US3587394A - High speed control valve for hydraulic drives - Google Patents

High speed control valve for hydraulic drives Download PDF

Info

Publication number
US3587394A
US3587394A US746137A US3587394DA US3587394A US 3587394 A US3587394 A US 3587394A US 746137 A US746137 A US 746137A US 3587394D A US3587394D A US 3587394DA US 3587394 A US3587394 A US 3587394A
Authority
US
United States
Prior art keywords
control
piston
working piston
valve
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US746137A
Inventor
Jan Willem Hilbrands
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maschinenfabrik Koeppern GmbH and Co KG
Original Assignee
Maschinenfabrik Koeppern GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19671653566 external-priority patent/DE1653566C3/en
Application filed by Maschinenfabrik Koeppern GmbH and Co KG filed Critical Maschinenfabrik Koeppern GmbH and Co KG
Application granted granted Critical
Publication of US3587394A publication Critical patent/US3587394A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B9/00Servomotors with follow-up action, e.g. obtained by feed-back control, i.e. in which the position of the actuated member conforms with that of the controlling member
    • F15B9/02Servomotors with follow-up action, e.g. obtained by feed-back control, i.e. in which the position of the actuated member conforms with that of the controlling member with servomotors of the reciprocatable or oscillatable type
    • F15B9/08Servomotors with follow-up action, e.g. obtained by feed-back control, i.e. in which the position of the actuated member conforms with that of the controlling member with servomotors of the reciprocatable or oscillatable type controlled by valves affecting the fluid feed or the fluid outlet of the servomotor
    • F15B9/10Servomotors with follow-up action, e.g. obtained by feed-back control, i.e. in which the position of the actuated member conforms with that of the controlling member with servomotors of the reciprocatable or oscillatable type controlled by valves affecting the fluid feed or the fluid outlet of the servomotor in which the controlling element and the servomotor each controls a separate member, these members influencing different fluid passages or the same passage

