US3596476A - Process and system for making artificial snow - Google Patents

Process and system for making artificial snow Download PDF

Info

Publication number
US3596476A
US3596476A US810711A US3596476DA US3596476A US 3596476 A US3596476 A US 3596476A US 810711 A US810711 A US 810711A US 3596476D A US3596476D A US 3596476DA US 3596476 A US3596476 A US 3596476A
Authority
US
United States
Prior art keywords
nozzles
water
orifices
carrier
conduits
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US810711A
Inventor
Fritz Jakob
Gerold Tesar
Karl-Heinz Kuhnlenz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Application granted granted Critical
Publication of US3596476A publication Critical patent/US3596476A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C3/00Processes or apparatus specially adapted for producing ice or snow for winter sports or similar recreational purposes, e.g. for sporting installations; Producing artificial snow
    • F25C3/04Processes or apparatus specially adapted for producing ice or snow for winter sports or similar recreational purposes, e.g. for sporting installations; Producing artificial snow for sledging or ski trails; Producing artificial snow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2303/00Special arrangements or features for producing ice or snow for winter sports or similar recreational purposes, e.g. for sporting installations; Special arrangements or features for producing artificial snow
    • F25C2303/046Snow making by using low pressure air ventilators, e.g. fan type snow canons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2303/00Special arrangements or features for producing ice or snow for winter sports or similar recreational purposes, e.g. for sporting installations; Special arrangements or features for producing artificial snow
    • F25C2303/048Snow making by using means for spraying water
    • F25C2303/0481Snow making by using means for spraying water with the use of compressed air

