US3614820A - Method of manufacturing storage target for cathode ray tube - Google Patents

Method of manufacturing storage target for cathode ray tube Download PDF

Info

Publication number
US3614820A
US3614820A US737115A US3614820DA US3614820A US 3614820 A US3614820 A US 3614820A US 737115 A US737115 A US 737115A US 3614820D A US3614820D A US 3614820DA US 3614820 A US3614820 A US 3614820A
Authority
US
United States
Prior art keywords
layer
target
storage
phosphor
faceplate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US737115A
Inventor
Robert W Morris
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tektronix Inc
Original Assignee
Tektronix Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tektronix Inc filed Critical Tektronix Inc
Application granted granted Critical
Publication of US3614820A publication Critical patent/US3614820A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/20Manufacture of screens on or from which an image or pattern is formed, picked up, converted or stored; Applying coatings to the vessel
    • H01J9/233Manufacture of photoelectric screens or charge-storage screens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/02Electrodes; Screens; Mounting, supporting, spacing or insulating thereof
    • H01J29/10Screens on or from which an image or pattern is formed, picked up, converted or stored

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)

Abstract

A STORAGE TARGET FOR A CATHODE RAY TUBE IS FORMED BY ADHERING A LAYER OF GLASS TO THE REAR OF A GLASS FACEPLATE AND ETCHING DEPRESSIONS OR APERTURES IN SUCH LAYER. SUCH LAYER IS FORMED OF A MATERIAL WHICH IS EASILY ETCHED BY SUBSTANCES WHICH HAVE SUBSTANTIALLY NO EFFECT UPON THE GLASS FACEPLATE. A PHOTORESIST IS FIRST APPLIED TO THE GLASS LAYER, AND THIS PHOTORESIST EXPOSED TO THE DESIRED PATTERN OF A MESH OR COLLECTOR ELECTRODE HAVING APERTURES THEREIN. THE PHOTORESIST IS DEVELOPED, AND AN ETCHANT IS APPLIED WHICH PRODUCES SUBSTANTIALLY CYLINDRICAL DEPRESSIONS IN THE GLASS LAYER. SECONDARY EMISSIVE DIELECTRIC OR PHOSPHOR MATERIAL APPLIED IN THESE DEPRESSIONS WILL HAVE UNIFORM DEPTH AND THEREFORE UNIFORM STORAGE PROPERTIES. A STORAGE TARGET ACCORDING TO THE PRESENT INVENTION MAY BE PROVIDED WITH A COLLECTOR ON THE GLASS LAYER BETWEEN APERTURES THEREIN, AS WELL AS WITH AN UNDERCOLLECTOR BETWEEN THE GLASS LAYER AND THE FACEPLATE.