Definitions

  • Maslousky Attorney-Christen and Sabol ABSTRACT An improved hydraulic drive with a reciprocating working piston whose side remote from the load may be affected by a liquid or gaseous pressure medium, and comprising a control valve with an axially displaceable control slide, adapted to move in a control sleeve with radially disposed inlet and outlet orifices, wherein the improvement comprises adaptation for high operating frequencies in that the control sleeve is axially displaceable in the valve housing and is directly connected with the piston, and by providing a revolving cam for periodically moving the spring-loaded piston slide.
  • SHEET 2 BF 2 liilllGllll MMZD CONTROL VALVE FUR HYDRAULIC DMVES Hydraulic drives with reciprocating pistons of the type mentioned above are generally known and used. In these constructions, the piston is returned to its starting position by the load, or by a spring. or by admitting the liquid or gaseous pressure medium to the side of the piston facing the load. Drives of this type operate reliably at low operating frequencies, even where the control member is automatically operated. Other hydraulic drives are known for fatigue machines and similar applications, operating at high frequencies, for example of the order of 20 cycles per second. These known drives operate with complicated valve controls with electronically controlled ser vovalves.
  • Such drives are required, for example, for crushers, vibrators, and generally for machines operating at high frequencies.
  • valve housing is flange mounted coaxially to the working piston to its housing.
  • the control bush may be flange mounted directly on the working piston. However, in order to produce a larger working surface, the control bush and the working piston may be connected by means of a connecting rod.
  • FIG. ll shows a longitudinal cross section of a hydraulic drive according to the invention.
  • FIG. 2 shows a modified form of the invention.
  • a working piston 2 is arranged in a cylinder 4 closed by a cover 6 and a further cover s.
  • the working piston 2 is equipped with a piston rod 10 passing through the cover 6 and having a smaller diameter than the working piston, so that an annular chamber 112 is formed in the cylinder 2 and provided with a connection for the pressure medium.
  • the cover 8 is the connecting flange of a valve housing to mounted coaxially to the working piston.
  • a control bush Ed is mounted axially displaceably in the valve housing to and is flange mounted on the adjacent side of the working piston 2.
  • a control slide is axially displaceable in the control bush 1d and is provided with an extension 22 passing through a bore in an end cover 24 of the valve housing 116.
  • the valve housing 16 is equipped with a pressure medium connection 24 leading to a groove 26 on the inner periphery of the housing.
  • the control bush 18 in the zone of the groove 26 the control bush 18 has radial bores leading to a peripheral groove 28 on the inner surface of the control bush m.
  • the control slide 20 has a control edge 30 cooperating with the groove 28.
  • An oil reflux connection 32 is provided at the opposite end of the valve housing and terminates in an annular groove 34 extending to the cover 2d of the valve housing.
  • the control bush Ed has radial bores leading into the annular groove 34 and communicating with an annular groove 36 on the inner periphery of the control bush. This annular groove cooperates with a further control edge 38 of the piston slide 20 which is opposite the control edge 30.
  • annular chamber 40 Between the control edges 30 and 38, the piston slide is shouldered so as to form an annular chamber 40.
  • This annular chamber communicates through radial bores 42 with an annular groove on the inner periphery of the valve housing l6. From this annular groove 44 axial bores 46 lead to the cylinder chamber 48 on the side of the working piston 2 opposite the piston rod It).
  • the axial height of the annular grooves 26, 3d and M correspond at least to the maximum travel of the working piston 2 between its extreme end positions.
  • the end chamber 50 of the control bush 1d communicates through a piston bore 52 with the annular groove 34 as known in the art.
  • a threaded pin 54 is screwed into the end of the extension 22 of the piston slide 20.
  • a spring plate 58 is mounted on the end of this extension by means of a nut 56.
  • a compression spring 60 is fitted between the spring plate 58 and the cover 24 ofthe valve housing.
  • the end of the threaded pin 54 cooperates with a revolving cam 62 which revolves at a speed which is preferably adjustable.
  • the drive just described is supplied with hydraulic fluid through a hydraulic system comprising a pump 64, an over pressure valve 66, and a pressure accumulator 68, via a line leading to the connection 2d.
  • a conduit 72 connects the pressure oil supply for the annular chamber 12 with the conduit 70.
  • the conduit 72 incorporates a pressure reducing valve 74, an over pressure valve 76, and a pressure accumulator 78.
  • a nonretum valve d0 prevents the reverse flow of the oil.
  • the cylinder 4 is connected to the connection 14 by means of a conduit 82.
  • the cam 62 moves the piston slide 20 towards the left and admits the hydraulic oil from the annular groove 28 through the conduit M to the cylinder chamber 48. In consequence the working piston 2 is moved towards the left against the action of the load.
  • the control piston of the control bush l8 advances at high speed so that the full flow cross section is available practically at once for the hydraulic oil.
