2 (en) 2004-02-19 2011-06-07 Baker Hughes Incorporated Cutting elements configured for casing component drillout and earth boring drill bits including same
US8297380B2 (en) 2004-02-19 2012-10-30 Baker Hughes Incorporated Casing and liner drilling shoes having integrated operational components, and related methods
US8225888B2 (en) 2004-02-19 2012-07-24 Baker Hughes Incorporated Casing shoes having drillable and non-drillable cutting elements in different regions and related methods
US7395882B2 (en) 2004-02-19 2008-07-08 Baker Hughes Incorporated Casing and liner drilling bits
US20060070771A1 (en) * 2004-02-19 2006-04-06 Mcclain Eric E Earth boring drill bits with casing component drill out capability and methods of use
US8006785B2 (en) 2004-02-19 2011-08-30 Baker Hughes Incorporated Casing and liner drilling bits and reamers
US7156189B1 (en) 2004-12-01 2007-01-02 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Self mountable and extractable ultrasonic/sonic anchor
US20070193757A1 (en) * 2006-02-03 2007-08-23 California Institute Of Technology Ultrasonic/sonic jackhammer
US8910727B2 (en) 2006-02-03 2014-12-16 California Institute Of Technology Ultrasonic/sonic jackhammer
US7857052B2 (en) 2006-05-12 2010-12-28 Weatherford/Lamb, Inc. Stage cementing methods used in casing while drilling
US20100065282A1 (en) * 2006-05-15 2010-03-18 Baker Hughes Incorporated Method of drilling out a reaming tool
US7900703B2 (en) 2006-05-15 2011-03-08 Baker Hughes Incorporated Method of drilling out a reaming tool
US20070289782A1 (en) * 2006-05-15 2007-12-20 Baker Hughes Incorporated Reaming tool suitable for running on casing or liner and method of reaming
US7621351B2 (en) 2006-05-15 2009-11-24 Baker Hughes Incorporated Reaming tool suitable for running on casing or liner
US8276689B2 (en) 2006-05-22 2012-10-02 Weatherford/Lamb, Inc. Methods and apparatus for drilling with casing
US7954571B2 (en) 2007-10-02 2011-06-07 Baker Hughes Incorporated Cutting structures for casing component drillout and earth-boring drill bits including same
US8177001B2 (en) 2007-10-02 2012-05-15 Baker Hughes Incorporated Earth-boring tools including abrasive cutting structures and related methods
US20110198128A1 (en) * 2007-10-02 2011-08-18 Baker Hughes Incorporated Earth-boring tools including abrasive cutting structures and related methods
US8245797B2 (en) 2007-10-02 2012-08-21 Baker Hughes Incorporated Cutting structures for casing component drillout and earth-boring drill bits including same
US20100187011A1 (en) * 2007-10-02 2010-07-29 Jurica Chad T Cutting structures for casing component drillout and earth-boring drill bits including same
US20090084608A1 (en) * 2007-10-02 2009-04-02 Mcclain Eric E Cutting structures for casing component drillout and earth boring drill bits including same
US20120073107A1 (en) * 2009-02-12 2012-03-29 Johannes Koecher Clamping device on a vibrator and method for clamping a tube on said clamping device
DE102009008581A1 (en) * 2009-02-12 2010-08-19 Thyssenkrupp Gft Tiefbautechnik Gmbh Tensioning device on a vibrator and method for tensioning a tube on this tensioning device
US20150204143A1 (en) * 2014-01-23 2015-07-23 Baker Hughes Incorporated Wired pipe erosion reduction
US9611702B2 (en) * 2014-01-23 2017-04-04 Baker Hughes Incorporated Wired pipe erosion reduction

Similar Documents

Publication Publication Date Title
US3624760A (en) Sonic apparatus for installing a pile jacket, casing member or the like in an earthen formation
US4512401A (en) Method for forming a cement annulus for a well
US2975846A (en) Acoustic method and apparatus for driving piles
US3578081A (en) Sonic method and apparatus for augmenting the flow of oil from oil bearing strata
US4429743A (en) Well servicing system employing sonic energy transmitted down the pipe string
US2700422A (en) Sonic system for augmenting the extraction of petroleum from petroleum bearing strata
US3633688A (en) Torsional rectifier drilling device
US4436452A (en) Sonic pile driver system employing resonant drive member and phased coupling
US6464014B1 (en) Downhole coiled tubing recovery apparatus
US3367716A (en) Sonic rectifier coupling for rock cutting apparatus
US2972380A (en) Acoustic method and apparatus for moving objects held tight within a surrounding medium
US20170175446A1 (en) Force Stacking Assembly for Use with a Subterranean Excavating System
US3312295A (en) Method and apparatus for fluid injection in vibratory driving of piles and the like
US3283833A (en) Sonic conduit driving system
US3016093A (en) Method of and apparatus for cleaning out oil well casing perforations and surrounding formation by application of asymmetric acoustic waves with peaked compression phase
US2672322A (en) Sonic earth boring drill
US4548281A (en) Apparatus and method for installing well casings in the ground employing resonant sonic energy in conjunction with hydraulic pulsating jet action
US3416632A (en) Beat frequency sonic technique and apparatus for use in seismic surveys
US3379263A (en) Sonic method and apparatus for installing pile member, casing members or the like, in earthen formations
US4236580A (en) Method and apparatus for sonically extracting oil well liners
US4023628A (en) Drilling device utilizing sonic resonant torsional rectifier
US4280558A (en) Sonic technique and system for facilitating the extraction of mineral material
US3378075A (en) Sonic energization for oil field formations
US3693364A (en) Sonic method for installing a pile jacket, casing member or the like in an earthen formation
US3352369A (en) Sonic method and apparatus for driving anchors, anchor posts and the like