Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3594529 A
Publication typeGrant
Publication date20 Jul 1971
Filing date24 Jul 1969
Priority date6 Aug 1968
Publication numberUS 3594529 A, US 3594529A, US-A-3594529, US3594529 A, US3594529A
InventorsCartwright John Anthony
Original AssigneePainton & Co Ltd
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Actuating assemblies and components therefor particularly suitable for electrical switches
US 3594529 A
Abstract  available in
Images(2)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent Inventor John Anthony Cartwright Northampton, England Appl. No 844,594

Filed July 24, 1969 Patented July 20, 197i Assignee Painton 8: Company Limited Kingsthorpe, Northampton, England Priority Aug. 6, 1968 Great Britain 37487/68 ACTUATING ASSEMBLIES AND COMPONENTS THEREFOR PARTICULARLY SUITABLE FOR ELECTRICAL SWITCHES 9 Claims, 7 Drawing Figs.

US. Cl.... 200/172 A Int. Cl H0lh 3/12 Field of Search ZOO/172, 153.19, 67 D [56] References Cited UNlTED STATES PATENTS 3,239,641 3/1966 Pettit 200/172 (A) 3,403,236 9/1968 Zoludow 200/172 (X) 3,403,237 9/l968 Wysong 200/l72 (X) Primary Examiner-H. 0. Jones Attorney-Kurt Kelman ABSTRACT: A switch assembly comprises an actuating member and a biasing assembly movable along a common longitudinal axis. Initial movement of the actuating member causes deformation of the biasing assembly thereby to energize the same. A position is reached where the biasing assembly moves towards a less stressed condition, such movement being adapted to actuate the device provided with the actuating assembly.

PATENTED JUL20 m1 SHEET 2 OF 2 Inventor I mu AKAUWNW GENT ACTUATING ASSEMBLIES AND COMPONENTS THEREFOR PARTICULARLY SUITABLE FOR ELECTRICAL SWITCHES This invention concerns actuating assemblies and components therefor, such assemblies being particularly suitable for use in conjunction with electrical switches For example, such invention may be applied to a pushbutton body for actuating one or more microswitches.

It will be appreciated that in microswitches, operation is effected by a very short movement of a relatively substantial spring-biased operating member. When manually operating such microswitch it is very often difficult, if such switch is effected manually and directly, to be sure that switching has occurred.

One object of this invention is to provide an actuating assembly, and components therefor, which can be used to actuate easily and with a relatively long actuating movement, an operating member having a short operating movement and which is more substantially biased. A further object of the invention is to provide an assembly which incorporates components which effectively produce a mechanical advantage.

Thus according to one aspect of this invention there is provided an actuating assembly adapted to be operatively associated with a deviceto be actuated, said assembly comprising an actuating member movable with respect to a biasing assembly which comprises a resilient structure having at least a pair of arms, at least one of said arms being engageable by the actuating member and a part of said resilient structure being adapted to engage the device to be actuated, initial movement of the actuating member against the action of the biasing assembly resulting in the deformation of the resilient structure as a result of relative movement between the arms thereof so as to place the biasing assembly into an energized condition whereafter further movement of such actuating member causes the resilient structure to move towards a condition where it is less deformed with a consequent result that movement of said part of the resilient structure which is adapted to engage the device to be actuated occurs in a device actuating direction.

According to one feature of the invention the resilient structure may comprise a pair of intercoupled arms and such resilient structure may be substantially U-shaped. Whilst said resilient structure may be fonned in many alternative ways, for example, by fabricating the same from a springy metal, very desirably such resilient structure may be formed principally or wholly from a plastics material which, when appropriately dimensioned, is resilient.

In one embodiment of the invention both of the free end portions of the arms of the resilient structure may be engaged by the actuating member although in other embodiments only one of said arms may be engaged thereby. In such latter embodiments the free end portion may be coupled to, or may be formed with, said actuating member.