  • the control slide 20 moves to the right as soon as the point of the cam 62 has passed.
  • the working piston 2 and the control bush 18 continue to move to the left until the annular groove 28 has been covered by the control edge 30.
  • the control slide 20 continues to move to the right and the control edge 38 opens the annular groove 36 enabling oil to leave the cylinder chamber d8 and the annular groove 34 through the dotted line return conduit 33 under the action of the load.
  • the working piston 2 and the control bush 18 move to the right until the angular groove 36 has again been covered by the control edge 38.
  • the operating cycle just described is repeated.
  • the operating frequency depends, under the assumption of sufficient flow cross sections, only on the rotational speed of the cam 62.
  • the working piston moves between predetermined terminal positions without the provision of limit stops.
  • the operating range may be adjusted by adjusting the threaded pin 54.
  • the returning action of the load is supported by the effects of the pressure medium on the piston in the cylinder chamber 12 so that. the drive operates as described also in the absence of a load. Since only the returning forces must be applied in the cylinder chamber 12, the pressure in this chamber 12 may be substantially lower than in the cylinder chamber 48.
  • the working pressure for returning the working piston may be adjusted by means of a pressure reducing valve 76. The use of reduced pressure raises simultaneously the effective work performed by the pressure medium in the cylinder chamber M.
  • the ratio between working stroke and return stroke may be determined by the shape ofthe cam 61..
  • the working range of the working piston described above will also be maintained if the piston is temporarily effected by an overload, that is to say it cannot carry out its full travel during the working stroke. In this case, after the elimination of the overload, the piston will resume its predetermined working range after a few working cycles.
  • the size of the affected surface in the cylinder chamber 43 is limited by the outer diameter of the control bush w as a function of the necessary flow cross sections within the valve arrangement.
  • an increase in the working surface area may be achieved by connecting thecontrol bush 18 with the working piston 2' by a connecting rod l9, which may have a comparatively small diameter.
  • the cover 8 of the valve housing has in this case a closed base 9 through which the connecting rod passes in sealed relationship thereto by means of an opening therein provided with a seal ll.
  • the chamber 13 formed in front of the control bush lfil is connected with the end chamber 50 via conduit 13 and thereby with the oil return conduit 33 via conduit 52 in the control slide and the connection 32.
  • the other features of this form of control valve correspond to those of the valve shown in FIG. 1.
  • Hydraulic drive means comprising reciprocating working piston means and control valve means, housing means including cylindrical chamber means for the working piston means and valve chamber means for the control valve means, said valve means including control bush means slidably positioned in said valve chamber means and connected with the working piston means for concurrent reciprocating movement with the working piston means and also including control piston means positioned in said valve chamber means for reciprocating movement in a path parallel with the path of movement of the control bush means and in sliding contact therewith, said valve chamber means having inlet means for fluid under pressure, conduit means communicating with the cylindrical chamber means for delivering fluid to one side of the working piston means only and outlet means for fluid returned from said cylindrical chamber means, fluid supply means for delivering fluid under pressure to said inlet means and to the opposite side of the working piston means, said control piston means having an axially elongated medially arranged recessed portion in fluid tight engagement with said control bush means to provide an axially elongated fluid chamber in cooperation with said control bush means, said control bush means being provided with three axially spaced ports, one of said ports
  • Hydraulic drive means as defined in claim 5, wherein said control bush means includes a cylindrical element secured to said working piston means in axial alignment therewith; and said control piston means is coaxially slidably mounted within said cylindrical element, said control piston means having an annularly reduced medial portion to provide said elongated chamber said three axially spacedports extending radially through said cylindrical element, said one of the ports being positioned axially between the second and third ports.
  • valve housing (i6) is flange mounted on the housing of the working piston (2) in coaxial relationship therewith.
  • control bush (18) is directly flange mounted on the working piston (2).
  • control bush (i8) is connected to the working piston (2) by means of a connecting rod.
  • a drive as set forth in claim 2, comprising an annular shoulder at the end of the working piston facing the load, with a surface smaller than the working surface on the other side of the working piston, and wherein the annular chamber on the side of the working piston facing the load communicates with the source of pressure medium, wherein the working pressure in the annular chamber facing the load is smaller than in the annular chamber remote from the load.
  • control slide carries, at its end cooperating with the cam (62) a pressure plunger 54, the axial position of which is variable.

