Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3557780 A
Publication typeGrant
Publication date26 Jan 1971
Filing date16 Apr 1968
Priority date20 Apr 1967
Also published asDE1766209A1, DE1766209B2
Publication numberUS 3557780 A, US 3557780A, US-A-3557780, US3557780 A, US3557780A
InventorsMasaaki Sato
Original AssigneeOlympus Optical Co
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Mechanism for controlling flexure of endoscope
US 3557780 A
Abstract  available in
Images(7)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent [72] Inventor Masaaki Sato Ilachioji-shi, Japan [2] Appl. No. 721,833 [22] Filed Apr. 16, 1968 [45] Patented Jan. 26, 1971 [73] Assignee Olympus Optical Co., Ltd.

Tokyo, Japan a corporation of Japan [32] Priority Apr. 20, 1967, Feb. 26, 1968, Mar. 11,

1968 1 J p [31] 42/24827/1967, 43/ 11793/ 1968 and [54] MECHANISM FOR CONTROLLING FLEXURE OF ENDOSCOPE 10 Claims, 39 Drawing Figs.

[52] U.S. Cl 128/4, 356/241 [51] Int. Cl A6lb H00 [50] Field of Search. 128/4, 6,5, 7, 8, 9; 138/120; 356/241, 259(Inquired), 256(Inquired); 95/1 1, 281(Inquired) [56] References Cited UNITED STATES PATENTS 3,071,161 1/1963 Ulrich 138/120 3,091,235 5/1963 Richards 128/6 GIG 3,162,214 12/1964 Bazinet, Jr 138/120 3,190,286 6/1965 Stokes 128/6 3,253,524 5/1966 Ashizawa et a1. 95/11 FOREIGN PATENTS 880,639 10/1961 Great Britain 128/4 Primary Examiner-Adele M. Eager Assistant Examiner-G. F. Dunne Attorney-Kurt Kelman ABSTRACT: Mechanism for controlling flexture of an endoscope which comprises at least two flexible portions each including a plurality of tubular short articulated segments having their faces tapered to fonn diametrically extending pivot ridges and flexibly connected to and in alignment with each other by means of wires extending through said ridges with the ridge of one segment bearing against the opposite ridge of the next segment, at least two sets of tension wires extending through said segments to a control portion of the endoscope through a connecting portion connecting said controllable flexible portion to said control portion so as to be connected to an operating mechanism therein, the forward ends of each of said sets of tension wires being secured to the forward ends of the respective flexible portions thereby permitting each of the flexible portions to be bent by activating the set of tension wires secured thereto by means of said operating mechanism separately from other flexible portion(s).

Brake means are provided to releasably maintain the flexible portions in their controlled position.

, PATENTED JAN-26 I971 SHEET 1 BF 7 IN WIN 1'0 R.

H AS An K sAT MECHANISM FOR CONTROLLING FLEXURE OF ENDOSCOPE BACKGROUND OF THE INVENTION SUMMARY OF THE INVENTION The present invention provides a novel and useful control mechanism for bending the controllable flexible portion of an endoscope in which at least two groups are provided in said flexible portion, each of which groups can be bentseparately from the other group(s) in desired direction by selectively pulling wire means connected to the group in question by operatingcontrol lever means in the control portion of the endoscope to which said wire means endoscope connecting said flexible portion to the control portion.

The positions of the lever means are adapted to correspond to the bent state of the controllable flexible portion thereby permitting the bent state of the flexible portion to be exactly and conveniently detected from the exterior by the controlled position of the lever means when the endoscope is used for inspection.

Brake means are provided in the control mechanism to positively maintain the bent state of the flexible portion given by the operation of the control mechanism thereby preventing the bent state of the flexible portion from being unexpectedly changed by the external force.

BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1 and 2 are schematic general views of two kinds of endoscopes showing the manners how the flexible portions are bent, respectively;

FIG. 3 is a schematic view showing the principle of the control mechanism for bending the flexible portion of one embodiment of the endoscope constructed in accordance with the present invention;

FIG. 4 is a fragmentary cross-sectional view taken along line X-X in FIG. 3;

FIG. 5A is a cross-sectional view taken along line Y-Y in FIG. 3;

FIG. 5B is a cross-sectional view taken along line Z-Z in FIG. 3;

FIGS. 6 to 14 are general views of the endoscope provided with the control mechanism shown in FIGS. 3 and 4, respectively, showing the manner how the flexible portion of the endoscope is bent in accordance with the operation of the control knobs in the control mechanism;

FIG. 15 is a fragmentary cross-sectional view similar to FIG. 4 but showing the portion of the control mechanism provided with brake means constructed in accordance with the present invention;

FIG. 16 is an exploded perspective view showing the main parts of an embodiment of the brake means shown in FIG. 15;-

FIG. 17A is a schematic general viewsimilar to FIG. 3 but showing the principle of the control mechanism for bending the flexible portion of the second embodiment of the endoscope constructed in accordance withthe present invention; I

FIG. 17B is a fragmentary view showing the modification of the actuating means using drum means in place of pinion-rack means employed in the actuatingmeans shown in FIG. 17A;

FIG. 18 is a cross-sectional view taken along line Y-Y in FIG. 17A

FIG. 19 is a cross-sectional view taken along line Z-Z in FIG. 17A;

FIG. 20 is a fragmentary cross-sectional view taken along line XX in FIG. 17A showing the control mechanism;

FIG. 2] is a view similar to FIG. 20 but showing a modification of the control mechanism provided with brake means;

FIG. 22 is a fragmentary view showing the main parts of brake means in the control mechanism of FIG. 21;

FIGS. 23 and 24 are general views of the endoscope provided with the control mechanism as shown in FIG. 20 or 22, respectively. showing the manners how the flexible portion of the endoscope is bent in accordance with the operation of the control knobs in the control mechanism;

FIG. 25 is a fragmentary view partly in cross section of another embodiment of the endoscope constructed in accordance with the present invention;

FIG. 26 is a fragmentary cross sectional view showing the flexible portion shown in FIG. 25;

FIG. 27 is a side view of the portion shown in FIG. 26;

FIG. 28 is a front view of the tubular segment constituting the flexible portion shown in FIG. 27;

FIG. 29 is a front view of the intermediate ring employed in the endoscope shown in FIG. 25; and

FIGS. 30 to 37 are fragmentary views of the flexible portion of the endoscope shown in FIG. 25, respectively, showing the manners how the flexible portion of the endoscope is bent in accordance with the operation of the control mechanism of the endoscope shown in FIG. 25.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT Prior to the description of the present invention, operation of the prior art endoscopes will be described briefly for the better understanding of the present invention.

FIG. I shows one type of the prior art endoscope in which camera portion 1 is connected to one end of flexible portion 3 by articulated portion 2. The other end of flexible portion 3 is connected to control housing 4 provided with control knob 5 which actuates said articulated portion 2 through wires extending through flexible portion 3 so that camera portion I is bent at an angle with respect to the axis of the end of flexible portion 3 to which camera portion 1 is connected through articulated' portion 2.

In order to facilitate the inspection by using the endoscope, flexible portion 3'can be rotated about its axis together with control housing 4 relative to grip means rotatably mounted on control housing 4. The grip means is provided with angular graduation cooperating withthe index provided on control housing 4 so that the degree of rotation of flexible portion 3 and hence the direction of camera portion 1 can be detected by means of the graduation and the index.

FIG. 2 shows another type of the prior art endoscope, in which controllable flexible portion 6 is employed in place of articulatedportion shown in FIG. I.

In the prior art endoscopes as shown in FIGS. 1 and 2, it is difiicult to exactly detect the direction of the camera portion and the degree of the bending thereof during the inspection using the endoscope, because the inspection is usually carried out in the dim place.

Now various embodiments of the present invention will be described in detail with reference to FIGS. 3--37.

Referring to FIG. 3 showing the principle of the control mechanism for bending the controllable flexible portion of the endoscope constructed in accordance with the present invention, camera portion I is connected to one end of first controllable flexible portion II, and the other end of said first controllable flexible portion II is connected to one end of second controllable flexible portion III, the other end of said second controllable flexible portion'III being in turn connected to one end of flexible elongated connecting portion IV yieldingly bendable in accordancewith the configuration of the path leading to the hollow space in the living body to be inspected.