Description

Oct. 26, 1971 MoRRls 3,614,820
METHOD OF MANUFACTURING STORAGE TARGET FOR CATHODE RAY TUBE Filed June 14, 1968 2 Sheets-Sheet l 42 WE 54 vsn'li 1 444* AMP, MO'NITOR 40 HOR. 1 RASTER WRITE IREAD WRITE READ WRITE? STORAGE TUBE Hea ROBERT W. MORRIS INVENTOR BY R. W. MORRIS Oct. 26, 1971 METHOD OF MANUFACTURING STORAGE TARGET FOR CATHODE RAY TUBE 2 Sheets-Sheet 8 Filed June 14, 1968 58 FIG. 3
ROBERT W. MORRIS INVENTOR BUCKHORN, BLORE, KLARQUIST & SPARKMAN ATTORNEYS dfil lfizli Patented Uct. 26, l97ll U5. El. 29-25.1ll 9 Claims ABSTRACT 01F THE lDliSClLUS A storage target for a cathode ray tube is formed by adhering a layer of glass to the rear of a glass faceplate and etching depressions or apertures in such layer. Such layer is formed of a material which is easily etched by substances which have substantially no effect upon the glass faceplate. A photoresist is first applied to the glass layer, and this photoresist exposed to the desired pattern of a mesh or collector electrode having apertures therein. The photoresist is developed, and an etchant is applied which produces substantially cylindrical depressions in the glass layer. Secondary emissive dielectric or phosphor material applied in these depressions will have uniform depth and therefore uniform storage properties. A storage target according to the present invention may be provided with a collector on the glass layer between apertures therein, as well as with an undercollector between the glass layer and the faceplate.
mu... M.
In Charles B. Gibson, Jr. Pat. 3,293,474 issued Dec. 20, 1966, entitled Phosphor Dielectric Storage Target for a Cathode Ray Tube, and assigned to the assignee of the present invention, there is described a storage target which is simple, rugged, and reliable, and which exhibits high writing speed due to low capacitance. Storage targets of the type set forth and claimed in the Gibson patent have been employed to a considerable extent in cathode ray Oscilloscopes. However, one embodiment of the target disclosed and claimed in such patent, although having the advantages of very enhanced writing speed and low field distortion, has been found difiicult to manufacture in a manner achieving optimum performance characteristics possible with such a target. This target structure, illustrated at FIG. 4 in the aforementioned patent, includes a faceplate having a plurality of spaced depressions containing a dielectric secondary emissive material, e.g. a phosphor material. At the edges of the depressions containing such phosphor is located a mesh collector electrode extending toward the sources of electron emission from the level of the phosphor between elements of the mesh electrode. A straightforward method of manufacturing such a target includes the application of a photoresist to a faceplate, developing the resist, and selectively etching the depressions in the faceplate. Unfortunately, this method of manufacture of such target is difficult to control since some depressions formed thereby may be deeper than others, and because the depressions tend to be rounded on the bottom as illustrated in FIG. 2 herein. As a result, the depth of phosphor material varies across the diameter of the depression, generally being deepest at the center of the depression. Because of differing phosphor depth, the phosphor has different storage properties across each phosphor area. For example, the outer peripheries of the phosphor areas may store or emit light continuously at electron beam and collector voltages at which the centers of the phosphor area are able to selectively store. As a consequence of these differential properties, a higher background illumination and lower contrast image result than would be the case if the depressions and the phosphor contained therein were of uniform depth.
SUMMARY OF THE INVENTION According to the present invention, a storage target is manufactured by adhering a layer of insulative material to a support plate, eg to a faceplate, wherein the layer of insulative material has the property of responding to a different etchant than would attack the support plate to any substantial degree. The insulative layer, which may also be glass, is covered with a photoresist, exposed to a desired pattern of depressions, and developed. Etchant is then applied for etching the insulative material down to the base plate to provide depressions having substantially straight sides and substantially flat bottoms. A layer of secondary emissive material is deposited in these depressions, and inasmuch as the depressions are of uniform depth, the secondary emissive material will likewise have uniform depth. The target manufactured in this manner is found to have an improved contrast ratio and other desirable properties.
A storage target manufactured according to the present invention may include a support plate and a layer of insulating material separated by a thin electrical conductor layer. The layer of insulating material is provided with a plurality of spaced depressions having substantially straight sides extending therethrough, and a mesh collector electrode is disposed upon the layer of electrically insulating material laterally between the depressions. The thin electrical conductor layer forms an undercollector electrode and has the desirable property of further enhancing the contrast ratio of the target. Moreover, this undercollector electrode may be configured and operated to provide storage of an image corresponding to a graticule, alphanumeric character, or the like. Furthermore, the mesh collector electrode may be shaped into a desired configuration.
It is accordingly an object of the present invention to provide an improved cathode ray tube storage target exhibiting an enhanced contrast ratio.
It is a further object of the present invention to provide an improved cathode ray tube storage target which is easy to manufacture and which. causes decreased electric field distortion.
It is another object of the present invention to provide an improved cathode ray tube storage target which does not have to be faded positive before information stored thereon is erased.