Abstract

AN IMPROVED HYDRAULIC DRIVE WITH A RECIPROCATING WORKING PISTON WHOSE SIDE REMOTE FROM THE LOAD MAY BE AFFECTED BY A LIQUID OR GASEOUS PRESSURE MEDIUM, AND COMPRISING A CONTROL VALVE WITH AN AXIALLY DISPLACEABLE CONTROL SLIDE, ADAPTED TO MOVE IN A CONTROL SLEEVE WITH RADIALLY DISPOSED INLET AND OUTLET ORIFICES, WHEREIN THE IMPROVEMENT COMPRISES ADAPTATION FOR HIGH OPERATING FREQUENCIES IN THAT THE CONTROL SLEEVE IS AXIALLY DISPLACEABLE IN THE VALVE HOUSING AND IS DIRECTLY CONNECTED WITH THE PISTON, AND BY PROVIDING A REVOLVING CAM FOR PERIODICALLY MOVING THE SPRING-LOADED PISTON SLIDE.

Description

United States Patent inventor Jan Willem Hilbrlnds l-lattingen, (Ruhr) Germany Appl. No. 746,137 Filed July 19, 1968 Patented June 28, 1971 Assignee Maschinenlabrik Koppern & Co. KG,
Hattingen, (Ruhr! Germany Priority July 20, 1967 Germany HIGH SPEED CONTROL VALVE FOR HYDRAULIC DRIVES 8 Claims, 2 Drawing Figs.
US. Cl. 91/39, 9l/165,9l/378,9l/417 Int. .....F15b 21/02, F15b 15/17 Fieidoiseareh 9l/39,417;
91/378, 374 (Cursory) [56] References Cited UNITED STATES PATENTS 2,447,090 8/1948 Pollock 91/374 2,644,427 7/1953 Sedgfield et al. 91/378 719,109 1/1903 Hanson 91/39 1,822,667 9/1931 Proell 91/39 2,055,530 9/1936 l-lallenbeck 91/39 Primary Examiner-Paul E. Maslousky Attorney-Christen and Sabol ABSTRACT: An improved hydraulic drive with a reciprocating working piston whose side remote from the load may be affected by a liquid or gaseous pressure medium, and comprising a control valve with an axially displaceable control slide, adapted to move in a control sleeve with radially disposed inlet and outlet orifices, wherein the improvement comprises adaptation for high operating frequencies in that the control sleeve is axially displaceable in the valve housing and is directly connected with the piston, and by providing a revolving cam for periodically moving the spring-loaded piston slide.
PATENTEUJUHZEBIQTI 3,587,394
SHEET 1 I)? 2 J NR. J
JAN W/LLEM MIL BRA/v05 BY M ,JW vfl fluuv ATTORNEY PATENIEU JUH28 19?:
SHEET 2 BF 2 liilllGllll MMZD CONTROL VALVE FUR HYDRAULIC DMVES Hydraulic drives with reciprocating pistons of the type mentioned above are generally known and used. In these constructions, the piston is returned to its starting position by the load, or by a spring. or by admitting the liquid or gaseous pressure medium to the side of the piston facing the load. Drives of this type operate reliably at low operating frequencies, even where the control member is automatically operated. Other hydraulic drives are known for fatigue machines and similar applications, operating at high frequencies, for example of the order of 20 cycles per second. These known drives operate with complicated valve controls with electronically controlled ser vovalves.
It is an object of the invention to provide a hydraulic drive of the type hereinbefore mentioned, capable of operating at high frequencies, equipped with a simple automatic control, and in which the working piston can be kept within a predetermined operating range without the use of limit stops.
Such drives are required, for example, for crushers, vibrators, and generally for machines operating at high frequencies.
It is a further object of the invention to provide a hydraulic drive, in which the control bush is mounted axially displaceably in the valve housing and is connected directly with the working piston, and which comprises a revolving cam for periodically axially displacing the piston slide which is spring loaded in the direction of the cam.
it is a further object of the invention to provide a hydraulic drive of the kind hereinbefore mentioned, in which the valve housing is flange mounted coaxially to the working piston to its housing.
The control bush may be flange mounted directly on the working piston. However, in order to produce a larger working surface, the control bush and the working piston may be connected by means of a connecting rod.
it is a further object of the invention to provide hydraulic drive of the kind hereinbefore mentioned, in which the end of working piston facing the load is provided with an annular shoulder, the surface of which is smaller than the working surface on the opposite side of the working piston, and wherein the annular space is connected with a source of the pressure medium.
The invention will be further described by way of example, with reference to the accompanying drawing in which:
FIG. ll shows a longitudinal cross section of a hydraulic drive according to the invention, and
FIG. 2 shows a modified form of the invention.
A working piston 2 is arranged in a cylinder 4 closed by a cover 6 and a further cover s.
The working piston 2 is equipped with a piston rod 10 passing through the cover 6 and having a smaller diameter than the working piston, so that an annular chamber 112 is formed in the cylinder 2 and provided with a connection for the pressure medium. in the embodiment shown, the cover 8 is the connecting flange of a valve housing to mounted coaxially to the working piston.
A control bush Ed is mounted axially displaceably in the valve housing to and is flange mounted on the adjacent side of the working piston 2. A control slide is axially displaceable in the control bush 1d and is provided with an extension 22 passing through a bore in an end cover 24 of the valve housing 116.