In an embodiment where both are free end portions of the arms of the structure are engaged by the actuating member, the resilient structure may be substantially U-shaped and the base of the U may be arranged to engage the device to be actuated and movement of the actuating member causes the two arms of the structure to move towards one another, or alternatively away from one another, whereafter further movement of the actuating member causes movement of the resilient structure as a whole to actuate the device. In an embodiment where only a first arm is engaged by the actuating member According to another aspect of the invention there is provided, for incorporation into an actuating assembly in accordance with this invention, a resilient structure.

In order that the invention maybe more readily understood four embodiments of electrical switch pushbutton actuating assemblies will now be described by way of example and with reference to the accompanying drawings in which:

FIG. I is a front elevational view (with portions broken away) of a first embodiment of pushbutton assembly coupled to a switch;

HO. 2 is a partly sectioned side view of the assembly of HG.

FIG. 3 is a view similar to FlG. l but showing the assembly coupled to a bank of three switches;

FIG. 4 is a front elevational view (with portions broken away) of a second embodiment of pushbutton assembly coupled to a switch;

FIG. 5 is a partly sectioned side view of the assembly of FIG.

FlG. 6 is a partly sectioned side view of a third embodiment of pushbutton assembly coupled to a switch; and

FIG. 7 is a further partly sectioned view but shows a fourth embodiment of pushbutton assembly coupled to a switch.

in a first embodiment the actuating assembly comprises a body I moulded from a plastics material which basically comprises an inverted L-shaped bracket, the upright 2 of the L serving as a support for an electrical switch mechanism 3 whereas the foot 4 of the L is bored at 5 andis encircled by a cylindrical collar 6 formed on the surface of the foot remote from said upright 2. This collar 6 constitutes a cylinder 7 in which is located a piston part 8 of an actuating member generally designated 9. The actuating member 9 comprises said piston part 8 which carries on its longitudinal axis a stem 10, such stem being screw threaded or serrated at its free end at ll and receives a pushbutton l2. 7

An inwardly directed flange 13 on the collar 6 prevents the actuating member 9 from being withdrawn from the collar 6 in one direction, whilst the pushbutton I2 (once it has been attached to the stem) prevents withdrawal of the actuating member 9 in the opposite direction.

The piston part 8 is provided, in its end face remote from the stem 10, with a blind, axially positioned, bore 14 which tapers inwardly towards its inner end so that the bore 14 is generally of frustoconical shape.

ln this embodiment the upright 2 of the L-shaped bracket constituting the body 1 is adapted to have secured thereto the switch 3, which is a microswitch and the form and shape of this microswitch 3 is chosen so that its spring-biased operating member, designated 15, lies directly beneath the bore 14 in the bracket and its line of movement lies on the longitudinal axis of the actuating member 9.

lnterposedbetween the actuating member 9 of the assembly and the operating member 15 of the switch is a substantially U-shaped resilient structure 16. The anns 17 of the U are splayed outwardly andcarry on their free extremities enlargements 18 which constitute cams which engage the internal surfaces of the frustoconical blind bore [4' in the piston part 8 of the actuating member 9. The base of the U-shaped resilient structure 16 carries a plate 19 which engages the operating member 15 of the switch 3.

In use, when it is desired to operate the switch 3, the pushbutton 12 of the assembly is depressed and as a result in such depression the actuating member 9 moves towards the switch 3 and initially the arms of the resilient structure 16 are merely forced to travel along the walls of the frusto'con'ically shaped blind bore 14 with the result that they are forced towards one another. A stage is reached, however, when the force required to deform the arms 17 of said resilient structure 16 further is greater than the force required to move the spring-biased switch operating member Band at this stage further depression of the pushbutton l2 causes the resilient structure 16 to move as a whole in a direction towards the switch-operating member 15 and such member l5 is moved and the switch 3 is operated.

The collar 6 is externally screw threaded at 20 to enable the assembly to be secured to a support plate (not shown). In FIGS. 1 and 2 a single microswitch is indicated. However in FIG. 3 the plate 19 is extended to each side of the resilient structure 16 so that actuation of the pushbutton 12 causes simultaneous actuation of the operating plungers 21, 22 and 23 of three microswitches secured to the upright 2 in a bank. An aperture 24 (shown in FIG. 2) is provided in the upright 2 so as to allow for situations when three or more switches are to be banked.