It is a further object of the present invention to provide an improved cathode ray tube storage target for a cathode ray tube wherein certain areas of the storage target may be controlled, at will, to provide presentation of a graticule, alphanumeric character, or the like.
The subject matter which I regard as my invention is particularly pointed out and distinctly claimed in the concluding portion of this specification. The invention, however, both as to organization and method of operation, together with further advantages and objects thereof, may best be understood by reference to the following description taken in connection with the accompanying drawings wherein like reference characters refer to like elements.
DRAWINGS FIG. 1 is a schematic diagram of electrical circuitry including a storage tube having a storage target made in accordance with the present invention;
FIG. 2 is a greatly magnified cross-sectional view of a storage target such as may be employed in the cathode ray tube illustrated in FIG. 1, which is manufactured according to a prior art method;
FIG. 3 is a greatly magnified cross-sectional view of a storage target manufactured in accordance with the present invention;
FIG. 4 is a greatly magnified plan view of a portion of the FIG. 3 target;
FIG. 5 is a cross-sectional view of an alternative storage target employing an undercollector electrode, also greatly magnified;
FIG. 6 is a plan view of a portion of the FIG. 5 target; and
FIG. 7 is a plan view of a portion of a target according to the present invention illustrating undercollector configurations.
DETAILED DESCRIPTION A direct viewing, bistable storage tube 10 having a storage target 12' made in accordance with the present invention, or as disclosed and claimed in the aforementioned Gibson Pat. 3,293,474, is shown in FIG. 1. This storage tube may have a single electron gun including a cathode 14, a control grid 16, a focusing anode structure 18 as well as a pair of horizontal deflection plates 20 and a pair of vertical deflection plates 22. This single electron gun may be employed to produce either a writing beam or a reading beam of electrons by changing the positions of each of the three ganged switches 24, 26, and 28 connected respectively, to the control grid 16, horizontal deflection plates 20 and vertical deflection plates 22 between a WRITE position and the READ position, in a manner hereinafter described. However, it should be understood that a pair of separate electron guns may be employed to form the writing beam and the reading beam. The writing beam forms an electron charge image on the storage target 12 by deflection of the Writing beam across such storage target in accordance with an input signal applied to the vertical deflection plates 22. The reading beam is employed to produce an electrical readout signal on the storage target of the storage tube by scanning the charge image stored on the storage target 12, for example, in accordance with a conventional television raster pattern.
One or more flood guns 30 may be provided within the envelope of the storage tube 10 in order to bombard the surface of the storage target 12 substantially uniformly with low velocity flood electrons in order to maintain or hold the charge image produced on such storage target by the Writing beam after such writing beam no longer bombards such target. The storage target 12' includes a mesh electrode 32 on the electron beam side of the target as shown in FIG. 2 (corresponding to 32" in FIG. 3), which is connected to a DC. target voltage in parallel with load resistor 34. The target further includes a storage dielectric 36' (corresponding to 36 in FIG. 3), which may comprise a phosphor, located in a plurality of spaced depressions. When the target voltage applied to mesh electrode 32' is within the stable range of target voltages over which the dielectric layer 36 of the storage target will store a charge image for an indefinite controllable time, the writing beam of high velocity electrons produces by secondary emission a charge image on the dielectric layer 36 which is more positive than the areas not struck by the beam. The potential of the Written charge image is above a critical voltage corresponding to the first crossover point on the secondary emission curve of such dielectric, while the remaining unwritten areas of such dielectric layer have a potential below such critical voltage. The flood electrons bombarding the storage target drive the potential of the written areas of the dielectric layer 36' to a high voltage stable state corresponding to the potential on the mesh electrode, and drive the potential of the unwritten areas to a low voltage stable state corresponding to the voltage applied to the cathode of the flood guns 30. This bistable storage operation has been previously described in Anderson Pat. 3,293,473.
The load resistor 34 is connected to a DC. voltage source of +500 volts through a variable bias resistor 38 whose setting controls the target voltage applied to the mesh electrode 32. In order to erase the charge image stored on target 12' the resistance of the variable resistor 38 may be increased until the target voltage applied to the mesh electrode 32' is below the retention threshold voltage for the dielectric layer 36 below which the storage target will not store a charge image. Then the voltage applied to the mesh electrode is raised above the retention threshold 'voltage to a voltage within the stable range of target voltages over which the dielectric layer will store a charge image and the target is ready to receive another charge image.
During the writing operation of the storage tube of FIG. 1 the control grid 16 is connected by a switch 24 to a source of DC voltage of -3,025 volts whch is slightly negative with respect to the DC. voltage of 3,000 volts applied to cathode 14. The horizontal deflection plates 20 are connected by a switch 26 to a horizontal sweep generator 40, while the vertical deflection plates 22 are connected by a switch 28 to a vertical amplifier 42, which may be of the conventional type employed in cathode ray Oscilloscopes. The input signal whose waveform is to be stored on the storage target 12, is applied to the input terminal 44 of the vertical amplifier 42.
