Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.


  1. Advanced Patent Search
Publication numberUS3585433 A
Publication typeGrant
Publication date15 Jun 1971
Filing date18 Dec 1968
Priority date29 Apr 1968
Also published asUS3588570
Publication numberUS 3585433 A, US 3585433A, US-A-3585433, US3585433 A, US3585433A
InventorsMorris Jerome R, O'keefe Terence W
Original AssigneeWestinghouse Electric Corp
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Masked photocathode with first and second metallic patterns
US 3585433 A
Abstract  available in
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent [72] Inventors [21 1 Appl. No. [22] Filed [45] Patented [7 3 Assignee Terence W. O'Keefe Pittsburgh;

Jerome R. Morris, Trafiord, both of, Pa.

[54] MASKED PHOTOCATHODE WITH FIRST AND SECOND METALLIC PATTERNS 3,254,253 5/1966 Davis et al. 313/102 3,310,701 3/1967 Heimann 313/94 3,313,971 4/1967 Nagy 313/94X 3,368,919 2/1968 Casale etal..... 117/212 X 3,443,915 5/1969 Wood et al. 29/194 X Primary Examiner-John Kominski Assistant Examiner Palmer C. Demeo Attorneys-F. Shapoe, C. L. Menzemer and G. H. Telfer ABSTRACT: A masked photocathode is provided having on a radiation transmissive support a mask pattern of a material that absorbs or reflects sensitizing radiation, particularly in the ultraviolet. In one form, the mask is formed in a process that includes at least partial oxidation of a metal layer pattern. Alternatively, a mask pattern that blocks all radiation with high reflectivity may be formed by employing a metal with a subsequent insulating layer, such as of an oxide of the metal or a separately deposited insulator, for protection from the photocathode. In another form the photoemissive layer may be deposited directly on the transmissive support and have on its surface a pattern of organic material to provide the mask for electrons on the target side of the cathode as well as to prevent any radiation reflected from the target from impinging on areas from which photoemission is not desired.

MASKED PHOTOCATIIODE WITH FIRST AND SECOND METALLIC PATTERNS ACKNOWLEDGEMENT OF GOVERNMENT CONTRACT The invention herein described was made in the course of or under a contract with the Department ofthe Air Force.

BACKGROUND OF THE INVENTION 1. Field of the Invention This invention is related to masked photocathodes, particularly those intended for exposure to an air environment, useful in the fabrication of microelectronic components.

2. Description of the Prior Art In copending application Ser. No. 724,839 filed Apr. 29, 1968, by T. W. O'Keeffe and assigned to the assignee of the present invention, there were disclosed techniques for the fabrication of masked photocathodes operable in an air environment and employing a layer of material selectively absorbing ultraviolet radiation such as a material containing titanium ions. In one form the mask material was deposited on the surface of a transmissive substrate that had been etched in the desired mask pattern so that upon subsequent polishing a planar surface with an embedded mask was achieved. It is now considered preferable to avoid the polishing operation because such a step tends to produce scratches in the transmissive substrate, such as quartz, and also in the mask layer unless considerable care is taken. Scratches in either portion can produce flaws in the projected image. Minor scratches occurring in the surface of the polished quartz starting material are also accentuated in the etching step.

Mask layers that selectively absorb ultraviolet may transmit other waveband radiation that can impinge the target and cause thermal problems in it or in the photocathode.

An additional problem in some cases with a mask on the input side of the photoemitter is that the photoemissive layer may not utilize all the ultraviolet radiation impinging thereon with the result that some passes through and impinges on.the target. Such radiation may be reflected from the target and returned to the photoemitter with all of the photoemissive area exposed so that spurious emission results.

SUMMARY OF THE INVENTION This invention has among its purposes and objects the provision of improved masked air stable photocathodes and improved methods for their fabrication, to avoid or minimize the above mentioned problems.

By improvement over the technique of the above copending application a layer of metal, such as titanium, chromium, or

aluminum, is deposited on the flat surface of a transmissive support, formed in the desired mask pattern and then at least partially oxidized or otherwise protected by an insulating layer so that upon subsequent deposition of a photoemissive layer it is protected in the event the photoemissive layer is removed or replaced.

In another form of the invention, the photoemissive layer is applied directly to the radiation transmissive support and the mask is provided by elements of electron opaque organic material on the target side of the photoemitter to avoid effects of reflected radiation.

BRIEF DESCRIPTION OF THE DRAWING DESCRIPTION OF THE PREFERRED EMBODIMENTS In FIG. 1 is a radiation transmissive support 10, suitably of fused quartz. The support 10 has a planar surface 11 on which is a continuous metal layer 12. The metal layer may be of any of a number of metals, such as titanium, aluminum, and chromium, selected in accordance with properties as will be described hereinafter.

