US3623704A - Static mixing device - Google Patents

Static mixing device Download PDF

Info

Publication number
US3623704A
US3623704A US60465A US3623704DA US3623704A US 3623704 A US3623704 A US 3623704A US 60465 A US60465 A US 60465A US 3623704D A US3623704D A US 3623704DA US 3623704 A US3623704 A US 3623704A
Authority
US
United States
Prior art keywords
elements
points
entry
sets
inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US60465A
Inventor
Max Skobel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dow Silicones Corp
Original Assignee
Dow Corning Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Corning Corp filed Critical Dow Corning Corp
Application granted granted Critical
Publication of US3623704A publication Critical patent/US3623704A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/421Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions by moving the components in a convoluted or labyrinthine path
    • B01F25/422Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions by moving the components in a convoluted or labyrinthine path between stacked plates, e.g. grooved or perforated plates

Definitions

  • Hermann ABSTRACT A static mixing device for mixing two liquid components by sequentially combining, dividing and recombining streams including a sequential series of sets of parallel dividing and recombining elements, each element having a single point of entry or exit at one end and multiple points of exit or entry on its opposite end all liquid paths through each element having substantially equal mean lengths.
  • the device may be made extremely small and is adapted for hand-held operation.
  • the present invention relates to static mixing devices and more particularly to improvements in mixing devices for combining a plurality of fluid streams.
  • static mixing devices for mixing two or more liquid streams are known in the art. For example, see US. Pat. Nos. 3,051,453, granted Aug. 28, 1962', 3,195,865 granted July 20, 1965 and 3,159,312 granted Dec. 1, 1964. Numerous other such devices have also been patented.
  • the present invention uses the principle shown in a number of prior art patents of mixing two liquid components by sequentially combining, dividing and recombining streams a number of times.
  • the device comprises a sequential series of sets of parallel pluralities of stream dividing and recombining elements.
  • Each element consists of a single point of entry or exit depending upon its position in the device and multiple points of exit or entry at the opposite end of the element. These elements are placed in parallel to form a set; the sets alternating in orientation at right angles to one another along the sequential series.
  • the mean lengths of the flow path between the single point and the multiple points is of substantially equal length in each element and the cross-sectional area of all the multiple points are substantially equal. In this manner the amount of liquid material flowing between each of the various points of entry and exit is maintained substantially equal.
  • the material flowing through the entry point is divided in the element into a group of streams having equal cross sections and equal rate of flow.
  • each of the entering streams is equal in cross section and rate of flow and the streams are combined in the element and leave from the single point of exit.
  • Valve means are provided for controlling flow into the mixing device.
  • the device is provided with a pistol grip and the valve means is actuated by a trigger.
  • the device is simple to manufacture and is efficient in operation when compared with prior art devices of this type. It may be manufactured in extremely compact form and in such form desirably may be made as a disposable unit, rather than a unit which must be cleaned each time that the device is used. The amount of material retained in the unit is extremely small; therefore, due to its simplicity the disposable concept makes the device more economical than attempting to clean similar devices. The pressure drop across the mixer is minimized, resulting in more uniform flow through the device, regardless of viscosity. In addition to being useful for mixing sealants, the device has obvious application in producing extrusions and in automatic molding operations.
  • FIG. 1 is a somewhat diagrammatic view of an embodiment of the present invention.
  • FIG. 2 is a vertical cross-sectional view of the mixer gun shown in FIG. 1.
  • FIG. 3 is another cross-sectional view in greater detail of the mixer head of the gun of FIG. 2, taken at right angles to the cross section of FIG. 2.
  • FIG. 4 is a diagram of one of the stream dividing or recombining elements illustrating the principles thereof.
  • FIG. 5 is a plan view of the distributor plate shown in the cross sections of FIG. 2 and 3.
  • FIG. I a mixer gun 11 connected by a pair of lines 12 and 13 to a metering system 14 which in turn is supplied by a pair of material supplies 16 and 17.
  • the materials in the supplies l6 and 17 are metered to provide the desired relative quantities by the metering system 14 and are supplied under pressure to the gun I 1.