Ina second embodiment shown in FIGS. 4 and (which in general is similar to the first embodiment) in place of the frustoconical bore 14 of FIG. 2, the piston member 8 is provided with a frustoconical end portion 25 and the arms of the resilient structure 16 engage such end portion 25. The resilient structure 16 in this embodiment is not strictly U- shaped but is cuplike being a circular base 26 having a plurality of upstanding radially disposed arms 27 (chamfered at 28). The end portion 25 increases in diameter in a direction extending away from the arms 27 so that when the actuating member is moved in a switch operating direction by depression of the pushbutton 12 the arms of the resilient structure 16 are forced to travel along the walls of the frustoconical end portion 25 and are accordingly forced away from one another. As in the case of the first embodiment a stage is reached where the force required to deform the arms 27 of the resilient structure 16 is greater than the force required to move the switch operating member and thus at this stage further depression of the pushbutton 12 causes the resilient structure 16 to move as a whole towards the switch operating member.

In this embodiment the resilient structure is formed with a spigot 28 which is positioned centrally of the anns 27 of such resilient structure 16 and this spigot 28 is positioned and dimensioned to ride within a cylindrical blind bore 29 in the piston part 8 of the actuating member so as to locate the resilient'structure 16 with respect thereto.

It should be understood that the resilient structure [6 has more than two arms but the term U-shaped resilient structure" in this specification should be understood to include a structure in which three or more arms are provided which effectively define a cupor U-sliaped structure.

. With these arrangements it will be understood that by appropriate selection of the strength of the resilient structure 16 in relation to the strength of the switch operating member biasing means,'a relatively long but light movement of the pushbutton results in a positive operation of the operating member of the switch which would normally have a short but relatively highly biased travel.

The third embodiment of pushbutton assembly shown in FIG. 6 is, in many ways, similar to the first embodiment already described. This third embodiment has an inverted L- shaped bracket 1 and a collar 6 upstanding therefrom housing an actuating member having a piston part 8, a stem 10 and a pushbutton 12.

In this third embodiment however, the piston part 8 is not provided with a blind frustoconically shaped bore and furthermore the U-shaped resilient structure 16 has its base pivotally supported at 30 on the upright 2 of the L so that the free end portion of one of its arms (designated 31) engages the surface of the actuating member 9 remote from the stem 10, whilst the equivalent portion (designated 32) of the other arm of the resilient structure engages the switch operating member 15. Thus, in this embodiment initial depression of the pushbutton 12 causes the anns 31, 32 of the resilient structure 16 to be moved towards one another and to energize such resilient structure 16 whereafter continued depression of the pushbutton results in the energized resilient structure operating the switch-operating member 15.

A fourth embodiment of pushbutton assembly which is shown in FIG. 7 is extremely similar to the third embodiment described above, but in this fourth embodiment the U-shaped resilient structure 16 is not at any point secured to the upright 2 of the inverted L-shaped bracket 1. In fact in this fourth embodi ment, whilst the spring is disposed in the assembly in a fashion similar to the third embodiment of FIG. 6, the end portion .31 of the arm thereof is coupled to said piston part. Expediently, the resilient structure 16 is formed integrally with the piston part 8.

For the sake of clarity all switch terminals have been designated 33.

In all the embodiments described advantageously said resilient structure 16 is moulded from a plastics material although it is conceivable that a resilient structure could be fabricated from metal. However, the use of metal would increase cost because of the need for several piece-parts and expensive forrning methods such as the sintcring of compacted preforms. A satisfactory plastics material from which the assembly in accordance with this invention could be moulded is an acetal resin such as that manufacturedand sold under the Registered Trade Mark DELRIN.