The valve housing 16 is equipped with a pressure medium connection 24 leading to a groove 26 on the inner periphery of the housing. in the zone of the groove 26 the control bush 18 has radial bores leading to a peripheral groove 28 on the inner surface of the control bush m. The control slide 20 has a control edge 30 cooperating with the groove 28.
An oil reflux connection 32 is provided at the opposite end of the valve housing and terminates in an annular groove 34 extending to the cover 2d of the valve housing. The control bush Ed has radial bores leading into the annular groove 34 and communicating with an annular groove 36 on the inner periphery of the control bush. This annular groove cooperates with a further control edge 38 of the piston slide 20 which is opposite the control edge 30.
Between the control edges 30 and 38, the piston slide is shouldered so as to form an annular chamber 40. This annular chamber communicates through radial bores 42 with an annular groove on the inner periphery of the valve housing l6. From this annular groove 44 axial bores 46 lead to the cylinder chamber 48 on the side of the working piston 2 opposite the piston rod It). The axial height of the annular grooves 26, 3d and M correspond at least to the maximum travel of the working piston 2 between its extreme end positions.
The end chamber 50 of the control bush 1d communicates through a piston bore 52 with the annular groove 34 as known in the art.
A threaded pin 54 is screwed into the end of the extension 22 of the piston slide 20. A spring plate 58 is mounted on the end of this extension by means of a nut 56. A compression spring 60 is fitted between the spring plate 58 and the cover 24 ofthe valve housing.
The end of the threaded pin 54 cooperates with a revolving cam 62 which revolves at a speed which is preferably adjustable. The drive just described is supplied with hydraulic fluid through a hydraulic system comprising a pump 64, an over pressure valve 66, and a pressure accumulator 68, via a line leading to the connection 2d. A conduit 72 connects the pressure oil supply for the annular chamber 12 with the conduit 70. The conduit 72 incorporates a pressure reducing valve 74, an over pressure valve 76, and a pressure accumulator 78. A nonretum valve d0 prevents the reverse flow of the oil. The cylinder 4 is connected to the connection 14 by means of a conduit 82.
The drive hereinbefore described operates as follow:
The cam 62 moves the piston slide 20 towards the left and admits the hydraulic oil from the annular groove 28 through the conduit M to the cylinder chamber 48. In consequence the working piston 2 is moved towards the left against the action of the load. During this the control piston of the control bush l8 advances at high speed so that the full flow cross section is available practically at once for the hydraulic oil.
Under the pressure of the spring 60, the control slide 20 moves to the right as soon as the point of the cam 62 has passed. The working piston 2 and the control bush 18 continue to move to the left until the annular groove 28 has been covered by the control edge 30. Then the control slide 20 continues to move to the right and the control edge 38 opens the annular groove 36 enabling oil to leave the cylinder chamber d8 and the annular groove 34 through the dotted line return conduit 33 under the action of the load. The working piston 2 and the control bush 18 move to the right until the angular groove 36 has again been covered by the control edge 38. Then the operating cycle just described is repeated. As may be seen from the preceding description, the operating frequency depends, under the assumption of sufficient flow cross sections, only on the rotational speed of the cam 62. The working piston moves between predetermined terminal positions without the provision of limit stops.
The operating range may be adjusted by adjusting the threaded pin 54.
In the embodiment shown the returning action of the load is supported by the effects of the pressure medium on the piston in the cylinder chamber 12 so that. the drive operates as described also in the absence of a load. Since only the returning forces must be applied in the cylinder chamber 12, the pressure in this chamber 12 may be substantially lower than in the cylinder chamber 48. The working pressure for returning the working piston may be adjusted by means of a pressure reducing valve 76. The use of reduced pressure raises simultaneously the effective work performed by the pressure medium in the cylinder chamber M.
The ratio between working stroke and return stroke may be determined by the shape ofthe cam 61..
The working range of the working piston described above, will also be maintained if the piston is temporarily effected by an overload, that is to say it cannot carry out its full travel during the working stroke. In this case, after the elimination of the overload, the piston will resume its predetermined working range after a few working cycles.