  • the material supply lines 12 and 13 are connected to the gun 11 by means such as threaded connections like that shown at 18 at the rear of the mixer.
  • a trigger 19 biased by a spring 20 and mounted in a pistol grip 21 actuates a pair of valves 22 (only one of which is shown) which open and close the inlets from lines 12 and 13.
  • the mixing head proper is a hollow tubular member 23, preferably generally rectangular in cross section, comprising a sequential series of sets of parallel pluralities of stream dividing and recombining elements 24.
  • four elements are stacked in parallel in each set. This provides in effect four parallel streams through each of the sets of stream dividing and recombining elements. Since four streams are required, four configurations of stream dividing elements 24 designated in FIG. 3 as 24a, b, c, and d are provided. The four configurations are required to provide four different positions of inlet for each set of elements.
  • the four basic configurations can be seen from FIG. 3.
  • Each of the elements 2411-11 is so designed that the mean length of path from the side with the single inlet or outlet designated in FIG. 4 as point A to each point of outlet on the multiple outlet side is identical and the mean length of path to the outlet, assuming A is the inlet, from any point of division in the device is also identical. Looking at FIG. 4, therefore, the distance from point A to point B to point C, is equal to the distance from point A through point B to point D. Similarly,
  • the distance from point B to point C is equal to the distance from point B through point E to point P and the distance from point B through points E and G to point H.
  • a distributor plate 27 In the four parallel stream device shown, there need to be eight points of entry of material into the mixing head proper from the distributor plate 27.
  • the cross-sectional areas of all of the runners associated with either of the apertures are also of equal dimensions.
  • the first set of parallel pluralities of stream dividing and recombining elements therefore, comprises eight elements rather than four, each of the elements being of diminished thickness so that a pair of adjacent elements in the set is of substantially equal thickness to a single element in the next set of parallel elements serially adjacent thereto.
  • One of each of the components being mixed is introduced from the runners 29a-h into each pair of elements.
  • the inlets of the top pair of elements in the first set of parallel elements correspond in location with the points 29s and 29a, and the inlets of the next pair below the top correspond with the points 29f and 29b.
  • the material entering each pair of elements is divided into eight streams by the pair: four streams of each component; and enters all four of the next set of four elements of the next serial set of elements along the flow path.
  • streams coming from all eight of the elements of the first set are recombined in four streams leaving the second parallel set of elements.
  • the four streams leaving the second parallel set are in turn each again divided into four streams in the third set of elements and recombined in the fourth set of elements, etc.
  • each adjacent pair of elements in a set may be molded in a single operation so that a single piece in effect forms two elements.
  • a solid divider spacer 33 is provided between adjacent pairs of elements to divide the exit or entrance paths between such adjacent elements in the set.
  • each element may be molded as a single piece and the pieces simply stacked to form the sets and placed in series 'to form the sequential series of sets.
  • the elements may be made of any suitable material. For example, they may be from zinc die-cast or molded thermoplastic material or the like.
  • the device may be used to inject sealant, for example, into open seams and after use the unit may be simply thrown away due to its small size and low cost.
  • the device can also be used for producing extruded shaped parts and for molded parts in situations where two-component systems are needed.
  • rt rs possible to place several mixing elements in parallel if desired.
  • a static mixing device for mixing liquids by combining, dividing and recombiningstreams along a tortuous path, the improvement which comprises:
  • each set of parallel elements is positioned at right angles to all sets of parallel elements positioned immediately serially adjacent thereto.
  • feeding means are provided in the liquid inlet to said sequential series for feeding said points of entry in the first of said sequential sets of stream dividing and recombining elements with the liquids to be mixed.
  • said feeding means comprises a prestage array of stream dividing elements similar in configuration to said sets of parallel elements but having exit points of smaller cross-sectional area than the inlet points of said first of said sequential sets, whereby two elements of the prestage array feed each inlet point of said first sequential set, different liquid components being fed from each ofsaid two elements.