The other end of said flexible elongated connecting portion IV is connected to control portion V, in which the control mechanism for actuating said first and second flexible portions II, III is provided.

As shown in FIGS. 3 and 5A, said first flexible portion II comprises a plurality of. relatively short articulated tubular segments 8 all of which are of identical construction. As shown in FIG. 3, both faces of each of segments 8 are tapered to form diametrically extending pivot ridges N-N, respectively. As shown in FIGS. 3 and 58, said second flexible portion Ill comprises a plurality of relatively short articulated tubular segments 8' substantially similar to segments 8. All of said segments 8' are of identical construction. Hollow space 9 is provided in each of said segments 8, 8', through which the film loaded in camera portion I and lead wires for energizing the lamp in camera portion I or a light conducting fiber optical system and other elements extend. As shown in FIGS. 5A and 5B, small holes 10, are provided at positions in diametrically extending pivot ridges N-N of each of segments 8, 8. Wire 11 extends through each of said holes 10, one end of said wire 11 being fixed to forward end segment 8a one face of which is tapered to form a diametrically extending pivot ridge similar to that of segment 8, said segment 8a being connected to camera portion I, while the other end of said wire 1 l is fixed to rear end segment 8'c which is similar to segment 80 and connected to the forward end of flexible connecting portion IV, so that segments 8, 8' are urged toward each other and aligned with each other by wires 11 with said ridge of one segment bearing against the opposite ridge of the next segment thereby permitting each of segments 8, 8' to be relatively pivoted to the next segment about diametrically extending pivot ridge N-N. Small holes 12, 12' are provided in each of segments 8 adjacent to the center line normal to ridge N-N as shown in FIG. 5A, and small holes 12, 12, 14,14 are provided in each of segments 8 adjacent to the center line normal to ridge N-N as shown in FIG. 5B, the positions of holes 12, 12 in each of segments 8' corresponding to those of holes 12, 12' in each of segments 8, respectively. Wires 13, 13' extend through holes 12 and 12' in each of segments 8, 8, respectively, one end of each of wires 13, 13' being fixed to segment 80, while the other end of each of wires 13, 13 extends through flexible connecting portion IV and is connected to the periphery of control drum 16 provided in control portion V, which is operated by a control lever described hereinafter. Wires and 15' extend through holes 14, 14' in each of segments 8, respectively, one end of each of wires .15, 15 being fixed to forward end segment 8'b similar in construction to segment 8' and located at the forward end of second flexible portion III and connected to the rear end of first flexible portion II, while the other end of each of wires 15, 15' extends through flexible connecting portion IV and connected to the periphery of another control drum 17 which is provided in control portion V coaxially with previously described-control drum 16 and operated by another control lever as described hereinafter.

As shown in FIG. 4, drum 17 is fixedly secured to shaft 19 journaled in bearings 18 provided in the housing of control portion V, disc 20 and second control lever 21 being fixedly secured to said shaft 19. Drum 16 isrotatably supported by shaft 19 and gear 22 is integrally fixed to drum 16. Said gear 22 meshes with intermediate gear 24 rotatably fitted on shah 23 which is fixed to disc 20. Said intermediate gear 24 also meshes with gear 25 fixedly secured to shaft 26 which is rotatably journaled in a bearing secured to disc 20. First control lever 27 is fixedly secured to the outer end of shaft 26. A stationary lever 28 is secured to cover 29 of control portion V as shown in FIG. 4, said stationary lever 28 serving to indicate the relative positions of said control levers 21, 27 with respect I to control portion V.

The positions of levers 21 and 27 are so determined that they are aligned with stationary lever 28 when camera portion I, first flexible portion II and second flexible portion III are aligned as shown in FIG. 6.