In FIG. 2, the structure is shown after the metal layer 12 has been processed into a first metallic pattern 12A, such as by conventional photolithographic techniques.

In FIG. 3, the metal pattern 12A has disposed over the surface of each element a layer 14 of a protective insulator which has been formed by chemical reaction with the material of the first metallic pattern, such as by oxidation. The insulating layer 14 is preferably one that selectively absorbs the radiation to which the photocathode is sensitive, particularly ultraviolet radiation. The reason for this is because the oxidation, or other chemical reaction, is consequently noncritical and all of the metal may be converted. For this purpose it is preferable to form the metallic pattern of titanium, the oxide of which contains titanium ions that selectively absorb ultraviolet radiation. However, it may be preferable in some cases to retain a portion of the first metallic pattern 12A to reflect unabsorbed radiation, such as the visible band, so that it does not pass through the structure and produce adverse thermal effects in the target.

Preparation of the structure of FIG. 3 may be by first lightly oxidizing the surface of the continuous layer 12 of FIG. 1 before forming the pattern and then partially oxidizing the remaining titanium at about 400C, for about 1 to 3 hours for a titanium layer about 400 angstroms thick. If the titanium is completely oxidized the resulting oxide pattern should be about 700 angstroms or more thick.

In FIG. 4 the structure has applied over the protected metallic pattern layer a continuous layer 16 of a photoemitter. In the context of this invention it is preferred that the photocathode be of an air stable material so it may be used in demountable systems. See copending application Ser. No. 753,373, filed Aug. 19, 1968, now abandoned by T.W. O- Keeffe and R.M. Handy and assigned to the assignee of this invention as Well as the above mentioned copendin g application Ser. No. 724,839. For this purpose the photocathode is at least one number selected from the group consisting of palladium, platinum, barium, gold, aluminum, copper and cesium iodide.

FIG. 4 thus illustrates a completed masked photocathode not only masked against radiation in those areas where it is undesired to produce emission from the photocathode but also providing a metallic reflective surface from which other radiation such as visible radiation would be reflected to avoid heat problems in the target. I

The structure of FIG. 2 may alternatively be processed in accordance with the sequence illustrated in FIGS. 5 and 6.

In FIG. 5 there has been applied to the surface a continuous layer 15 of an insulating protecting material. Since this layer is continuous it is necessary that it be radiation transmissive to the sensitizing radiation. For this purpose it may be of quartz and deposited by known techniques such as rf sputtering.

In FIG. 6 the structure is completed by the deposition of a photocathode layer 16. For some purposes the sequence illustrated in FIGS. 5 and 6 may be preferred particularly in that there is a wider choice in selecting the metal. It may, for example, be of aluminum which is more highly reflective than titanium and further minimizes the adverse heat effect previously discussed.

The photocathode in accordance with this invention may have a mask pattern of any geometrical configuration. Forms of the invention illustrated in FIGS. 4 and 6 are suitable where an electron image is to be made that is to be applied directly to a workpiece, such as an electron resist coated semiconductor wafer. In certain instances it is desired that the mask produce a plurality of essentially point sources of electrons that are then subjected to electrostatic and/or magnetic deflection techniques to scan patterns in one or more workpieces.

Reference should be made to copending application Ser. No. 784,551, filed Dec. 18, 1968, now Pat. No. 3,519,873, by T.W. OKeeffe and assigned to the assignee of the present invention with respect to the utilization of such arrays of point electron sources.

FIG. 7 to 9 illustrate a technique of making such an array. In FIG. 7 the top surface of a substrate 10 is illustrated after there has been formed thereon a first metallic pattern 12A that comprises a plurality of parallel stripes that leave openings 13 therebetween of substantially less width than the width of the metallic stripes.

In FIG. 8 the first metallic pattern 12A has been protected by an insulating protective coating 15 substantially as in FIG. 5; the technique illustrated in FIG. 3 may also be employed. Subsequent thereto has been deposited a second metallic layer formed into a pattern 22, further illustrated in FIG. 9, that also comprises a plurality of parallel metallic stripes with openings 23 therebetween of substantially less width than the metallic stripes, the stripes being perpendicular to those of the first pattern 12A. An additional protective insulator layer 17 and a photocathode layer 16 are then deposited continuously as shown in FIG. 10.

The two metallic patterns 12A and 22 therefore provide openings 20, FIG. 9, that can be of quite small dimensions depending on the resolution with which each metallic pattern may be obtained. This form of the invention is suitable where there is available a source of electrons in a line to expose resist used in making patterns, 12A and 22. Such an electron source is often more readily obtained and precisely controlled than a point source.