Abstract

A static mixing device for mixing two liquid components by sequentially combining, dividing and recombining streams including a sequential series of sets of parallel dividing and recombining elements, each element having a single point of entry or exit at one end and multiple points of exit or entry on its opposite end, all liquid paths through each element having substantially equal mean lengths. The device may be made extremely small and is adapted for hand-held operation.

Description

United States Patent 3,159,312 12/1964 Sciver 222/137 3,195,865 7/1965 Harder .1 259/4 3,361,412 1/1968 Cole 259/4 3.406.947 10/1968 Harder 259/4 3.526391 9/1970 Churchm. 259/4 Primary Examiner-Robert W. Jenkins Auomeys Robert F. Fleming, .lr., Laurence R. Hobey, Harry D. Dingman and Howard W. Hermann ABSTRACT: A static mixing device for mixing two liquid components by sequentially combining, dividing and recombining streams including a sequential series of sets of parallel dividing and recombining elements, each element having a single point of entry or exit at one end and multiple points of exit or entry on its opposite end all liquid paths through each element having substantially equal mean lengths. The device may be made extremely small and is adapted for hand-held operation.
PATENTEDunvamen W m 2 3,623,704
COMPONENT-A l6 METERING SYSTEM COMPONENT- B I? F/il. J
INVENTOR MAX SKOBEL ATTORNEY STATIC MIXING DEVICE BACKGROUND OF THE INVENTION The present invention relates to static mixing devices and more particularly to improvements in mixing devices for combining a plurality of fluid streams. Numerous types of static mixing devices for mixing two or more liquid streams are known in the art. For example, see US. Pat. Nos. 3,051,453, granted Aug. 28, 1962', 3,195,865 granted July 20, 1965 and 3,159,312 granted Dec. 1, 1964. Numerous other such devices have also been patented.
A number of these devices are in use commercially, generally in large volume industrial processes, such as polymer production for filamentary materials, for example. It has been found, however, that for very viscous materials at relatively low flow rates, these devices known in the art are not completely satisfactory. This is particularly true in applications where a catalyst composition is added to a base polymer and at least one of the materials is relatively viscous. The flow through the prior art devices is not completely uniform and there are dead spots" in the flow through the device. In these areas the catalyst causes curing of the system resulting in a partial block of flow which increases with time. The resultant effect is an impedance of the volume of material flowing through the device and often incomplete mixing as well.
There is also a definite need in the art for a device of this type which can be made in extremely compact form for use, for example, in a hand-held injection gun for providing a bead of sealant along an open seam or the like. The shortening of the path length along the prior art devices tends to aggravate the problem set forth in the preceding paragraph. With many prior art designs it becomes impossible to obtain complete mixing in a relatively short path length. When mixing elements are placed in series, undesirable pressure drops occur across the mixing unit.
SUMMARY OF THE INVENTION It is, therefore, an object of the present invention to provide a static mixing device which eliminates the aforesaid problems inherent in prior art devices of this type. A further object is the provision of a static mixing device which is capable of being made in extremely compact form.
In accordance with these and other objects, it has been found that the problems inherent in prior art devices can be substantially reduced or eliminated by providing equal path lengths through the device and through each element of the device. The present invention uses the principle shown in a number of prior art patents of mixing two liquid components by sequentially combining, dividing and recombining streams a number of times. The device comprises a sequential series of sets of parallel pluralities of stream dividing and recombining elements.
Each element consists of a single point of entry or exit depending upon its position in the device and multiple points of exit or entry at the opposite end of the element. These elements are placed in parallel to form a set; the sets alternating in orientation at right angles to one another along the sequential series.
In each case the mean lengths of the flow path between the single point and the multiple points is of substantially equal length in each element and the cross-sectional area of all the multiple points are substantially equal. In this manner the amount of liquid material flowing between each of the various points of entry and exit is maintained substantially equal. In the instance where the single point of each element is the point of entry, the material flowing through the entry point is divided in the element into a group of streams having equal cross sections and equal rate of flow. Similarly, in the situation where the multiple points form the points of entry of material into each element, each of the entering streams is equal in cross section and rate of flow and the streams are combined in the element and leave from the single point of exit. The device must be connected to a metering system to assure the proper relationship of flow between the components being mixed. Valve means are provided for controlling flow into the mixing device. In a preferred embodiment the device is provided with a pistol grip and the valve means is actuated by a trigger.