The operation of the endoscope as described above is as follows. Starting from the condition of the endoscope shown in FIG. 6, when both levers 21, 27 are simultaneously rotated in the anticlockwise direction as shown in FIG. 10, drum 17 is rotated by the actuation of second lever 21 so as to pull wire 15' and loosen wire 15 thereby causing second flexible portion III to be bent as shown in FIG. 3. In this case, drum 16 also rotates together with drum 17 by virtue of the engagement of gear 22 with gear 25 through intermediate gear 24, gear 25 being kept stationary relative to lever 21, so that wire 13 is pulled to the same extent as wire 15' while wire 13 is loosened, however, the positions of wires 13, 13' relative to segment 8'b do not change, because the bending of second flexible portion III absorbs the movement of wires I3, 13' within the range of second flexible portion III. Therefore, first flexible portion II is not bent. As shown in FIG. 10, the relative positions of control levers 21, 27 with respect to stationary lever 28 exactly corresponds to the bent state of first and second flexible portions II, III. When first control lever 27 is further rotated anticlockwise from the condition shown in FIG. 10 to the condition shown in FIG. 12, only drum I6 is further rotated by the engagement of gear 22 with gear 25 through gear 24, so that wire 13' is further pulled and wire 13 is loosened thereby causing first flexible portion II to be bent toward the right in FIG. 3 to assume the condition shown in FIG. 12. In this case, relative positions of levers 21, 27 with respect to stationary lever 28 also correspond to the bent state of first and second flexible portions II, III.

In the similar way, first and second flexible portions II, III can be selectively bent as desired as shown in FIG. 7 to 9, 11, 13 and 14 by appropriately operating either or both levers 21, 27, the relative positions of levers 21, 27, 28 indicating the bent state of the flexible portions, respectively.

In order to prevent the control of flexible portions II, III from being disturbed by the external force applied inadvertently by the path leading to the hollow space in the living body through which the endoscope is inserted, it is preferable to provide friction means or click stop means between disc 20 and lever 27, alternatively, wonn gear means may be employed between levers 21, 27 and drums 17, 16, respectively.

It is also evident that the present invention described above can be incorporated in the flexible portion using articulated portions as shown in FIG. 1 which can bend the flexible portions at a plurality of points.

It is also evident that drums l6, 17 can be replaced by pinion-rack means which can pull or loosen wires in the similar way as described hereinbelow.

FIG. 15 shows a modification of the control mechanism shown in FIGS. 3 and 4. The mechanism shown in FIG. 15 is provided with brake means in order to positively maintain the controllable flexible portions in their controlled states. The mechanism shown in FIG. 15 is similar to that shown in FIG. 4 except that brakedrum 30 having annular V-shaped groove 30 in its periphery and secured to bearing plate 18 is adapted to rotatably support shaft 19 and that brake drum 31 having annular V-shaped groove 31 in its periphery is integrally secured to gear 25, said brakedrums 30 and 31 being adapted to be releasably clamped between a pair of brakeshoes 32, 32' each having mating surfaces 32a, 32a engageable with V- shaped grooves 30' 31' of said brakedrums 30 and 31. Said pair of brake drums 30, 31 are relatively movably assembled by a pair of bolts and nuts 33, 33 as shown in FIG. 16. Springs 34 are provided on bolts 33 between nuts 33' and brake shoe 32' so as to normally urge the pair of brake shoes 32, 32' toward each other so that brakedrums 30, 31 are tightly clamped therebetween when braking action is desired to be applied to the shoes. Shaft 36 extends rotatably through control lever 21 and disc 28, the outer end of said shaft 36 being provided with knob 37 while brake releasing piece 35 is secured to the inner end of shaft 36. Piece 35 has an elongated configuration in cross section inthe plane normal to the axis of shaft 36 so that when shaft 36 is rotated by knob 37, brakeshoes 32, 32' are moved between a position in which shoes 32, 32' are urged toward each other by the action of spring 34 so that the braking action is appliedto brakedrums 30, 31 and a position in which brakedrums 30, 31 are released from brakeshoes 32, 32.