Definitions

  • the general object of our present invention is to provide an improved snow machine, based upon a novel process of making artificial snow, which avoids the above drawbacks and which is effective at ambient temperatures just below the freezing mark while being substantially insensitive to variations in relative humidity.
  • the aforestated object can be realized by allowing a continuous flow of water under high pressure and at a tempera ture close to 0 C. to issue from one or more expansion orifices in the form of small droplets into a low-pressure airstream of subfreezing temperature, Le. a temperature up to about l C.
  • the dispersion of the water discharged through the orifices may be intensified by the admixture of a minor proportion of a high-pressure gas of more or less water-insoluble character with the water in a'minor proportion by weight.
  • this gas is preferably air under a pressure slightly higher than that of the water flow, in a proportion ranging between substantially l and 4 m.
  • a particularly advantageous ratio is 3 m. STP of air for each cubic meter of water.
  • Another adjuvant cspableof promoting the snow formation is a nucieating agent admixed with the water flow in finely comminuted crystalline form. While ice could be used for this purpose it injected into the flow at a location close to the discharge orifices, other compounds of similar crystalline structure (such as silver iodide) are more stable so as to be admixable with the water ahead of the high-pressure pump.
  • the quantity of such nucleating agent should substantially exceed the saturation rate of the water and, in the case of silver iodide, is advantageously on the order of the equivalent of l0" N.
  • a surfactant in powdered or liquid form may be added to the water to reduce its surface tension, thereby facilitating its dispersion into fine droplets.
  • Any commercially available household detergent may he used for this purpose. in the case of a powder, such as an alkylaryl sulfonate, a quantity of about -15 grams per in. of water has been found highly satisfactory; in the case of liquid detergents, such as an ester of polyethylene glycol, a proportion of roughly 100 ml. per m. of water is suitable.
  • FlG. 1 illustrates, somewhat diagrammatically and in axial sectional view, the basic structure of a snow machine embodying our invention
  • FlG. 2 is a side elevational view, partly in section and on an enlarged scale, ofa nozzle forming part of the machine of FlG. I;
  • FIG. .3 is a side elevational view, partly in section, of a modified nozzle-supporting structure forming part of a machine according to the invention.
  • FIG. I we have shown a tubular nozzle carrier 35 of cylindrical configuration whose inner bore 37 accommodates an electric fan 36 driven by a motor 41.
  • Fan 36 generates a circulation of air passing axially through the front end 38 of body 35 which carries an annular array of nozzles I with discharge orifices 7 pointing in the direction of the airflow.
  • the nozzles I are connected in parallel, via internal conduits 42, to a manifold 40 in the form of an annular channel to which water is continually supplied under high pressure by a pump 43, followed by a cooler 44, via a pipe 48.
  • Conduits 42 which represent the inlets to the nozzles I, also communicate via passages 45 with another manifold 39 which is connected to the output end of an air compressor 46 by way of a pipe 49.
  • the delivery pressure of pump 43 may be on the order of 10 atmospheres, with the output pressure of blower 46 slightly higher. More specifically, a water pressure of 6 atmospheres (gauge) has been found adequate with nozzle orifices 7 of 0.7-mm. diameter whereas. for larger orifices, e.g. of 2.3-mm. diameter, correspondingly elevated water pressures on the order of i5 atmospheres (gauge) would be called for.
  • the restricted passages 45 exert a throttling effect upon the airflow entering the nozzles I from annular channel 39. This throttling effect is desirable to insure a substantially uniform rate of airflow at each nozzle, despite the fact that the several passages 45 are at different distances from the supply line 49.
  • FlG. 2 shows a preferred construction of anyof the nozzles l illustrated schematically in FlG. l.
  • the nozzle I of FIG. 2 has a tubular housing II terminating at its front end in the oriflce 7, housing It being formed with internal threads 47 engsged by mating threads on a tubular insert I5 and on a loclting ring I7.
  • insert I5 defines with the inner front wall of housing It a vortex chamber 16 into which water, with or without admixed air, flows by way of lateral apertures 19 in insert I5 after entering same from the rear through ring I7.
  • the apertures I9 are centered on generally tangentially inclined axes, as is well known per .re, so as to impart to the exiting fluid a swirling motion in its travel toward orifice 7.
  • Male threads I3 on the rear of housing It enable the nozzle 1 to be screwed into a threaded seat in the carrier '35 of FIG. I or in one of two annular carrier members ll, 21 shown in FlG. 3 and described more fully hereinafier; the midportlon 14, of the nozzle housing is formed for this purpose into a polygonal flange engageable by a wrench.
  • the machine illustrated in FIG. 3 comprises, in addition to the two aforementioned annular nozzle carriers 21 and II, a pair of end caps 22. and I3 threadedly secured to these nozzle carriers which in turn are screwed together so as to form a generally cylindrical body enclosing a fluid chamber 25, the joints between members II, 21', 22, 23 being made fiuidtight by interposed annular gaskets 24. Chamber 25 communicates with an inlet pipe 48 (cf. FIG. 1) through which nearly freezing water at high pressure is supplied from the cooler 44.
  • Each nozzle carrier 21, 21 is part of a tubular shell formed with an annular, array of threaded bores 26, 26 designed to receive the nozzles l of FlG. 2, as particularly illustrated for the carrier 21'.
  • Seats 26 and 26' are provided with longitudinal grooves 28, 28' through which air from an annular channel 3t. 31' can be admitted to the corresponding nozzle inlet by way of an injection passage 29. 29 including a throttling valve 30,
  • air from a lowpressure fan or the like moves again past the orifices of nozzles l to help induce the discharge of line droplets of water which, especially if changed with a nucleating agent and/or a surfactant as described above, crystallize upon contact with the atmosphere so as to turn into snow flakes.
  • a system for making artificial snow comprising an array of nozzles provided with dispersion orifices and conduits lead ing to said orifices, said array being centered on an axis.
  • pump means for supplying water at high pressure to said nozzles by way of said conduits, cooling means between said pump means and said nozzles for maintaining the temperature of the water at said orifices at substantially C.
  • injection means terminating at said conduits for admixing a stream of compressed gas with said water ahead of said orifices, throttle means in said injection means for reducing the fiow rate of said gas to a minor proportion by weight of the flow rate of the water, said orifices opening into an air space of substantially atmospheric pres sure and subfreezing temperature, and circulation means in said air space for propelling the air therein past said orifices in the direction of said axis.
  • said injection means comprising a common manifold connected with said conduits and a source of high-pressure air discharg ing into said manifold.
  • detachably interconnected carriers construction each with a set of said dividual thereto.
  • a system for making artificial snow comprising a generally cylindrical carrier, an array of nozzles provided with of substantially identical nozzles and a manifold in- 00 ing at said conduits for admixing a stream of compressed gas with said water ahead of said orifices, and throttle means in said injection means for reducing the flow rate of said gas to a minor proportion by weight of the flow rate of the water, said orifices opening into an air space of substantially atmospheric pressure and subfreezing temperature, said carrier being provided with an annular channel constituting a common manifold connected with said conduits, and a source of highpressure air discharging into said manifold, said air injection means forming passages in said carrier between said channel and said nozzles.

Abstract

Water under high pressure, cooled to approximately 0* C., is fed to a set of nozzles together with a high-pressure airflow serving as a dispersion agent to convert the issuing fluid into fine droplets which are discharged into a low-pressure airstream of subfreezing temperature. The water is advantageously precharged with ice crystals or other nucleating agents, such as silver iodide, and may also have a surfactant admixed therewith to lower its surface tension.