The device is simple to manufacture and is efficient in operation when compared with prior art devices of this type. It may be manufactured in extremely compact form and in such form desirably may be made as a disposable unit, rather than a unit which must be cleaned each time that the device is used. The amount of material retained in the unit is extremely small; therefore, due to its simplicity the disposable concept makes the device more economical than attempting to clean similar devices. The pressure drop across the mixer is minimized, resulting in more uniform flow through the device, regardless of viscosity. In addition to being useful for mixing sealants, the device has obvious application in producing extrusions and in automatic molding operations.
BRIEF DESCRIPTION OF THE DRAWINGS Other objects and attendant advantages of the present invention will become better understood by those skilled in the art by referring to the following detailed description when read in connection with the accompanying drawings wherein:
FIG. 1 is a somewhat diagrammatic view of an embodiment of the present invention.
FIG. 2 is a vertical cross-sectional view of the mixer gun shown in FIG. 1.
FIG. 3 is another cross-sectional view in greater detail of the mixer head of the gun of FIG. 2, taken at right angles to the cross section of FIG. 2.
FIG. 4 is a diagram of one of the stream dividing or recombining elements illustrating the principles thereof.
FIG. 5 is a plan view of the distributor plate shown in the cross sections of FIG. 2 and 3.
DESCRIPTION OF PREFERRED EMBODIMENTS Referring now to the drawings wherein like reference characters designate like or corresponding parts throughout the figures thereof. There is shown in FIG. I a mixer gun 11 connected by a pair of lines 12 and 13 to a metering system 14 which in turn is supplied by a pair of material supplies 16 and 17. The materials in the supplies l6 and 17 are metered to provide the desired relative quantities by the metering system 14 and are supplied under pressure to the gun I 1.
Referring now to FIGS. 2 and 3, the gun 11 may be seen in greater detail. The material supply lines 12 and 13 are connected to the gun 11 by means such as threaded connections like that shown at 18 at the rear of the mixer. A trigger 19 biased by a spring 20 and mounted in a pistol grip 21 actuates a pair of valves 22 (only one of which is shown) which open and close the inlets from lines 12 and 13.
The mixing head proper is a hollow tubular member 23, preferably generally rectangular in cross section, comprising a sequential series of sets of parallel pluralities of stream dividing and recombining elements 24. In the embodiment shown, four elements are stacked in parallel in each set. This provides in effect four parallel streams through each of the sets of stream dividing and recombining elements. Since four streams are required, four configurations of stream dividing elements 24 designated in FIG. 3 as 24a, b, c, and d are provided. The four configurations are required to provide four different positions of inlet for each set of elements. The four basic configurations can be seen from FIG. 3.
Each of the elements 2411-11 is so designed that the mean length of path from the side with the single inlet or outlet designated in FIG. 4 as point A to each point of outlet on the multiple outlet side is identical and the mean length of path to the outlet, assuming A is the inlet, from any point of division in the device is also identical. Looking at FIG. 4, therefore, the distance from point A to point B to point C, is equal to the distance from point A through point B to point D. Similarly,
the distance from point B to point C is equal to the distance from point B through point E to point P and the distance from point B through points E and G to point H.
While it is desirable in some instances to have a third divider strip 26 positioned midway between points H and D, it has been found that the divider strip at this point is not a necessity. This is particularly true since the next element serially in the mixing device will automatically have a divider at that point because the next set of elements is placed at right angles to the elements in each preceding set, as may be seen more clearly from FIGS. 2 and 3. Thus, the one large opening encompassing the points H and D, FIG. 4 should be considered in effect to be two openings of equal cross-sectional area. Of course, in a larger device that the miniaturized hand-held one shown in the embodiment of the drawings, it will be realized that a divider fin 26 will be placed at that point.
Material entering the mixer proper from the valve 22, enters through a distributor plate 27, which can be seen in FIGS. 2 and 3, and more clearly seen from FIG. 5. In the four parallel stream device shown, there need to be eight points of entry of material into the mixing head proper from the distributor plate 27. Material from each of the two streams enters the distributor plate 27 through an aperture 28a or 28b. and flows through one of four equal length runners 29ah associated with the apertures 280 or 28b. The runners associated with the aperture 28a, i.e. runners 29a-d, are all of equal length, and likewise the runners 29e-h associated with the aperture 28b are also all of equal length. Similarly, the cross-sectional areas of all of the runners associated with either of the apertures are also of equal dimensions.