FIG. 11 and 12 illustrate a form of the invention directed to an additional problem. If a masked photocathode in the form of FIG. 4 or 6 has only a small area that is to be blocked then the unused ultraviolet radiation passing through to the target could produce considerable back scattering that would produce emission from all portions of the photocathode. Therefore in these instances it is desirable to employ a readily formed electron mask pattern on the target side of the photocathode material.

In FIG. II the radiation transmissive support 10 has directly thereon a continuous layer 16 of photocathode material and a subsequent layer 32 from which the mask is to be formed. The

layer 32 is of an organic material that may be selectively polymerized or made soluble (as by light or electron bombardment) and developed in a mask pattern 32A as illustrated in FIG. 11. Such a material should block electron emission from cathode l6. Suitable materials include members of the group consisting of copolymers of acrylic and methacrylic acids and esters. Such material may be formed either with or without chemical modification involving the introduction of polar side groups in the main noncross linked polymeric chain, although other organic materials including hydrocarbon pump oils have been used.

Photocathodes in accordance with this invention are particularly for use with a high intensity broadband light source such as a mercury vapor lamp for fast formation of an electron image at the cathode. FIG. 13 illustrated the general arrangement oflight source 40, masked photocathode 42 (of the form shown in FIG. 6), and an electron resist coated workpiece 44. The workpiece 44 may include an oxidized wafer 46 of semiconductor material having on the surface toward the cathode a layer 48 of organic resist material. Further description of the use of photocathodes in accordance with this invention may be found by reference to the above mentioned copending application Ser. No. 753,373.

We claim as our invention:

1. A masked photocathode comprising:

a radiation transmissive support member;

a first metallic pattern on said support member;

a first insulating protective layer over at least said first metallic pattern;

a second metallic pattern coinciding only in part with said first metallic pattern on said first insulating protective a s c r id insulating protective layer over at least said second metallic pattern; and

a continuous layer of photocathode material over said insulating protective layer.

2. The subject matter or claim 1 wherein:

said first and second metallic patterns each comprise a plurality of parallel metallic stripes with stripelike openings therebetween of substantially less width than that of said parallel metallic stripes, said first and second metallic patterns being mutually perpendicular.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2613330 *4 Nov 19507 Oct 1952Hartford Nat Bank & Trust CoCathode-ray image converter tube
US2717971 *30 Mar 194913 Sep 1955Emanuel Sheldon EdwardDevice for storage of images of invisible radiation
US2977252 *20 Jul 195628 Mar 1961Schlumberger Well Surv CorpPhotosurface and method of making same
US3048728 *31 Aug 19597 Aug 1962English Electric Valve Co LtdTelevision and like camera tubes
US3254253 *11 Dec 196131 May 1966Emi LtdPhoto-electrically sensitive devices
US3310701 *24 Dec 196221 Mar 1967Forschungslaboratorium Prof DrPhotocathode for photoemissive cells
US3313971 *14 May 196211 Apr 1967Westinghouse Electric CorpPhotosensitive element stable in air
US3368919 *29 Jul 196413 Feb 1968Sylvania Electric ProdComposite protective coat for thin film devices
US3443915 *26 Mar 196513 May 1969Westinghouse Electric CorpHigh resolution patterns for optical masks and methods for their fabrication
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3867662 *15 Oct 197318 Feb 1975Rca CorpGrating tuned photoemitter
US3898498 *14 Jan 19745 Aug 1975Philips CorpChannel multiplier having non-reflective amorphous aluminum layer obturating channel entrances on side facing photocathode
US4274028 *13 Aug 197916 Jun 1981W. H. Brady CompanyUltraviolet light generation
US4460831 *22 Aug 198317 Jul 1984Thermo Electron CorporationLaser stimulated high current density photoelectron generator and method of manufacture
US4525711 *3 Sep 198225 Jun 1985Gery Alan RThree-dimensional fiber optic display
US6630786 *30 Mar 20017 Oct 2003Candescent Technologies CorporationLight-emitting device having light-reflective layer formed with, or/and adjacent to, material that enhances device performance
US7315115 *27 Oct 20001 Jan 2008Canon Kabushiki KaishaLight-emitting and electron-emitting devices having getter regions
DE3235064A1 *22 Sep 198222 Mar 1984Siemens AgTunnelkathodenmaske fuer die elektronenlithografie, verfahren zu ihrer herstellung und verfahren zu ihrem betrieb
U.S. Classification313/542, 313/346.00R, 428/105
International ClassificationH01J1/34, H01J40/06, H01J40/00, H01J1/02
Cooperative ClassificationH01J1/34, H01J40/06, H01J2201/3425
European ClassificationH01J1/34, H01J40/06