Description

United States Patent inventors Fritll [56] References Cited a h I K I UNITED STATES PATENTS c 1.437.201 11/1922 Schumann 239/567 kuhnlenz. Deisenhoien. all of. Germany A 1 No 810 7 2.516.401 7/1950 Marcuse 239/424 X M 1969 2.67 .471 4/1954 Pierce. 11 62/121 x e d k' i 3.062.454 11/1962 Cocks 239/4245 x 3.257.815 6/1966 Brocoffet a1.. 62/347 x Ass1gnee Linde Aktkngesellschaft 3 298 612 1/1967 T 62/74 X "olbrkaekkmth' Germ'ny I orrens P A r 8 I968 3.301.485 1/1967 Tropeano et a1... 62/74X 54 3.434.661 3/1969 B6 1 C131. 239/2 3459/68 3.464.625 9/1969 Carlsson .1 239/424 X FOREIGN PATENTS 1.437.437 1/1965 France 239/2 Primary Examiner-Wil1iam E. Wayner AllorneyKarl F. Ross PROCESS AND SYSTEM FOR MAKNG ABSTRACT: Water under high pressure. cooled to approxi- ARTIHCIALSNOW mately 0 C.. is fed to a set of nozzles together with a high- Chum 3 Drum pressure airflow serving as a dispersion agent to convert the is- U.S. Cl 62/347, suing fluid into fine droplets which are discharged into a low- 62/121. 239/2 pressure airstream of subfreezing temperature. The water is Int. Cl. F250 3/02 advantageously precharged with ice crystals or other nucleat- Fleld of Search 2/74. 347. in; agents. such as silver iodide. and may also have a surfactent admixe d therewith to lower its surface tension.
Wll'fl SUIFlfI/IWI' PROCESS AND SYSTEM FOR MAKING ARTIFICIAL SNOW Our present invention relates to a process and a system for making artificial snow.
in conventional systems of this type, large quantities of compressed air are admixed with relatively small amounts of entrained water which, upon subsequent expansion of the mixture into an atmosphere of sufficiently low temperature and high humidity, crystallizes as snow flakes. The successful operation of a snow machine based on this principle is generally possible only at ambient temperatures well below freezing, e.g. less than C., and requires an air compressor of large capacity to deliver a constant flow of compressed air at the rate heretofore considered necessary.
The general object of our present invention is to provide an improved snow machine, based upon a novel process of making artificial snow, which avoids the above drawbacks and which is effective at ambient temperatures just below the freezing mark while being substantially insensitive to variations in relative humidity.
We have found, in accordance with the present invention, that the aforestated object can be realized by allowing a continuous flow of water under high pressure and at a tempera ture close to 0 C. to issue from one or more expansion orifices in the form of small droplets into a low-pressure airstream of subfreezing temperature, Le. a temperature up to about l C.
The expansion 'of the cold water into fine droplets, brought about by a suitable dimensioning of the orifice diameter and by the applied pressure differential, exposes a large effective surface area of the liquid to direct contact with the ambient air, this expansion causing a certain supercooling of the water which. accordingly, readily gives up its latent heat of fusion to the surrounding atmosphere.
The dispersion of the water discharged through the orifices may be intensified by the admixture of a minor proportion of a high-pressure gas of more or less water-insoluble character with the water in a'minor proportion by weight. For the salte of simplicity and economy, this gas is preferably air under a pressure slightly higher than that of the water flow, in a proportion ranging between substantially l and 4 m. STF per m. of water. A particularly advantageous ratio is 3 m. STP of air for each cubic meter of water.
Another adjuvant cspableof promoting the snow formation is a nucieating agent admixed with the water flow in finely comminuted crystalline form. While ice could be used for this purpose it injected into the flow at a location close to the discharge orifices, other compounds of similar crystalline structure (such as silver iodide) are more stable so as to be admixable with the water ahead of the high-pressure pump. The quantity of such nucleating agent should substantially exceed the saturation rate of the water and, in the case of silver iodide, is advantageously on the order of the equivalent of l0" N.
Alternatively, or in addition. a surfactant in powdered or liquid form may be added to the water to reduce its surface tension, thereby facilitating its dispersion into fine droplets. Any commercially available household detergent may he used for this purpose. in the case of a powder, such as an alkylaryl sulfonate, a quantity of about -15 grams per in. of water has been found highly satisfactory; in the case of liquid detergents, such as an ester of polyethylene glycol, a proportion of roughly 100 ml. per m. of water is suitable.
The above and other features of our invention will become more fully apparent hereinafter from the following detailed description given with reference to the accompanying drawing in which:
FlG. 1 illustrates, somewhat diagrammatically and in axial sectional view, the basic structure of a snow machine embodying our invention;
FlG. 2 is a side elevational view, partly in section and on an enlarged scale, ofa nozzle forming part of the machine of FlG. I; and
FIG. .3 is a side elevational view, partly in section, of a modified nozzle-supporting structure forming part of a machine according to the invention.
in FIG. I we have shown a tubular nozzle carrier 35 of cylindrical configuration whose inner bore 37 accommodates an electric fan 36 driven by a motor 41. Fan 36 generates a circulation of air passing axially through the front end 38 of body 35 which carries an annular array of nozzles I with discharge orifices 7 pointing in the direction of the airflow. The nozzles I are connected in parallel, via internal conduits 42, to a manifold 40 in the form of an annular channel to which water is continually supplied under high pressure by a pump 43, followed by a cooler 44, via a pipe 48.
Conduits 42, which represent the inlets to the nozzles I, also communicate via passages 45 with another manifold 39 which is connected to the output end of an air compressor 46 by way of a pipe 49. The delivery pressure of pump 43 may be on the order of 10 atmospheres, with the output pressure of blower 46 slightly higher. More specifically, a water pressure of 6 atmospheres (gauge) has been found adequate with nozzle orifices 7 of 0.7-mm. diameter whereas. for larger orifices, e.g. of 2.3-mm. diameter, correspondingly elevated water pressures on the order of i5 atmospheres (gauge) would be called for.
The restricted passages 45 exert a throttling effect upon the airflow entering the nozzles I from annular channel 39. This throttling effect is desirable to insure a substantially uniform rate of airflow at each nozzle, despite the fact that the several passages 45 are at different distances from the supply line 49.
A similar but less pronounced throttling action is exerted upon the waterflow by the passages 42 linking the nozzles I with the annular channel 40. I