Altogether, there are eight runners, four for each component, in the embodiment shown. The first set of parallel pluralities of stream dividing and recombining elements, therefore, comprises eight elements rather than four, each of the elements being of diminished thickness so that a pair of adjacent elements in the set is of substantially equal thickness to a single element in the next set of parallel elements serially adjacent thereto. One of each of the components being mixed is introduced from the runners 29a-h into each pair of elements.
For example, as viewed in FIG. 2, the inlets of the top pair of elements in the first set of parallel elements correspond in location with the points 29s and 29a, and the inlets of the next pair below the top correspond with the points 29f and 29b. The material entering each pair of elements is divided into eight streams by the pair: four streams of each component; and enters all four of the next set of four elements of the next serial set of elements along the flow path.
In the second set of elements, streams coming from all eight of the elements of the first set are recombined in four streams leaving the second parallel set of elements. The four streams leaving the second parallel set are in turn each again divided into four streams in the third set of elements and recombined in the fourth set of elements, etc. By dividing and recombining the streams, even assuming laminar flow, mixing occurs over a very short distance.
The elements of the preferred embodiment of this invention may be combined as shown for purposes of manufacture. That is, each adjacent pair of elements in a set may be molded in a single operation so that a single piece in effect forms two elements. A solid divider spacer 33 is provided between adjacent pairs of elements to divide the exit or entrance paths between such adjacent elements in the set. Alternatively, of course, each element may be molded as a single piece and the pieces simply stacked to form the sets and placed in series 'to form the sequential series of sets. The elements may be made of any suitable material. For example, they may be from zinc die-cast or molded thermoplastic material or the like. In use, the device may be used to inject sealant, for example, into open seams and after use the unit may be simply thrown away due to its small size and low cost. The device can also be used for producing extruded shaped parts and for molded parts in situations where two-component systems are needed. The
device can also be adapted to mix three or even more components. For greater vo ume throughput, rt rs possible to place several mixing elements in parallel if desired.
Obviously, many other modifications and variations of the present invention will occur to those skilled in the art from a reading of the foregoing. Therefore, it is to be understood that within the scope of the appended claims, the invention may be practiced otherwise than as specifically described.
That which is claimed is:
1. In a static mixing device for mixing liquids by combining, dividing and recombiningstreams along a tortuous path, the improvement which comprises:
a sequential series of sets of parallel pluralities of stream dividing and recombining elements, each element consisting of a single point of entry or exit at one end thereof and multiple points of exit or entry at the opposite end thereof, the mean length of flow path between said single point and each of said multiple points being of substantially equal length and the cross-sectional area of all said multiple points being substantially equal, whereby the amount of liquids flowing between each of the various points of entry and exit is maintained substantially equal.
2. The improvement defined in claim I, wherein:
each set of parallel elements is positioned at right angles to all sets of parallel elements positioned immediately serially adjacent thereto.
3. The improvement defined in claim 2, wherein feeding means are provided in the liquid inlet to said sequential series for feeding said points of entry in the first of said sequential sets of stream dividing and recombining elements with the liquids to be mixed.
4. The improvement as defined in claim 3, wherein said feeding means comprises a prestage array of stream dividing elements similar in configuration to said sets of parallel elements but having exit points of smaller cross-sectional area than the inlet points of said first of said sequential sets, whereby two elements of the prestage array feed each inlet point of said first sequential set, different liquid components being fed from each ofsaid two elements.
5. The improvement defined in claim 4, and further including a distributor plate feeding said prestage array, said distributor plate comprising an inlet port for each of said liquids and a plurality of feeder paths extending from each said inlet port points adjacent the inlet points of the elements of the prestage array, all feeder paths extending from each of said ports being of substantially equal mean length and of substantially equal cross-sectional area.
6. The improvement defined in claim 5, and further including valve means for controlling flow of liquid to said inlet ports.
7. The improvement defined in claim 6, and further including trigger means mounted in a hand grip for operating said valve means.
8. The improvement defined in claim 7, and further including metering means supplying said valve means for maintaining equal flow differentials between the two liquids supplied to the device.