The dielectric layer 36 of the storage target 12' may be made of phosphor material including conventional phosphors, which may be photoconductive, so that the dielectric layer produces a light image corresponding to the charge image stored thereon when the storage tube is of a direct viewing type. In this case it is not necessary to provide the storage tube with an electrical readout circuit since the waveform of the input signal can be observed directly through the faceplate of the storage tube. Photoconductive phosphors may be used as the storage dielectric because such dielectric is in the form of a plurality of separate spaced areas which may be insulated from the target electrode, as shown in FIGS. 2 and 3, to prevent the charge image stored on such dielectric from spreading due to photoconductivity. A collimating electrode 45 may be provided as a wall coating of conductive material on the interior surface of the funnel portion of the envelope adjacent the storage target 12. This collimating electrode may be connected to a DC. voltage of +50 volts to focus the flood electrons onto the storage target and to prevent distortion of the stored image.
However, if the dielectric layer 36' is not of phosphor, but is of another secondary emissive material, the storage tube must be provided with a readout circuit to produce an electrical readout signal corresponding to the charge image stored on the storage target. This may be accomplished by connecting the control grid 16 by switch 24 to a source of DC. voltage of 3,050 volts in order to reduce the current density of the electron beam transmitted from the cathode 14 to target 12 in order to prevent such reading beam from producing a stored image on the target. In addition, the horizontal deflection plates 20 and the vertical deflection plates 22 may be connected by switches 26 and 28, respectively, to a raster signal generator 46. The raster signal generator applies conventional sawtooth signals of diflerent frequency to the horizontal plates and to the vertical plates in order to produce a conventional television raster scanning pattern for the reading beam. This raster pattern can be controlled to cover all, or only a portion of the storage target 12 in order to magnify a portion of the image stored thereon. This image magnification operation can be performed automatically by adjusting the raster signal generator so that the vertical raster signal applied to the deflection plates 22 of the storage tube runs between two voltage limits which correspond to voltages on opposite sides of the waveform portion sought to be magnified. The electrical readout signal produced on the mesh electrode 32 is transmitted through a coupling capacitor 48, a low impedance preamplified 5,0 and a high gain amplifier 52 to the Z-axis input of a remotely positioned television monitor tube 54 or other recording device. The horizontal and vertical deflection plates of the monitor tube 54 are also connected to the raster signal generator 46 so that the monitor tube displays the entire waveform image stored on the storage target 12' of the storage tube, or only a magnified portion of such waveform. Of course, it may be desirable to employ such a television monitor tube and electrical readout circuit even when the storage dielectric layer 36 of the target 12' is phosphor material in order to enable the remote observation of the stored waveform or to enable magnification of a portion thereof as indicated.
As hereinbefore mentioned, an advantageous target constructed in accordance with Gibson Pat. 3,293,474 includes a mesh electrode on the electron beam side of the target, i.e. oriented towards cathode 14 in tube 10, and including depressions in the tubes faceplate containing secondary emissive phosphor material wherein the phosphor areas are separated from one another by the ele ments of the mesh electrode. Such a target is illustrated in FIG. 4 of the Gibson patent. Since the mesh electrode is disposed towards the direction of electron emission both from cathode 14 and flood guns 30, a more uniform field distribution is established relative to the oncoming electrons, resulting in reduction in trace shadowing and the like. Also the writing speed of the target is enhanced. However, if the target is manufactured in accordance with ordinary methods, the depth of the depressions formed, e.g. by etching the faceplate, is difficult to control. Moreover, the depressions are frequently rounded on the bottom as illustrated in FIG. 2 wherein storage dielectric or phosphor 36 is illustrated as having nonuniform depth. As a result, the phosphor having lesser thickness near the peripheries of the depressions is apt to write or store more easily than the central portions of the phosphor. Rim lighting then frequently takes place around each phosphor area causing a reduction in the amount of available contrast or contrast ratio of the representation. That is, rim lighting in areas of the target provides a background illumination which effectively reduces the ease with which other information may be observed or detected.
According to the present invention, the storage target is made as illustrated in FIG. 3 wherein a support plate or faceplate 56" has adhered thereto a layer of insulating material 58 provided with depressions or apertures 60 which have substantially straight sides. As illustrated in the plain view of FIG. 4, these apertures may take the form of right circular cylinders separated from one another by insulating material 58 and mesh electrode 32.". However, these apertures may take on other shapes, e.g. they may be hexagonal or square in cross section. However, it is desired that these apertures have straight side walls, and flat bottoms formed by the surface of faceplate 56. In the case of right cylindrical apertures, the cylindrical axis is perpendicular to the surface of faceplate 5,6. The phosphor or other secondary emissive material 36" is then located in the apertures and has a substantially uniform depth starting from the surface of face plate 56" and extending adjacent mesh electrode 32". Mesh electrode 32 is disposed on the outer exposed edge of insulating material 58 and is provided with apertures matching the depressions or apertures 60 in insulating layer 58. A conductor connects mesh electrode 32" to a terminal 64, e.g. for connection between resistors 34 and 38 in FIG. 1. The upper surface of the phosphor or secondary emissive material (in FIG. 3) is desirably flat and lower than the lower surface of mesh electrode 32 so that the phosphor or secondary emissive material does not contact the mesh electrode at any point around its periphery.