- The circulation of cold atmospheric air past the nozzle orifices 7 creates a Vcnturi effect which helps aspirate the water/air mixture from the nozzles I whereby the water is discharged in the form of small droplets into the airstream. The maximum diameter of these droplets, under the operating conditions specified above. is on the order of 0.l mm. The desired ratio of water to air, within the range previously set forth, can be varied by adjusting the relative speeds of pump 43 and blower 46.
FlG. 2 shows a preferred construction of anyof the nozzles l illustrated schematically in FlG. l. The nozzle I of FIG. 2 has a tubular housing II terminating at its front end in the oriflce 7, housing It being formed with internal threads 47 engsged by mating threads on a tubular insert I5 and on a loclting ring I7. insert I5 defines with the inner front wall of housing It a vortex chamber 16 into which water, with or without admixed air, flows by way of lateral apertures 19 in insert I5 after entering same from the rear through ring I7. The apertures I9 (only one shown) are centered on generally tangentially inclined axes, as is well known per .re, so as to impart to the exiting fluid a swirling motion in its travel toward orifice 7. Male threads I3 on the rear of housing It enable the nozzle 1 to be screwed into a threaded seat in the carrier '35 of FIG. I or in one of two annular carrier members ll, 21 shown in FlG. 3 and described more fully hereinafier; the midportlon 14, of the nozzle housing is formed for this purpose into a polygonal flange engageable by a wrench.
The machine illustrated in FIG. 3 comprises, in addition to the two aforementioned annular nozzle carriers 21 and II, a pair of end caps 22. and I3 threadedly secured to these nozzle carriers which in turn are screwed together so as to form a generally cylindrical body enclosing a fluid chamber 25, the joints between members II, 21', 22, 23 being made fiuidtight by interposed annular gaskets 24. Chamber 25 communicates with an inlet pipe 48 (cf. FIG. 1) through which nearly freezing water at high pressure is supplied from the cooler 44. Each nozzle carrier 21, 21 is part of a tubular shell formed with an annular, array of threaded bores 26, 26 designed to receive the nozzles l of FlG. 2, as particularly illustrated for the carrier 21'. Seats 26 and 26' are provided with longitudinal grooves 28, 28' through which air from an annular channel 3t. 31' can be admitted to the corresponding nozzle inlet by way of an injection passage 29. 29 including a throttling valve 30,
I constriction of the injection passage or by a porous insert of,
say, sintered ceramic material. The water from space 25 reaches the nozzles through conduits 27, 27' terminating at the seats 26, 26'. Air inlets 49, 49', originating at the blower 46 of FIG. 1, terminate at the annular manifolds 31 and 31'.
In the operation of the assembly ofFlG. 3, air from a lowpressure fan or the like (or simply atmospheric air if the device is exposed to the wind) moves again past the orifices of nozzles l to help induce the discharge of line droplets of water which, especially if changed with a nucleating agent and/or a surfactant as described above, crystallize upon contact with the atmosphere so as to turn into snow flakes.
We claim:
1, A system for making artificial snow, comprising an array of nozzles provided with dispersion orifices and conduits lead ing to said orifices, said array being centered on an axis. pump means for supplying water at high pressure to said nozzles by way of said conduits, cooling means between said pump means and said nozzles for maintaining the temperature of the water at said orifices at substantially C., injection means terminating at said conduits for admixing a stream of compressed gas with said water ahead of said orifices, throttle means in said injection means for reducing the fiow rate of said gas to a minor proportion by weight of the flow rate of the water, said orifices opening into an air space of substantially atmospheric pres sure and subfreezing temperature, and circulation means in said air space for propelling the air therein past said orifices in the direction of said axis.
2. A system as defined in claim 1 wherein said gas is air, said injection means comprising a common manifold connected with said conduits and a source of high-pressure air discharg ing into said manifold.
3. A system as defined in claim 1, further comprising a generally cylindrical carrier having said nozzles peripherally disposed thereon, said carrier being provided with an annular channel constituting said manifold, said air injection means forming passages in said carrier between said channel and said nozzles.
4. A system as defined in claim 3 wherein said carrier has seats for said noules provided with inlets for water from said cooling means, said nozzles being open toward said seats for receiving the water therefrom.
5. A system as defined in claim 4 wherein said carrier forms part of a shell subdivided into a plurality of axially adjoining,
detachably interconnected carriers construction each with a set of said dividual thereto.
6. A system as defined in claim 5 wherein said shell surrounds a water chamber connected to said pump means through said cooling means. said inlets extending outwardly through said shell from said chamber.
7. A system as defined in claim I wherein said orifices have diameters in a range between substantially 0.5 mm. and 2.5 mm.
8. A system for making artificial snow, comprising a generally cylindrical carrier, an array of nozzles provided with of substantially identical nozzles and a manifold in- 00 ing at said conduits for admixing a stream of compressed gas with said water ahead of said orifices, and throttle means in said injection means for reducing the flow rate of said gas to a minor proportion by weight of the flow rate of the water, said orifices opening into an air space of substantially atmospheric pressure and subfreezing temperature, said carrier being provided with an annular channel constituting a common manifold connected with said conduits, and a source of highpressure air discharging into said manifold, said air injection means forming passages in said carrier between said channel and said nozzles.
9. A system as defined in claim 8 wherein said carrier has seats for said nozzles provided with inlets for water from said cooling means, said nozzles being open toward said seats for receiving the water therefrom.
10.-A system as defined in claim 8 wherein said orifices have diameters in a range between substantially 0.5 mm. and 2.5 mm.
11. A system as defined in claim 8 wherein said carrier forms part of a shell surrounding a water chamber connected to said pump means through said cooling means, said inlets extending outwardly through said shell from said chamber.
12. A system as defined in claim 8 wherein said carrier forms part of a shell subdivided into a plurality of axially adjoining, detachably interconnected carriers of substantially identical construction each with a set of said nozzles and a manifold individual thereto.