Claims (8)

1. In a static mixing device for mixing liquids by combining, dividing and recombining streams along a tortuous path, the improvement which comprises: a sequential series of sets of parallel pluralities of stream dividing and recombining elements, each element consisting of a single point of entry or exit at one end thereof and multiple points of exit or entry at the opposite end thereof, the mean length of flow path between said single point and each of said multiple points being of substantially equal length and the cross-sectional area of all said multiple points being substantially equal, whereby the amount of liquids flowing between each of the various points of entry and exit is maintained substantially equal.
2. The improvement defined in claim 1, wherein: each set of parallel elements is positioned at right angles to all sets of parallel elements positioned immediately serially adjacent thereto.
3. The improvement defined in claim 2, wherein feeding means are provided in the liquid inlet to said sequential series for feeding said points of entry in the first of said sequential sets of stream dividing and recombining elements with the liquids to be mixed.
4. The improvement as defined in claim 3, wherein said feeding means comprises a prestage array of stream dividing elements similar in configuration to said sets of parallel elements but having exit points of smaller cross-sectional area than the inlet points of said first of said sequential sets, whereby two elements of the prestage array feed each inlet point of said first sequential set, different liquid components being fed from each of said two elements.
5. The improvement defined in claim 4, and further including a distributor plate feeding said prestage array, said distributor plate comprising an inlet port for each of said liquids and a plurality of feeder patHs extending from each said inlet port points adjacent the inlet points of the elements of the prestage array, all feeder paths extending from each of said ports being of substantially equal mean length and of substantially equal cross-sectional area.
6. The improvement defined in claim 5, and further including valve means for controlling flow of liquid to said inlet ports.
7. The improvement defined in claim 6, and further including trigger means mounted in a hand grip for operating said valve means.
8. The improvement defined in claim 7, and further including metering means supplying said valve means for maintaining equal flow differentials between the two liquids supplied to the device.
US60465A 1970-08-03 1970-08-03 Static mixing device Expired - Lifetime US3623704A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US6046570A 1970-08-03 1970-08-03

Publications (1)

Publication Number Publication Date
US3623704A true US3623704A (en) 1971-11-30

Family

ID=22029651

Family Applications (1)

Application Number Title Priority Date Filing Date
US60465A Expired - Lifetime US3623704A (en) 1970-08-03 1970-08-03 Static mixing device

Country Status (1)