In the usual instance, support plate or faceplate 56" will be formed of glass, and the layer of insulating material 58 will also be of glass material, although it is understood that other insulating materials may be used for these applications. The layer of insulating material 58 should have the property of responding to a different etchant than would etch or attack support plate or faceplae 5.6" to any substantial degree, so that in manufacture of the target, material 58 may be etched without the etching of faceplate 56".
The secondary emissive material or phosphor 36 in the construction according to FIGS. 3 and 4 is of uniform depth and therefore has uniform storage properties. That is, any part of the phosphor will store under substantially the same conditions and tube potentials. Therefore, background storage or lighting is avoided and contrast is thereby enhanced. Also, since the secondary emissive material or phosphor does not touch mesh electrode 32", edge lighting of the phosphor or edge storage of the secondary emissive material due to actual contact with the mesh electrode is avoided. Moreover, as a result of further descreased field distortion, it has not been found necessary to pulse the target mesh electrode positive before erasing the target.
According to the method of the present invention, the target illustrated in FIGS. 3 and 4 is manufactured as follows:
The support plate or faceplate 56" is suitably formed of glass, e.g. standard window glass or soda-lime glass. One specific example of a glass that has been used is Libby Owens Ford Parallel-O-Plate, and another is Corning 0122 glass. A continuous layer of insulating material 58 (without depressions) is adhered to faceplate 56". As hereinbefore mentioned, insulating material 58 should have the property of responding to a different etchant than would each support plate or faceplate S6", and material 58 should also melt at a lower temperature than faceplate 56". A suitable material 58 is a glaze or glass frit applied as a slip or slurry, mixed with water, upon faceplate 56". Application of the slip may be by casting it directly onto the faceplate, spraying it onto the faceplate, or casting it on another surface and then transferring it to the faceplate. The slip may be deposited to a uniform depth between approximately ten and thirty microns. In some cases a plastic binder may be used which is later fired out.
A suitable glaze is lead borosilicate glass mixed with a flux. Among examples of various materials which may be used are Harshaw Q-12 glaze, Harshaw No. 83 frit, Corning No. 89 frit, and Corning No. frit. The faceplate is suitably fired in a kiln to fuse the insulating material 58 and adhere the same to the faceplate or, alternatively, an exposed heating element may be positioned adjacent only the insulating layer on the faceplate. Of course, the firing is at a temperature such that the insulating material 58 is fired without melting or materially affecting the faceplate. Then, a layer of metal is evaporated onto insulating material 58 forming the basis of mesh electrode 32". This metal may be any suitable conductor which can be evaporated and which will not poison the cathode ray tube cathode or the phosphor or the like in the tube. Gold is a suitable metal.
In applying the metal layer, the faceplate with the insulating layer adhered thereto is first thoroughly cleaned. In a particular example the faceplate with a glass insulating layer was placed, after cleaning, in the evaporation chamber which was evacuated to 10" torr. A layer of nickel was evaporated onto the insulating layer to a depth of approximately angstroms, after which a layer of gold was evaporated to a depth of approximately 1000 angstroms. The nickel was used to adhere the gold to the glass insulating layer.
A layer of commercially available photoresist is applied over the aforementioned metal, e.g. gold, layer and the photoresist is exposed to a contact pattern having the desired configuration of mesh electrode 32". Such pattern will thus have the appearance of the pattern of apertures illustrated in FIG. 4. The photoresist is then developed for leaving a protective coating of photoresist on top of the metal layer. Then, an etchant is applied which Will etch the metal from which mesh electrode 32 is formed.
For example, in the case of gold, a standard cyanide gold etching solution is appropriate. Then an etchant is applied which will etch insulating material 58 but which will not etch the faceplate 56". In the case of glass frit or glaze material mentioned above, dilute hydrochloric acid alone, or acetic acid in combination with hydrogen peroxide is suitable. A weak acid is preferred and nearly any acid may be used except hydrogen fluoride which would affect faceplate 56". During the etching of insulating material 58, it will be observed that the gold or other metal forming mesh electrode 32" provides an etching mask, along with the photoresist 'thereover.