Claims (12)

1. A system for making artificial snow, comprising an array of nozzles provided with dispersion orifices and conduits leading to said orifices, said array being centered on an axis, pump means for supplying water at high pressure to said nozzles by way of said conduits, cooling means between said pump means and said nozzles for maintaining the temperature of the water at said orifices at substantially 0* C., injection means terminating at said conduits for admixing a stream of compressed gas with said water ahead of said orifices, throttle means in said injection means for reducing the flow rate of said gas to a minor proportion by weight of the flow rate of the water, said orifices opening into an air space of substantially atmospheric pressure and subfreezing temperature, and circulation means in said air space for propelling the air therein past said orifices in the direction of said axis.
2. A system as defined in claim 1 wherein said gas is air, said injection means comprising a common manifold connected with said conduits and a source of high-pressure air discharging into said manifold.
3. A system as defined in claim 1, further comprising a generally cylindrical carrier having said nozzles peripherally disposed theReon, said carrier being provided with an annular channel constituting said manifold, said air injection means forming passages in said carrier between said channel and said nozzles.
4. A system as defined in claim 3 wherein said carrier has seats for said nozzles provided with inlets for water from said cooling means, said nozzles being open toward said seats for receiving the water therefrom.
5. A system as defined in claim 4 wherein said carrier forms part of a shell subdivided into a plurality of axially adjoining, detachably interconnected carriers of substantially identical construction each with a set of said nozzles and a manifold individual thereto.
6. A system as defined in claim 5 wherein said shell surrounds a water chamber connected to said pump means through said cooling means, said inlets extending outwardly through said shell from said chamber.
7. A system as defined in claim 1 wherein said orifices have diameters in a range between substantially 0.5 mm. and 2.5 mm.
8. A system for making artificial snow, comprising a generally cylindrical carrier, an array of nozzles provided with dispersion orifices and conduits leading to said orifices, said nozzles being peripherally disposed on said carrier, pump means for supplying water at high pressure to said nozzles by way of said conduits, cooling means between said pump means and said nozzles for maintaining the temperature of the water at said orifices at substantially 0* C., injection means terminating at said conduits for admixing a stream of compressed gas with said water ahead of said orifices, and throttle means in said injection means for reducing the flow rate of said gas to a minor proportion by weight of the flow rate of the water, said orifices opening into an air space of substantially atmospheric pressure and subfreezing temperature, said carrier being provided with an annular channel constituting a common manifold connected with said conduits, and a source of high-pressure air discharging into said manifold, said air injection means forming passages in said carrier between said channel and said nozzles.
9. A system as defined in claim 8 wherein said carrier has seats for said nozzles provided with inlets for water from said cooling means, said nozzles being open toward said seats for receiving the water therefrom.
10. A system as defined in claim 8 wherein said orifices have diameters in a range between substantially 0.5 mm. and 2.5 mm.
11. A system as defined in claim 8 wherein said carrier forms part of a shell surrounding a water chamber connected to said pump means through said cooling means, said inlets extending outwardly through said shell from said chamber.
12. A system as defined in claim 8 wherein said carrier forms part of a shell subdivided into a plurality of axially adjoining, detachably interconnected carriers of substantially identical construction each with a set of said nozzles and a manifold individual thereto.
US810711A 1968-04-08 1969-03-26 Process and system for making artificial snow Expired - Lifetime US3596476A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
AT345968A AT283398B (en) 1968-04-08 1968-04-08 Method and device for producing artificial snow