In operation. when first control lever 27 is rotated, gear 22 and hence drum 16 are rotated through gear 25 fixed to lever 27 and intermediate gear 24 so that first flexible portion II is bent. Drum 16 is positively held in its controlled position by virtue of the braking action applied to brakedrum 31 fixed to gear 25, thereby permitting first flexible portion II to be maintained in its controlled state. When second control lever 21 is rotated, gear 25 rotates about the axis of shaft 19. together with the pair of brakeshoes 32, 32 while gear 25 is prevented from rotating about its axis relative to disc 20 by virtue of braking action of shoes 32, 32'. Lever 21 is held in its controlled position by virtue of the braking action acting between brakedrum 30 fixed to bearing plate 18 and brakeshoes 32, 32' rotatable about the axis of shafi 19 together with second control lever 21. Therefore, the mechanism shown in FIG. permits the controllable flexible portions of the endoscope to be positively held in their controlled state. When it is desired to release the brake means, it is only necessary that to rotate knob 37 so as to move brakeshoes 32, 32' away from brakedrums 30, 31.

FIGS. 17A to show the second embodiment of the endoscope constructed in accordance with the present invention. The endoscope shown in FIG. 17A is similar to that shown in FIG. 3 except that pinion 55 and a pair of racks 57, 57' meshing with pinion 55 for actuating wires 48, 48' and pinion 54 and a pair of racks 56, 56' meshing with pinion 54 for actuating wires 46, 46 are provided in place of drums 16, 17 of FIG. 3, and that closely wound helical springs 60, 60 extend from abutment portion 53 of control portion V to rear end segment 8d of first flexible portion 11 through which wires 48 and 48' extend as shown in FIGS. 17A, 18 and 19, respectively, and closely wound helical springs 59, 59 extend between said abutment portion 53 and rear end segment 8c of second flexible portion III through which wires 46, 46 extend as shown in FIGS. 17A and 19, respectively.

Springs 60, 60' extend through flexible connecting portion IV with sufficient surplus length so as to permit bending of portion IV without requiring any relative movement between springs 60, 60 and wires 48, 48' passing therethrough. Also, springs 59, 59' extend through flexible connecting portion IV and second controllable flexible portion III with sufiicient surplus length so as to permit bending of portions III, IV without requiring any relative movement between springs 59, 59 46 passing therethrough. It is evident that springs 60, 60'; 59, 59" must be of noncompressive nature so as to transmit the relative movement of the wires to the springs given at the ends adjacent to abutment portion 53 to the opposite ends thereof. In the region of connecting portion IV, it is preferred to employ metallic pipes in place of closely wound helical springs. The forward end of each of wires 48, 48, 46, 46' is fixed to respective segments 8'12, 80 in the same way as shown in FIG. 3.

It must be noted that, in the construction shown in FIG. 3, when second flexible portion III is to be bent, wires 13, 15 (or 13, 15) must be simultaneously pulled while only wire 13 (or 13') must be pulled in order to bend first flexible portion II, whereas, in the construction shown in FIG. 17A, since closely wound helical springs are provided, it is only necessary to pull only wire 48 (or 48') in order to bend second flexible portion III while first flexible portion II can be bent by pulling only wire 46 (or 46').

In operation, pinion 55 or 54 is selectively rotated so as to bend either of first or second flexible portion II or III, while both pinions 55 and 54 are rotated in desired directions so as to bend both first and second flexible portions II, III as shown in FIGS. 23 and 24.

FIG. 178 shows a modification of the control mechanism shown in FIG. 17A. The control mechanism shown in FIG. 178 comprises drum 55 and 54' for actuating wires 48 48,

46, 46', respectively, in place of pinion-rack means 55, 57, 57, 54, 56, 56' shown in FIG. 17A. The operation of the control mechanism of FIG. 17B is similar to that shown in FIG. 17A.