As may be seen from the drawing, in the embodiment shown the size of the affected surface in the cylinder chamber 43 is limited by the outer diameter of the control bush w as a function of the necessary flow cross sections within the valve arrangement. As shown in FIG. 2 an increase in the working surface area may be achieved by connecting thecontrol bush 18 with the working piston 2' by a connecting rod l9, which may have a comparatively small diameter. The cover 8 of the valve housing has in this case a closed base 9 through which the connecting rod passes in sealed relationship thereto by means of an opening therein provided with a seal ll. The chamber 13 formed in front of the control bush lfil is connected with the end chamber 50 via conduit 13 and thereby with the oil return conduit 33 via conduit 52 in the control slide and the connection 32. The other features of this form of control valve correspond to those of the valve shown in FIG. 1.
lclaim:
l. Hydraulic drive means comprising reciprocating working piston means and control valve means, housing means including cylindrical chamber means for the working piston means and valve chamber means for the control valve means, said valve means including control bush means slidably positioned in said valve chamber means and connected with the working piston means for concurrent reciprocating movement with the working piston means and also including control piston means positioned in said valve chamber means for reciprocating movement in a path parallel with the path of movement of the control bush means and in sliding contact therewith, said valve chamber means having inlet means for fluid under pressure, conduit means communicating with the cylindrical chamber means for delivering fluid to one side of the working piston means only and outlet means for fluid returned from said cylindrical chamber means, fluid supply means for delivering fluid under pressure to said inlet means and to the opposite side of the working piston means, said control piston means having an axially elongated medially arranged recessed portion in fluid tight engagement with said control bush means to provide an axially elongated fluid chamber in cooperation with said control bush means, said control bush means being provided with three axially spaced ports, one of said ports establishing communication between said elongated chamber and said conduit means in all positions of said drive means, a second of said ports establishing communication between said elongated chamber and said outlet means when the control piston is displaced in one direction with respect to the control bush, the third port establishing communication between said elongated chamber and said outlet means when the control piston is displaced with respect to the control bush in the opposite direction, the axial distance between said second and third ports being no less than the length of said recessed portion of the control piston means whereby only one of said lastmcntioned ports can be in communication with said elongated chamber at the same time, means to regulate the effective application of force against said working piston means so that the force of fluid applied to said one side will exceed the force of fluid applied to said opposite side, and cam means and spring return means for reciprocating said control piston means to control the rate of movement of the working piston means.
2. Hydraulic drive means as defined in claim 5, wherein said control bush means includes a cylindrical element secured to said working piston means in axial alignment therewith; and said control piston means is coaxially slidably mounted within said cylindrical element, said control piston means having an annularly reduced medial portion to provide said elongated chamber said three axially spacedports extending radially through said cylindrical element, said one of the ports being positioned axially between the second and third ports.
3. A drive as set forth in claim 2, wherein the valve housing (i6) is flange mounted on the housing of the working piston (2) in coaxial relationship therewith.
4. A drive as set forth in claim 2, wherein the control bush (18) is directly flange mounted on the working piston (2).
5. A drive as set forth in claim 2, wherein the control bush (i8) is connected to the working piston (2) by means ofa connecting rod.
6. A drive as set forth in claim 2, wherein the end of the working piston (2) facing the load has an annular shoulder the surface of which is smaller than that on the other side of the working piston, and wherein the annular chamber (12) at the end of the working piston facing the load communicates with a source of pressure medium (78) whose pressure is lower than the pressure prevailing in the opposite cylinder chamber.
7. A drive as set forth in claim 2, comprising an annular shoulder at the end of the working piston facing the load, with a surface smaller than the working surface on the other side of the working piston, and wherein the annular chamber on the side of the working piston facing the load communicates with the source of pressure medium, wherein the working pressure in the annular chamber facing the load is smaller than in the annular chamber remote from the load.
8. A drive as set forth in claim 2, wherein the control slide carries, at its end cooperating with the cam (62) a pressure plunger 54, the axial position of which is variable.
US746137A 1967-07-20 1968-07-19 High speed control valve for hydraulic drives Expired - Lifetime US3587394A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19671653566 DE1653566C3 (en) 1967-07-20 1967-07-20 Hydraulic vibration drive