A number of dielectric secondary emissive materials can be provided in aperture 60, but phosphor is employed in the case of a direct viewing storage tube. Many different phosphors are suitable, and a wider range of phosphors may be employed with the target made according to the present invention than was possible with prior constructions. Among the phosphors which may be disposed at 36" in the apertures 60 are included both silicate and sulphide phosphors such as P1, P4, P11, P18, P20, and P31. The phosphor P31 has been found especially useful, and with the construction according to the present invention, the contrast ratio obtainable therewith is greatly improved rendering this phosphor advantageously usable in storage tubes. P31 and sulphide phosphors in general have the property of extremely long life under actual operating conditions as compared with silicate phosphors. Also, improved optical writing is obtained with sulphide phosphors as when an image to be stored is presented optically upon storage target through faceplate 56", e.g. as by focusing a light image upon the target. Also, various photoemissive substances can be added to the phosphor used with the target according to the present invention.
A phosphor is suitably deposited in apertures 60 by a settling method wherein the phosphor can be deposited to a desired depth, e.g. just under the lower surface of mesh electrode 32". According to this method the phosphor is carried in a liquid and is settled into apertures 60 in a manner whereby the phosphor deposits levelly Within apertures 60 without depositing upon mesh electrode 32". The phosphor particles appear to take on a charge such that this differential deposition is possible. Application of the phosphor in this manner is further described and claimed in the copending application Ser. No. 737,026 of Margaret J. Jones, filed June 14, 1968, and entitled Method of Depositing Phosphor on Cathode Ray Tube Target.
In the embodiment illustrated in FIG. 4, the apertures 60 were approximately three to four mils in diameter, and were spaced four to five mils apart, e.g. leaving one-half to one mil between apertures. Of course, the apertures may be further spaced if so desired, but it is advantageous to image clarity that the apertures be as closely spaced as possible. The layer 58 was ten to thirty microns in thickness.
A second target according to the present invention is illustrated in FIGS. and 6 wherein the same reference numerals are employed for similar elements illustrated in FIGS. 3 and 4. This target is manufactured in the same manner except that before layer of insulating material 58 is applied, a thin conductive layer 62 is first applied. The latter conducting layer is suitably tin oxide and is deposited upon the support plate or faceplate 56" in any convenient manner, e.g. by reactive spraying. E.g. the faceplate is first cleaned thoroughly and heated in an oven to a temperature of approximately 565 C. The faceplate is then sprayed with a methanol solution containing stannic chloride. The faceplate is allowed to cool and the tin oxide formed is checked for conductivity which should be 100 to 1000 ohms per square. The surface is then suitably cleaned before application of a frit or glaze which will form an insulating layer.
The tin oxide conductive layer 62 is on the order of microns or less in thickness so as to be substantially transparent in the preferred embodiment. The conductive layer 62 forms an undercollector which cooperates with the collector provided by mesh electrode 32". A conductor connects layer 62 to a terminal 66 for connection to an appropriate source of voltage. In one embodiment of the storage electrode of FIGS. 5 and 6, layer 62 is uniformly disposed under the phosphor or secondary emissive material 36" and under insulating material 58. In operation of this embodiment in tube 10, mesh collector electrode 32 is adjusted to a first potential, say from +150 to +200 volts to provide storage operation. The layer 62 comprising the undercollector is adjusted to a voltage from approximately 25 volts to 75 volts more negative than the voltage level of the mesh collector electrode. Storage operation with the undercollector employed in this manner is found to further enhance the contrast ratio of the storage target according to the present invention. It is postulated that the reason for such improved contrast ratio is that the relatively negative field of layer 62 extends up through secondary emissive or phosphor layer 36 retaining the phosphor material in a given aperture 60 in a non-stored condition until it is actually written by the tubes electron beam. The voltages on layer 62 described above are given merely by way of example, and the voltage thereon should be adjusted in a given tube until the enhanced contrast is produced. If the voltage on layer 62 becomes too positive, the phosphor or secondary emissive material will store continuously, and if the voltage or layer 62 is too negative, the phosphor or secondary emissive material will not store at all. The undercollector formed by layer 62 may be employed to erase theretofore stored information on the storage target by lowering the voltage on layer 62. The use of layer 62 further enables the use of sulphide type phosphors as a secondary emissive storage medium becaue of the further improved contrast ratio achieved with layer 62.
According to another feature of the present invention, conductive layer 62 may be configured in the shape of an alphanumeric character or graticule or some other configuration and controlled independently of other stored information on the target. For example, the layer 62 may comprise a narrow strip of conductor as illustrated in FIG. 6. If the layer 62 is adjusted in potential to a level somewhat more positive than mesh collector electrode 32", the phosphor immediately above layer 62 will store continuously, or be illuminated continuously. While a graticule is a most useful pattern, obviously, the configuration of layer 62 may take any form or characterization which it is desired to control independently, such as an alphanumeric character.
FIG. 7 further illustrates configured undercollectors employed in a target, here depicted at lower magnification. A first undercollector 70 is configured to provide a graticule, while second undercollectors 74 take the form of a pair of alphanumeric characters. The mesh electrode 32" can also be configured, if desired. For example, the latter may be divided and connected to separate sources of voltages so that different portions of the target can be separately controlled for selective storage in dif ferent areas. In FIG. 5, for instance, the mesh electrode 32" as illustrated on the left side of the drawing may be insulated from and separately connected from the mesh electrode illustrated on the right side of the drawing, for providing separate storage and erasing properties.