FIG. 20 shows the detail of the control mechanism to be used in the endoscope shown in FIG. 17A. The control mechanism shown in FIG. 20 is similar to that shown in FIG. 4 except that drums 16, 17 for pulling wires shown in FIG. 4 are replaced with pinions 55, 54 and pairs of racks 57, 57, 56, 56' meshing with pinions 55, 54, respectively, as shown in FIG. 20, pinion 54 being fixedly mounted on separate shaft 58 rotatably mounted in bearing plate 18 to which shaft 58 gear 61 is secured. Gear 61 meshes with intermediate gear 64 rotatably fitted on shaft 69 to which second lever 21, disc 20 and pinion 55 are secured. Intermediate gear 64 meshes with gear 62 fixed to shaft 26 to which first lever 27 is fixed. When first lever 27 is rotated, gear 62, intermediate gear 64 and gear 61 are rotated so that pinion 54 actuates racks 56, 56' thereby pulling wire 46 or 46' so as to bend first flexible portion II in desired direction. When second lever 21 is rotated, pinion 55 actuates racks 57, 57 thereby pulling wire 48 or 48' so as to bend second flexible portion III in desired direction. In this case the rotation of lever 21 causes gear 62 to be rotated about the axis of intermediate gear 64 thereby rotating intermediate gear 64 together with shaft 69. However, since the ratio of gear 61 to intermediate gear 64 is made sufficiently small in the present invention, the bending of first flexible portion [I resulting from the rotation of gear 62 about intermediate gear 64 when only second flexible portion III is to be bent can be neglected.

FIGS. 21 and 22 show a modification of the control mechanism shown in FIG. 20.

The control mechanism shownin FIG. 21 is similar to that shown in FIG. 20 except that brake means similar to those shown in FIG. 15 are added. In the brake means shown in FIGS. 21 and 22, axially shiftable shaft 36' having knob 37 at its outer end and tapered end portion 35 at its inner end is provided in place of rotatable shaft 36 of FIG. 15 in order to move shoes 32, 32' part from each other by inserting tapered end portion 35' between shoes 32, 32' by pushing shaft 36 downwardly when it is desired to release the brake means. The operation of the control mechanism shown in FIGS. 21 and 22 is similar to that shown in FIGS. 15 and 20.

FIGS. 23 and 24 show some of the manners how the first and second flexible portions are bent. It is evident from FIGS. 23 and 24 that the relative positions of levers 21, 27 indicate the bent state of the first and second flexible portions determined by the operation of the levers.

FIG. 25 shows another embodiment of the present invention. In FIG. 25, casing 101 of head I housing therein the inspecting or photographing mechanism and other means is connected to the forward end of controllable flexible portion II, the other end of which is connected to the forward end of elongated flexible connecting portion In by means of connecting ring 105, the other end of said connecting portion III being in turn connected to control housing of the endoscope not shown. Sheath 102 covers watertightly portions II' and III. Controllable flexible portion 11' comprises two groups II'a, IIb as shown in FIG. 26. Each of groups II'a, IIb is constituted by a plurality of relatively short tubular segments 103 similar in construction and arrangement to those as shown in FIG. 3. A hollow space 106 is provided in each of segments 103 through which a fiber optical system or photographic film and other elements employed in the endoscope is adapted to pass. Both faces of each of segments 103 are tapered to form diametrically extending pivot ridges 103a, respectively, in the same manner as shown in FIG. 3. Diametrically opposed two small holes 107 are provided at positions where ridges 103a are formed, througheach of which wire 112 extends, one end of which is secured to ring while the other end is secured to casing 101, thereby flexibly urging segments 103 toward each other and aligning segments 103 with each other. Further, each of segments 103 is provided with small holes or cut out portions 108a and 1108b in the center line normal to said ridges 103a. Intermediate ring 104 is interposed between groups lla and llb as shown in FIG. 26. One face of ring 104 is tapered to form a diametrically extending pivot ridge 104a, and the other face may be flat or tapered to form a diametrically extending ridge. Ring 104 is provided with holes 109, 109 similar to holes 107 in segment 103 and holes or cutout portions 110a, 1 10b similar to holes or cutout portions 108a of segment 103. Further holes 111a, ll1b are provided in ring 104 at the positions outside of said holes or cutout portions llllla, 110b, respectively, as shown. Small holes llllla and 110'b are provided in the forward and end face of ring 104, the positions of said holes 110a, llltl'b corresponding to said holes or cutout portions 110a, 110b, respectively. The forward end face of connecting ring 105 has the same configuration as the forward end face of intermediate ring 104. Tension wires 113a and 11311 extend through holes 108a, Nb of each of segments 103, holes 11011, 11% of connecting ring 104, respectively. One end of each of wires 113a, l1l3b is secured to casing 101, while the other end of each of wires 113a, 113!) extends through connecting portions Ill and is connected to a winding mechanism provided in the control housing not shown. Closely wound helical spring 1141 is provided around each of wires 113a, 113b, one end of each of springs 114 abutting against ring 104 as shown in FIG. 26 while the other end of each of springs 11 14 abuts against the abutment surface provided in the control housing. One ends of tension wires 115a, 1115b are secured to holes 111a, 111b, respectively, of intermediate ring 104 as shown in FIG. 26. Wires 115a, 1l5b extend through group llb of controllable flexible portion ll and flexible connecting portion Ill and the other ends of wires 1115a, 1115b are connected to another winding mechanism in the control housing. Closely wound helical springs 116 are provided around wires 1150, 115b, respectively. One end of each of springs 116 abuts against connecting ring 105 as shown in FIG. 26, while the other end of each of springs 116 abuts against the abutment surface provided in the control housing. Closely wound helical springs 114i and wires 113a, 1113b passing therethrough extend through group llb of flexible portion l1 and flexible connecting portion ill with sufficient surplus length so as to permit group llb and connecting portion III to be bent without requiring any relative move ment between springs 114 and wires 113a, 1l3b passing therethrough so that the relative movement of wires 113a, 11l3b with respect to springs 1114 given at the side of control housing by the operation of the winding mechanism can be exactly transmitted to the other sides of wires remote from the control housing. Similarly, springs 116 and wires 115a, 1115b extend through connecting portion III with sufficient surplus length so that connecting portion Ill can be bent without requiring any relative movement of wires 1115a, 11512 with respect to springs 1 16. 1