Publications (1)

Publication Number Publication Date
US3596476A true US3596476A (en) 1971-08-03

Family

ID=3550809

Family Applications (2)

Application Number Title Priority Date Filing Date
US810711A Expired - Lifetime US3596476A (en) 1968-04-08 1969-03-26 Process and system for making artificial snow
US00168440A Expired - Lifetime US3760598A (en) 1968-04-08 1971-08-02 Process for making artificial snow

Family Applications After (1)

Application Number Title Priority Date Filing Date
US00168440A Expired - Lifetime US3760598A (en) 1968-04-08 1971-08-02 Process for making artificial snow

Country Status (3)

Country Link
US (2) US3596476A (en)
JP (1) JPS4946343B1 (en)
AT (1) AT283398B (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3761020A (en) * 1972-02-17 1973-09-25 J Tropeano Method and apparatus for snow making
US3964682A (en) * 1975-03-17 1976-06-22 Tropeano Philip L Method and apparatus for making snow produced by cumulative crystallization of snow particles
US3979061A (en) * 1974-02-04 1976-09-07 Kircher Everett F Method and apparatus for making artificial snow
US4191125A (en) * 1978-07-03 1980-03-04 Akzona Incorporated Freeze indicator
US4200228A (en) * 1978-09-18 1980-04-29 Woerpel Marvin D Snow making
WO1986007373A1 (en) * 1985-06-04 1986-12-18 Permasnow Limited Method for making artificial snow
US4742958A (en) * 1984-11-06 1988-05-10 Permasnow (Australasia) Limited Method for making artificial snow
AU576298B2 (en) * 1985-06-04 1988-08-18 Permasnow (Australasia) Limited Method for making artificial snow
US5266367A (en) * 1990-02-02 1993-11-30 Miura Dolphins Co., Ltd. Artificial snow granule
US5301512A (en) * 1991-09-12 1994-04-12 Yasuo Yamamoto Method and apparatus for making snow
US6151902A (en) * 1997-09-02 2000-11-28 Stenlake, Jr.; Charles F. Composition for inducing the creation of artificial snow and method of use
US6378778B1 (en) 1998-06-02 2002-04-30 Crea As Snow gun
US6464148B1 (en) * 1999-05-03 2002-10-15 Aquatrols Holding Co., Inc. Snowmaking process
US20040035947A1 (en) * 2002-08-10 2004-02-26 Ratnik H. Ronald Water-only method and apparatus for making snow
US7290722B1 (en) 2003-12-16 2007-11-06 Snow Machines, Inc. Method and apparatus for making snow
US20120111961A1 (en) * 2010-11-09 2012-05-10 Arnold James R Grove sprayer
US9266129B2 (en) 2010-11-09 2016-02-23 James R. Arnold Grove sprayer
US20210018238A1 (en) * 2018-03-13 2021-01-21 Thorsteinn I Viglundsson Method & Apparatus for making wet snow