While I have shown and described preferred embodiments of my invention, it will be apparent to those skilled in the art that many changes and modifications may be made without departing from my invention in its broader aspects. I therefore intend the appended claims to cover all such changes and modifications as fall within the true spirit and scope of my invention.
I claim:
I. The method of manufacturing a storage target for a cathode ray tube comprising:
adhering a layer of electrically insulating material to an electrically insulating support plate for said target, said layer of insulating material comprising a frit or glaze having different etching properties than said support plate so that said layer is responsive to a different etchant than would etch the support plate to any substantial degree, applying a layer of photosensitive material over said insulating layer, exposing said photosensitive material to the image of a mesh, and developing the same to provide a mesh pattern of apertures extending through the photosensitive layer, etching said layer of insulating material through the mesh pattern down to a level proximate the level of said insulating support plate to provide depressions having substantially fiat bottom proximate said support plate, and applying a storage dielectric material of high secondary electron emissive characteristics into said depressions no higher than the surface of said depressions and down to said level proximate the level of said insulating support plate to provide a plurality of separate spaced storage dielectric regions of uniform thickness. 2. The method according to claim 1 wherein said secondary emissive material comprises a phosphor.
3. The method according to claim 1 wherein said secondary emissive material comprises a sulphide phosphor. 4. The method of manufacturing a storage target for a cathode ray tube comprising:
adhering a layer of electrically insulating material comprising a glass frit or glaze to an electrically insulating support plate, said insulating material having the property of responding to a different etchant than would etch the support plate to any substantial degree, applying a thin conductive layer over said layer of insulating material for providing a conductive electrode for said storage target and for also forming a mask for etching the said layer of insulating material, applying a layer of photoresist over said conductive layer, exposing said photoresist to an image of a mesh and developing the same to provide a photoresist pattern of apertures extending through the photoresist, said thin conductive layer having the property of responding to a different etchant than would etch the photoresist pattern or the layer of insulating material to any substantial degree, etching said conductive layer with the last mentioned etchant through the photoresist pattern down to the level of the layer of electrically insulating material, and then etching said layer of insulating material with the first mentioned etchant through the pattern provided by the conductive layer downward toward the level of said insulating support plate, wherein said first mentioned etchant has substantially no effect on said conductive layer, to provide depressions through the conductive layer and the layer of insulating ma- 10 terial, said depressions having substantially straight sides and substantially flat bottoms proximate the level of said support plate,
and applying a storage dielectric material of high secondary electron emissive characteristics into said depressions below the surface of said depressions and down to said level proximate the level of said insulating support plate to provide a plurality of separate spaced storage dielectric regions of uniform thickness.
5. The method according to claim 4 wherein said dielectric secondary emissive material comprises a phosphor.
6. The method according to claim 4 wherein said thin conductive layer comprises metal which is applied by evaporation onto the insulating material.
7. The method according to claim 4 wherein said secondary emissive material comprises a sulphide phosphor.
8. The method of manufacturing a storage target for a cathode ray tube comprising:
applying a layer of insulating material to a glass support plate, wherein said insulating material comprises a glass frit or glaze having a lower melting temperature than said support plate, and wherein said insulating material is applied to said glass support plate as a slip and adhered to said support plate by firing the same to fuse the insulating material upon the support plate,
applying a layer of photoresist over said insulating layer,
exposing said photoresist, and developing the same to provide a photoresist pattern having the configuration of a desired mesh electrode,
etching said layer of insulating material through the pattern of said photoresist down to a level proximate the level of the insulating support plate to provide depressions having substantially straight sides and substantially fiat bottoms at said level proximate said support plate,
and applying a secondary emissive material into the depressions.
9. The method according to claim 8 further including depositing a thin conductive layer on said support plate before adhering said layer of insulating material thereto.
References Cited UNITED STATES PATENTS 2,257,143 9/1941 Wood 96--36 X 2,421,607 6/ 1947 Fowler 96-36 UX 2,805,360 9/1957 McNaney 31392 X 2,996,634 8/1961 Woodcock 2925.11 X 3,293,474 12/1966 Gibson 31368 A 3,415,648 12/1968 Certa 96-36 DAVID KLEIN, Primary Examiner U.S. Cl. X.R.
US737115A 1968-06-14 1968-06-14 Method of manufacturing storage target for cathode ray tube Expired - Lifetime US3614820A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US73711568A 1968-06-14 1968-06-14