I claim:

I. An actuating assembly adapted to be operatively associated with a device to be actuated, said assembly comprising: an actuating member and a biasing assembly, said actuating member being movable with respect to the biasing as sembly along a common longitudinal axis;

said biasing assembly comprising a resilient structure having at least a pair of arms;

at least one of said arms being engageable by the axial movement of said actuating member to move said resilient structure in the axial direction; and

a part of said resilient structure being adapted on movement thereof to engage the device to be actuated, initial movement of the actuating member against the action of the biasing assembly resulting in the deformation of the resilient structure as a result of relative movement between the arms thereof so as to place the biasing assembly into an energized condition whereafter further movement of said actuating member causes the resilient structure to move towards a condition where it is less deformed with a consequent result that movement of said part of the resilient structure which is adapted to engage the device to be actuated occurs in the longitudinal direction.

2. An actuating assembly according to claim 1, wherein at least two intercoupled arms constitute said resilient structure.

3. An actuating assembly according to claim 2, wherein two arms only are provided and such arms together constitute a substantially U-shaped structure,

4. An actuating assembly according to claim 1, wherein plastics material principally forms said resilient structure.

5. An actuating assembly according to claim 1, wherein the free end portions of at least two of the arms of the resilient structure are engaged by the actuating member.

6. An actuating assembly according to claim 5, wherein said resilient structure is substantially U-shaped and the base of the U is arranged to engage the device to be actuated and movement of the actuating member causes the arms of the U- shaped resilient structure to move with respect to one another, whereafter continued movement of the actuating member causes movement of the resilient structure as a whole.

7. An actuating assembly according to claim 1, wherein one only of the free end portions of the arms of the resilient structure is engaged by the actuating member.

8. An actuating assembly according to claim 7, wherein a first arm is engaged by the actuating member and a second arm is arranged to engage the device to be actuated and movement of said actuating member first causes movement of the first of the arms of the resilient structure in a direction towards the second arm and then further movement of the actuating member results in the second arm moving away from said first arm in a device actuating direction.

9. An actuating assembly according to claim 7, wherein the free-end portion engaged by the actuating member is formed integrally therewith.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3239641 *27 Sep 19638 Mar 1966Square D CoMushroom type pushbutton operator
US3403236 *5 Apr 196724 Sep 1968Robertshaw Controls CoElectrical switch having a one-piece actuator and spring arm structure
US3403237 *5 Apr 196724 Sep 1968Robertshaw Controls CoElectrical switch having a one-piece actuator and spring arm structure
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3646298 *25 Aug 197029 Feb 1972Black & Decker Mfg CoSwitch operating trigger with integral biasing means and excessive force protection means
US4035759 *21 Aug 197512 Jul 1977Cts CorporationElectrical control having an insulated shaft extension
US4297556 *25 Aug 198027 Oct 1981Taylor Glenn RPushbutton operator
US4454397 *23 Jun 198212 Jun 1984Wico CorporationFor mounting in an aperture in an associated support wall
US5168982 *12 Apr 19918 Dec 1992Nokia Mobile Phones Ltd.Switch device
US5446252 *21 Jan 199429 Aug 1995Burger; Philip M.Flat spring actuating mechanism for plunger-type switch
US6396014 *27 Oct 200028 May 2002Crouzet AutomatismesDevice to amplify the movement of an operating button of a switch
US69823926 May 20053 Jan 2006Burger & Brown Engineering, Inc.Water resistant actuating mechanism for plunger type switches
US7208690 *11 Sep 200624 Apr 2007Matsushita Electic Industrial Co., Ltd.Rotary electronic component and method of manufacturing the same
US756978321 Feb 20074 Aug 2009Burger & Brown Engineering, Inc.Low-profile switch with flat spring actuating mechanism
US8129639 *10 Apr 20096 Mar 2012Kia Motors CorporationEmblem-unified trunk opening and closing device
EP0825627A2 *20 Aug 199725 Feb 1998Electrolux Outdoor Products LimitedActuating mechanism
Classifications
U.S. Classification200/330
International ClassificationH01H13/12, H01H13/20
Cooperative ClassificationH01H13/20
European ClassificationH01H13/20