Country Link
US (1) US3623704A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3782694A (en) * 1972-09-18 1974-01-01 Western Controls Inc Apparatus and method for mixing materials
US3856270A (en) * 1973-10-09 1974-12-24 Fmc Corp Static fluid mixing apparatus
US3912235A (en) * 1974-12-19 1975-10-14 United Technologies Corp Multiblend powder mixing apparatus
FR2352581A1 (en) * 1976-05-24 1977-12-23 Atlas Copco Ab MIXER FOR TWO FLUIDS, ESPECIALLY FOR SPRAY GUNS
US4084795A (en) * 1975-09-22 1978-04-18 Vaughn Daniel J Apparatus for manufacturing foamed plastics
US4112520A (en) * 1976-03-25 1978-09-05 Oscar Patton Gilmore Static mixer
US4222671A (en) * 1978-09-05 1980-09-16 Gilmore Oscar Patrick Static mixer
US4361407A (en) * 1980-06-27 1982-11-30 Centro Ricerche Fiat S.P.A. Stationary mixer device arranged to homogeneously mix two or more components in liquid or semiliquid state
DE3400280C1 (en) * 1984-01-05 1985-03-14 Reinhardt-Technik Gmbh & Co, 5883 Kierspe Dosing and mixing device for highly viscous two-component materials
US4798474A (en) * 1987-10-22 1989-01-17 Union Carbide Corporation In-situ pipeline coating system
US4892410A (en) * 1986-06-16 1990-01-09 Sandoz Ltd. Method and apparatus for protective encapsulation of structural members
US4952068A (en) * 1989-03-21 1990-08-28 Flint Theodore R Static mixing device and container
DE4138351A1 (en) * 1991-11-21 1993-05-27 Bostik Gmbh Two-component paste premixer - has structured inner walls to lay adjacent material strands in alternating layers and hence achieves a homogeneous mixt. with low delivery pressure
WO1994006552A1 (en) * 1992-09-22 1994-03-31 Reagent Chemical And Research, Inc. Mixing apparatus and method for forming a blended composite material from a plurality of components
US20030174577A1 (en) * 2002-03-12 2003-09-18 Alex Botrie Apparatus and method for mixing and dispensing components of a composition
US7178974B1 (en) 2004-08-06 2007-02-20 Bell Marcus O Plural component polymer grout plant
US8308340B2 (en) * 2004-11-23 2012-11-13 Smith & Nephew, Inc. Composite mixer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3051453A (en) * 1958-07-08 1962-08-28 American Enka Corp Mixing apparatus
US3159312A (en) * 1962-09-28 1964-12-01 Budd Co Dispensing device for mixing two viscous fluids
US3195865A (en) * 1960-09-09 1965-07-20 Dow Chemical Co Interfacial surface generator
US3361412A (en) * 1964-05-06 1968-01-02 Austin Cole Foam mixing head
US3406947A (en) * 1966-08-19 1968-10-22 Dow Chemical Co Interfacial surface generator
US3526391A (en) * 1967-01-03 1970-09-01 Wyandotte Chemicals Corp Homogenizer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3051453A (en) * 1958-07-08 1962-08-28 American Enka Corp Mixing apparatus
US3195865A (en) * 1960-09-09 1965-07-20 Dow Chemical Co Interfacial surface generator
US3159312A (en) * 1962-09-28 1964-12-01 Budd Co Dispensing device for mixing two viscous fluids
US3361412A (en) * 1964-05-06 1968-01-02 Austin Cole Foam mixing head
US3406947A (en) * 1966-08-19 1968-10-22 Dow Chemical Co Interfacial surface generator
US3526391A (en) * 1967-01-03 1970-09-01 Wyandotte Chemicals Corp Homogenizer