Publications (1)

Publication Number Publication Date
US3587394A true US3587394A (en) 1971-06-28

Family

ID=5685136

Family Applications (1)

Application Number Title Priority Date Filing Date
US746137A Expired - Lifetime US3587394A (en) 1967-07-20 1968-07-19 High speed control valve for hydraulic drives

Country Status (3)

Country Link
US (1) US3587394A (en)
FR (1) FR1574501A (en)
GB (1) GB1227560A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4103591A (en) * 1976-08-30 1978-08-01 Reiersdal Olav L Device for a hydraulically driven percussion hammer
US4125056A (en) * 1977-01-10 1978-11-14 Fellows Corporation Spindle structure for gear shaping machine or the like
US4354421A (en) * 1980-07-18 1982-10-19 Exxon Research & Engineering Co. Energy recovery reciprocating engine
US4584452A (en) * 1983-11-03 1986-04-22 Westinghouse Electric Corp. Remotely actuated metal disintegration machining apparatus
US4759260A (en) * 1978-05-17 1988-07-26 Lew Yon S Super reliable air-spring return air cylinder
US5082208A (en) * 1989-09-29 1992-01-21 The Boeing Company System and method for controlling an aircraft flight control member
US20110271667A1 (en) * 2009-01-23 2011-11-10 Voith Patent Gmbh Hydraulic drive device having two pressure chambers and method for operating a hydraulic drive device having two pressure chambers

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4007648A1 (en) * 1990-03-10 1991-09-12 Friedhelm Dr Ing Schnuerle PNEUMATIC OR HYDRAULIC PISTON-CYLINDER UNIT WITH SERVO CONTROL

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4103591A (en) * 1976-08-30 1978-08-01 Reiersdal Olav L Device for a hydraulically driven percussion hammer
US4125056A (en) * 1977-01-10 1978-11-14 Fellows Corporation Spindle structure for gear shaping machine or the like
US4759260A (en) * 1978-05-17 1988-07-26 Lew Yon S Super reliable air-spring return air cylinder
US4354421A (en) * 1980-07-18 1982-10-19 Exxon Research & Engineering Co. Energy recovery reciprocating engine
US4584452A (en) * 1983-11-03 1986-04-22 Westinghouse Electric Corp. Remotely actuated metal disintegration machining apparatus
US5082208A (en) * 1989-09-29 1992-01-21 The Boeing Company System and method for controlling an aircraft flight control member
US20110271667A1 (en) * 2009-01-23 2011-11-10 Voith Patent Gmbh Hydraulic drive device having two pressure chambers and method for operating a hydraulic drive device having two pressure chambers
US9121419B2 (en) * 2009-01-23 2015-09-01 Voith Patent Gmbh Hydraulic drive device having two pressure chambers and method for operating a hydraulic drive device having two pressure chambers

Also Published As

Publication number Publication date
GB1227560A (en) 1971-04-07
FR1574501A (en) 1969-07-11

Similar Documents

Publication Publication Date Title
US5170691A (en) Fluid pressure amplifier
GB1420424A (en) High pressure fluid intensifier and method
GB1027184A (en) Hydraulic forming press
US2562615A (en) Hydraulic control system responsive to pressure and flow rate
US3587394A (en) High speed control valve for hydraulic drives
US2238060A (en) Fluid pressure feed and rapid traverse system of transmission of power
US3112705A (en) Two-speed hydraulic pumps
US2302922A (en) Variable delivery pilot pump control system
US10570878B2 (en) Adjusting device for a hydraulic machine, and hydraulic axial piston machine
US4443160A (en) High-pressure piston pump for liquids, preferably for water
US3945206A (en) Control system for hydraulic presses comprising a plurality of press rams
US2240898A (en) Pump control
US5237905A (en) Device for limiting a working stroke of a hydraulic cylinder
US3500865A (en) Hydraulically operable control valve
GB1319888A (en) Single or double acting pump for discharging a liquid or a viscous substance
US2648312A (en) Control operator for hydraulic pumps
GB1344798A (en) Variable displacement pump hydraulic system
US2437115A (en) Mechanically actuated hydraulic control system for pump control
US4958548A (en) Hydraulic drive mechanism
US2679854A (en) Hydraulic regulator
US3044266A (en) Hydraulic actuating method
US2770098A (en) Hydraulic servo-motors
US2416860A (en) Remote control for hydraulic systems
US2472547A (en) Servomotor mechanism
US5165875A (en) Reciprocating hydraulic pump