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3945567A (en) * 1975-07-17 1976-03-23 Gerry Rambach Snow making apparatus
US4062201A (en) * 1976-10-15 1977-12-13 General Electric Company Automatic icemaker including means for minimizing the supercooling effect
US4059970A (en) * 1976-10-15 1977-11-29 General Electric Company Automatic icemaker including means for minimizing the supercooling effect
US4597524A (en) * 1982-03-22 1986-07-01 Albertsson Stig L Snow making machine
ATE24604T1 (en) * 1982-03-22 1987-01-15 Stig L Albertsson MACHINE FOR MAKING SNOW.
US4593854A (en) * 1984-04-25 1986-06-10 Albertsson Stig L Snow-making machine
US4634050A (en) * 1986-01-03 1987-01-06 Shippee James H Fanless air aspiration snowmaking apparatus
JPS62195040U (en) * 1986-06-02 1987-12-11
US5167367A (en) * 1991-01-11 1992-12-01 Snow Machines Incorporated Snowmaking apparatus and methods
IT1289192B1 (en) * 1997-01-23 1998-09-29 Leitner Spa CANNON FOR THE PRODUCTION OF SNOW
US6116515A (en) * 1998-02-06 2000-09-12 Chelminski; Stephen Method of using microcrystalline cellulose to enhance artificial snow making
DE202005006569U1 (en) * 2004-10-26 2006-03-09 Innovag AG Aktiengesellschaft für innovative Industrietechnik snow room
TW201604465A (en) 2010-06-15 2016-02-01 拜歐菲樂Ip有限責任公司 Methods, devices and systems for extraction of thermal energy from a heat conducting metal conduit
TWI575062B (en) 2011-12-16 2017-03-21 拜歐菲樂Ip有限責任公司 Cryogenic injection compositions, systems and methods for cryogenically modulating flow in a conduit
EA201600243A1 (en) 2013-09-13 2016-10-31 БАЙОФИЛМ АйПи, ЛЛЦ MAGNETICRYOGENIC PLANTS, SYSTEMS AND METHODS FOR CHANNEL FLOW MODULATION

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1437201A (en) * 1921-09-29 1922-11-28 Alfred G Schumann Oil or gas burner
US2516401A (en) * 1947-11-13 1950-07-25 West Disnfecting Company Spraying device
US2676471A (en) * 1950-12-14 1954-04-27 Tey Mfg Corp Method for making and distributing snow
US3062454A (en) * 1961-06-12 1962-11-06 Eric H Cocks Mist spray ring
FR1437437A (en) * 1964-01-31 1966-05-06 Rohrenwerk U Pumpenfabrik Rudo Device for producing artificial snow
US3257815A (en) * 1964-07-10 1966-06-28 Conch Int Methane Ltd Method and apparatus for the largescale production of snow fields for sports use
US3298612A (en) * 1964-08-18 1967-01-17 Robert L Torrens Snow-making unit
US3301485A (en) * 1964-09-14 1967-01-31 Joseph C Tropeano Method and apparatus for making frozen particles
US3434661A (en) * 1965-02-02 1969-03-25 Willard Sterling Boyle Snow making
US3464625A (en) * 1965-01-22 1969-09-02 Atlas Copco Ab Method and means for making snow

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2968164A (en) * 1958-02-24 1961-01-17 Alden W Hanson Method of generating snow

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1437201A (en) * 1921-09-29 1922-11-28 Alfred G Schumann Oil or gas burner
US2516401A (en) * 1947-11-13 1950-07-25 West Disnfecting Company Spraying device
US2676471A (en) * 1950-12-14 1954-04-27 Tey Mfg Corp Method for making and distributing snow
US3062454A (en) * 1961-06-12 1962-11-06 Eric H Cocks Mist spray ring
FR1437437A (en) * 1964-01-31 1966-05-06 Rohrenwerk U Pumpenfabrik Rudo Device for producing artificial snow
US3257815A (en) * 1964-07-10 1966-06-28 Conch Int Methane Ltd Method and apparatus for the largescale production of snow fields for sports use
US3298612A (en) * 1964-08-18 1967-01-17 Robert L Torrens Snow-making unit
US3301485A (en) * 1964-09-14 1967-01-31 Joseph C Tropeano Method and apparatus for making frozen particles
US3464625A (en) * 1965-01-22 1969-09-02 Atlas Copco Ab Method and means for making snow
US3434661A (en) * 1965-02-02 1969-03-25 Willard Sterling Boyle Snow making