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3782694A (en) * 1972-09-18 1974-01-01 Western Controls Inc Apparatus and method for mixing materials
US3856270A (en) * 1973-10-09 1974-12-24 Fmc Corp Static fluid mixing apparatus
US3912235A (en) * 1974-12-19 1975-10-14 United Technologies Corp Multiblend powder mixing apparatus
US4084795A (en) * 1975-09-22 1978-04-18 Vaughn Daniel J Apparatus for manufacturing foamed plastics
US4112520A (en) * 1976-03-25 1978-09-05 Oscar Patton Gilmore Static mixer
FR2352581A1 (en) * 1976-05-24 1977-12-23 Atlas Copco Ab MIXER FOR TWO FLUIDS, ESPECIALLY FOR SPRAY GUNS
US4222671A (en) * 1978-09-05 1980-09-16 Gilmore Oscar Patrick Static mixer
US4361407A (en) * 1980-06-27 1982-11-30 Centro Ricerche Fiat S.P.A. Stationary mixer device arranged to homogeneously mix two or more components in liquid or semiliquid state
EP0150716A3 (en) * 1984-01-05 1987-06-03 Reinhardt-Technik GmbH & Co. Dosing and mixing apparatus for high viscosity multiple component materials
EP0150716A2 (en) * 1984-01-05 1985-08-07 Reinhardt-Technik GmbH & Co. Dosing and mixing apparatus for high viscosity multiple component materials
DE3400280C1 (en) * 1984-01-05 1985-03-14 Reinhardt-Technik Gmbh & Co, 5883 Kierspe Dosing and mixing device for highly viscous two-component materials
US4892410A (en) * 1986-06-16 1990-01-09 Sandoz Ltd. Method and apparatus for protective encapsulation of structural members
US4798474A (en) * 1987-10-22 1989-01-17 Union Carbide Corporation In-situ pipeline coating system
US4952068A (en) * 1989-03-21 1990-08-28 Flint Theodore R Static mixing device and container
DE4138351A1 (en) * 1991-11-21 1993-05-27 Bostik Gmbh Two-component paste premixer - has structured inner walls to lay adjacent material strands in alternating layers and hence achieves a homogeneous mixt. with low delivery pressure
WO1994006552A1 (en) * 1992-09-22 1994-03-31 Reagent Chemical And Research, Inc. Mixing apparatus and method for forming a blended composite material from a plurality of components
US5350233A (en) * 1992-09-22 1994-09-27 Reagent Chemical & Research, Inc. Mixing apparatus and method for forming a blended composite material from a plurality of components
US20030174577A1 (en) * 2002-03-12 2003-09-18 Alex Botrie Apparatus and method for mixing and dispensing components of a composition
US6705756B2 (en) * 2002-03-12 2004-03-16 Chemque, Incorporated Apparatus and method for mixing and dispensing components of a composition
US20040159678A1 (en) * 2002-03-12 2004-08-19 Chemque, Incorporated Apparatus and method for mixing and dispensing components of a composition
US6971787B2 (en) 2002-03-12 2005-12-06 Chemque, Incorporated Apparatus and method for mixing and dispensing components of a composition
US7178974B1 (en) 2004-08-06 2007-02-20 Bell Marcus O Plural component polymer grout plant
US8308340B2 (en) * 2004-11-23 2012-11-13 Smith & Nephew, Inc. Composite mixer

Similar Documents

Publication Publication Date Title
US3623704A (en) Static mixing device
EP0150776B1 (en) Passive fluid mixing system
US4848920A (en) Static mixer
EP2133138B1 (en) Static Mixer
JP2018538129A5 (en)
US3856270A (en) Static fluid mixing apparatus
US6027241A (en) Multi viscosity mixing apparatus
US3286992A (en) Mixing device
EP0195450B1 (en) Stacked motionless mixer
US4204775A (en) Mixing device for simultaneously dispensing two-part liquid compounds from packaging kit
US4316673A (en) Mixing device for simultaneously dispensing two-part liquid compounds from packaging kit
US5944419A (en) Mixing device
US6238081B1 (en) Ultra-lean dilution apparatus
US5176448A (en) Special injection and distribution device
US3865352A (en) Static mixing device
US3570719A (en) Reagent mixing and dispensing apparatus
CN105879730B (en) Dual-wedge mixing baffle and associated static mixer and mixing method
JP2001252544A (en) Stationary mixer
USRE36235E (en) Dispensing and mixing apparatus
KR930007523A (en) Multi-Component Coating Assembly
KR20010024538A (en) Micromixer
US20040145967A1 (en) Micro-mixer
US3963221A (en) Mixing apparatus
JPH0687120A (en) Static laminar flow mixer device
SE459398B (en) PROCEDURE AND DEVICE FOR MIXING TWO WATERS