In operation, group ll'a of controllable flexible portion II can be bent in desired direction as shown in FIG. 34 or 35 by operating the winding mechanism for pulling wires 113a or 113k. When it is desired to bend only group llb of flexible portion 11' as shown in FIGS. 36 and 37, only the winding mechanism for pulling wire 1150 or 1115b is operated. If both the winding mechanisms are simultaneously operated, flexible portion ll can be bent to assume any desired configuration as shown in FIGS. 30 to 33 depending upon the selection of the wires to be pulled.

Although the flexible portion has been shown as consisting of two groups, it is evident more than two groups of the controllable flexible portion can be provided in accordance with the teaching of the present invention.

lclaim:

1. Mechanism for controlling the flexure of an endoscope, comprising a controllably flexible portion, a set of tension wires being fixed with their one ends to the forward end of said controllably flexible portion at the peripheral portion thereof and extending therethrough so as to be connected with their other ends to a control means housed in a control portion connected to said controllably flexible portion, thereby permitting said controllably flexible portion to be bent in a desired direction by pulling selected ones of the wires in said set by operating said control means, wherein the improvement comprises the fact that said controllably flexible portion comprises at least two sections each adapted to be bent in a desired direction separately from each other by pulling selected ones of the wires in the set which are fixed with their one ends to the forward end of each of said sections and which extend through said controllably flexible portion so as to be connected with their other ends to said control means so that each of said sets of wires are actuated separately, and said control means comprises a stationary control lever on said control portion, and a plurality of rotatable control levers in gear relationship with control drums about which the other ends of said set of tension wires are wound, to place the control levers in a substantially parallel relationship with their respective controlled portions.

2. Mechanism according to claim 1, wherein said control means comprises drum means for operating said sets of wires, respectively.

3. Mechanism according to claim 2, wherein said control means comprises brake means adapted to releasably apply braking force to said control means thereby permitting the bent state of the controllable flexible portion given by the operation of said control means to be positively maintained.

4. Mechanism according to claim 1, wherein closely wound noncontractable flexible helical springs are provided around the respective wires of said sets of wires, each of said springs extends from the rear end of the section in the controllably flexible portion to which the wire extending through said each spring belongs to an abutment surface in said control portion thereby permitting the relative movement of each of the wires with respect to the spring therearound occurring at the abutment surface by the operation of the control means to be exactly transmitted to the forward portion of the wire at the forward end of the spring so that the controllably flexible portion is bent in accordance with the operation of the control means.