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3761020A (en) * 1972-02-17 1973-09-25 J Tropeano Method and apparatus for snow making
US3979061A (en) * 1974-02-04 1976-09-07 Kircher Everett F Method and apparatus for making artificial snow
US3964682A (en) * 1975-03-17 1976-06-22 Tropeano Philip L Method and apparatus for making snow produced by cumulative crystallization of snow particles
US4191125A (en) * 1978-07-03 1980-03-04 Akzona Incorporated Freeze indicator
US4200228A (en) * 1978-09-18 1980-04-29 Woerpel Marvin D Snow making
US4742958A (en) * 1984-11-06 1988-05-10 Permasnow (Australasia) Limited Method for making artificial snow
GB2186673A (en) * 1985-06-04 1987-08-19 Permasnow Ltd Method for making artificial snow
AU576298B2 (en) * 1985-06-04 1988-08-18 Permasnow (Australasia) Limited Method for making artificial snow
US4793142A (en) * 1985-06-04 1988-12-27 Permasnow (Australasia) Limited Method for making artificial snow
GB2186673B (en) * 1985-06-04 1989-07-19 Permasnow Ltd Method for making artificial snow
WO1986007373A1 (en) * 1985-06-04 1986-12-18 Permasnow Limited Method for making artificial snow
US5556671A (en) * 1990-02-02 1996-09-17 Miura Dolphins Co., Ltd. Artificial snow in an aggregate form of snow granules
US5266367A (en) * 1990-02-02 1993-11-30 Miura Dolphins Co., Ltd. Artificial snow granule
US5436039A (en) * 1990-02-02 1995-07-25 Miura Dolphins, Co., Ltd. Artificial snow in an aggregate form of snow granules
US5301512A (en) * 1991-09-12 1994-04-12 Yasuo Yamamoto Method and apparatus for making snow
US6151902A (en) * 1997-09-02 2000-11-28 Stenlake, Jr.; Charles F. Composition for inducing the creation of artificial snow and method of use
US6378778B1 (en) 1998-06-02 2002-04-30 Crea As Snow gun
US6464148B1 (en) * 1999-05-03 2002-10-15 Aquatrols Holding Co., Inc. Snowmaking process
US20030006291A1 (en) * 1999-05-03 2003-01-09 Costa Dominic Charles Snowmaking process
US7562831B2 (en) * 1999-05-03 2009-07-21 Aquatrols Corporation Of America, Inc. Snowmaking process
US20040035947A1 (en) * 2002-08-10 2004-02-26 Ratnik H. Ronald Water-only method and apparatus for making snow
US6793148B2 (en) * 2002-08-10 2004-09-21 Ratnik Industries, Incorporated Water-only method and apparatus for making snow
US7290722B1 (en) 2003-12-16 2007-11-06 Snow Machines, Inc. Method and apparatus for making snow
US20120111961A1 (en) * 2010-11-09 2012-05-10 Arnold James R Grove sprayer
US9266129B2 (en) 2010-11-09 2016-02-23 James R. Arnold Grove sprayer
US20210018238A1 (en) * 2018-03-13 2021-01-21 Thorsteinn I Viglundsson Method & Apparatus for making wet snow

Also Published As

Publication number Publication date
AT283398B (en) 1970-08-10
DE1751844B2 (en) 1974-08-01
DE1751844A1 (en) 1971-08-19
JPS4946343B1 (en) 1974-12-09
US3760598A (en) 1973-09-25

Similar Documents

Publication Publication Date Title
US3596476A (en) Process and system for making artificial snow
US4634050A (en) Fanless air aspiration snowmaking apparatus
US9421508B2 (en) Spraying method and nozzle for atomization of a liquid
US4915302A (en) Device for making artificial snow
US3301485A (en) Method and apparatus for making frozen particles
US3969908A (en) Artificial snow making method
US5699961A (en) Fanless snow gun
US4793554A (en) Device for making artificial snow
KR100232795B1 (en) Improved spray nozzle design
US4214700A (en) Method and apparatus for making snow for ski slopes and the like
US3907510A (en) System for burning sulfur and absorbing sulfur dioxide in water
US3049891A (en) Cooling by flowing gas at supersonic velocity
US5909844A (en) Water atomizing nozzle for snow making machine
US5083707A (en) Nucleator
US4730774A (en) Dual pressure compensating snowmaking apparatus
US4413345A (en) Gasdynamic laser
EP0184611A1 (en) Liquid atomizing nozzle
SU1317249A1 (en) Device for producing artificial snow
EP1048358A2 (en) Water atomizing nozzle of impact type for dust suppression
RU2032869C1 (en) Method of producing artificial snow and device for its realization
SU1733059A1 (en) Ejection tube
US4413344A (en) Method of operating a gasdynamic CO2 -laser
SU876180A1 (en) Centrifugal spray atomizer
SU1680355A2 (en) Injector
SU1514417A1 (en) Injecttor for atomizing liquids