Publications (1)

Publication Number Publication Date
US3614820A true US3614820A (en) 1971-10-26

Family

ID=24962639

Family Applications (1)

Application Number Title Priority Date Filing Date
US737115A Expired - Lifetime US3614820A (en) 1968-06-14 1968-06-14 Method of manufacturing storage target for cathode ray tube

Country Status (1)

Country Link
US (1) US3614820A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3798494A (en) * 1971-12-08 1974-03-19 Tektronix Inc Non-storage electron multiplier operation of transmission storage tube
US3987522A (en) * 1973-10-17 1976-10-26 U.S. Philips Corporation Method of manufacturing an image display device incorporating proximity focussing
US4039896A (en) * 1976-01-02 1977-08-02 Tektronix, Inc. Cathode ray storage tube having a target dielectric provided with particulate segments of collector electrode extending therethrough
US4042390A (en) * 1975-07-28 1977-08-16 Tektronix, Inc. Cathode ray storage tube having a target dielectric provided with collector electrode segments extending therethrough
US4106937A (en) * 1976-01-02 1978-08-15 Tektronix, Inc. Cathode ray storage tube having a target dielectric provided with particulate segments of collector electrode extending therethrough
US4110659A (en) * 1976-02-18 1978-08-29 Tektronix, Inc. Cathode ray tube storage target having increase life
DE2824102A1 (en) * 1977-06-02 1978-12-07 Tektronix Inc DIRECT VIEWING CATHODE BEAM STORAGE TUBE AND PROCESS FOR DISPLAYING STORED AND WITCHED STORAGE IMAGES ON A STORAGE DIELECTRIC OF SUCH TUBES
US4217518A (en) * 1975-01-17 1980-08-12 Tokyo Shibaura Electric Co., Ltd. Direct-viewing storage tube with opaque strip on transparent collector adjacent scan area
US4362806A (en) * 1979-02-02 1982-12-07 Eastman Kodak Company Imaging with nonplanar support elements

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3798494A (en) * 1971-12-08 1974-03-19 Tektronix Inc Non-storage electron multiplier operation of transmission storage tube
US3987522A (en) * 1973-10-17 1976-10-26 U.S. Philips Corporation Method of manufacturing an image display device incorporating proximity focussing
US4217518A (en) * 1975-01-17 1980-08-12 Tokyo Shibaura Electric Co., Ltd. Direct-viewing storage tube with opaque strip on transparent collector adjacent scan area
US4042390A (en) * 1975-07-28 1977-08-16 Tektronix, Inc. Cathode ray storage tube having a target dielectric provided with collector electrode segments extending therethrough
US4039896A (en) * 1976-01-02 1977-08-02 Tektronix, Inc. Cathode ray storage tube having a target dielectric provided with particulate segments of collector electrode extending therethrough
US4106937A (en) * 1976-01-02 1978-08-15 Tektronix, Inc. Cathode ray storage tube having a target dielectric provided with particulate segments of collector electrode extending therethrough
US4110659A (en) * 1976-02-18 1978-08-29 Tektronix, Inc. Cathode ray tube storage target having increase life
DE2824102A1 (en) * 1977-06-02 1978-12-07 Tektronix Inc DIRECT VIEWING CATHODE BEAM STORAGE TUBE AND PROCESS FOR DISPLAYING STORED AND WITCHED STORAGE IMAGES ON A STORAGE DIELECTRIC OF SUCH TUBES
US4362806A (en) * 1979-02-02 1982-12-07 Eastman Kodak Company Imaging with nonplanar support elements

Similar Documents

Publication Publication Date Title
US3293474A (en) Phosphor dielectric storage target for cathode ray tube
US2547638A (en) Image storage tube
EP0201609B1 (en) Electron gun of picture display device
US3325673A (en) Charge integrating bistable storage tube
US3293473A (en) Thin, porous storage phosphor layer
US3614820A (en) Method of manufacturing storage target for cathode ray tube
US3710173A (en) Direct viewing storage tube having mesh halftone target and nonmesh bistable target
US3531675A (en) Cathode ray storage tube having a target dielectric with collector electrodes extending therethrough
US3046431A (en) Storage system
US3002124A (en) Display storage tube
US3339099A (en) Combined direct viewing storage target and fluorescent screen display structure
US4185227A (en) Cathode ray tube with dual collector layer storage target
US3594607A (en) Direct viewing bistable storage tube having fast erase speed
US6008577A (en) Flat panel display with magnetic focusing layer
US2919377A (en) Information stores
US3633064A (en) Signal converting system using barrier grid-type storage tube
US2998541A (en) Transmission storage tube
US3312850A (en) Relatively thick phosphor storage target having spaced holes for electron passage
US4110659A (en) Cathode ray tube storage target having increase life
US3798477A (en) Storage tube with target having conductive surface exposed through random cracks in dielectric coating
US3825791A (en) Field-effect storage tube
US3723786A (en) Flat cathode-ray tube for direct viewing spot display
US3197661A (en) Signal storage tubes
US3401293A (en) Mesa type combined direct viewing storage target and fluorescent screen for cathode ray tube
US3687665A (en) Method of manufacturing cathode ray storage tube target