5. Mechanism for controlling the flexure of an endoscope comprising a controllably flexible portion, a pair of tensioning wires fixed with their one ends to the forward end of said controllably flexible portion at substantially diametrically opposite peripheral positions adjacent to the center line normal to the neutral plane of bending of said controllably flexible portion and extending therealong so as to be connected with their other ends to a control means housed in a control portion of the endoscope thereby permitting said controllably flexible portion to be bent in desired direction by pulling a selected one of said wires in said pair by the operation of said control means, wherein the improvement comprises closely wound noncontractable flexible helical springs provided around the respective wires of said pair, each of said springs extending from the rearward end of said controllably flexible portion to an abutment surface stationarily provided in said control portion thereby permitting the relative movement of each of the wires with respect to the spring therearound which occurs at said abutment surface, by the operation of said control means, to be exactly transmitted to the forward portion of the wire at the forward end of the spring so that said controllably flexible portion is bent exactly in correspondence to the operation of said control means.

6. Mechanism for controlling the flexure of an endoscope including a controllably flexible portion, a pair of tensioning wires fixed with their one ends to the forward end of said controllably flexible portion at substantially diametrically opposite peripheral positions adjacent to the center line normal to the neutral plane of bending of said controllably flexible portion and extending therealong so as to be connected with their other ends to a control means housed in a control portion of the endoscope, thereby permitting said controllably flexible portion to be bent in desired direction by pulling selected one of said wires in said pair by the operation of said control means, wherein the improvement comprises the fact that said controllably flexible portion comprises at least two sections of which a first section is located at the foremost end of said controllably flexible portion while a second section is connected to the rearward end of said first section, said first and second sections having respectively a pair of tensioning wires with their one ends securely fixed to the respective ends of said first and second sections and extending therealong so as to be connected with their other ends to a first and second control means housed in said control portion, respectively, thereby permitting each of said first and second sections to be bent in desired direction separately from each other by the operation of the control means corresponding to the section to be bent, a first lever rotatably mounted on a rotatable disc rotatably mounted in said control portion at a position radially offset from the center of rotation of said disc and operably coupled to said first control means such that said first section is bent by the operation of said first lever in the same direction, and substantially by the same angle, as those of the rotation of said first lever, and a second lever fixedly secured to said rotatable disc so as to be rotated therewith and operably connected to said second control means such that said second section is bent by the operation of said second lever in the same direction, and substantially by the same angle, as those of the rotation of said second lever, the direction of said first lever being made parallel to the longitudinal direction of said first section with said first lever being located forwardly of said second lever when both said first and second sections are held in the straight state while the direction of said second lever is made parallel to the longitudinal direction of said second section when said second section is held in the straight state, thereby permitting said first lever to be always parallel to said first section regardless of the flexure of said first and second sections by virtue of the mounting of said first lever on said rotatable disc the rotation of which also causes the actuation of said first control means together with said second control means when rotated by the operation of said second lever, while said second lever is made always parallel to said second section regardless of the flexure thereof, so that the state of flexure of said first and second sections is directly indicated by the directions of said first and second levers, respectively.

7. Mechanism according to claim 6, wherein a stationary lever is fixedly secured to said control portion, the direction of said stationary lever being made parallel to the longitudinal direction of the rearward end of said controllably flexible portion connected to said control portion, thereby permitting the state of flexure of the entire length of said controllably flexible portion to be directly indicated by the directions of said stationary lever, said first and second levers, respectively.

8. Mechanism according to claim 6, wherein each of said first and second control means comprises a drum on which the pair of tensioning wires are secured, the drum of said first control means being provided with a coaxial gear integral therewith and rotatably mounted on a shaft secured to said rotatable disc and extending along the axis of rotation thereof, said coaxial gear being coupled with a gear integrally secured to said first lever by the interposition of an idle gear rotatably mounted on said disc, the drum of said second control means being fixedly secured to said shaft secured to said disc, so that the drum of said first control means is rotated by either of the operation of said first lever and the rotation of said disc by the operation of said second lever which also causes the rotation of the drum of said second control means.

9. Mechanism according to claim 6, wherein each of said first and second control means is comprised of pinion-rack means having a pair of parallely located racks adapted to be moved oppositely to each other by a pinion interposed therebetween and engaging therewith with the pair of tensioning wires being secured to said pair of racks, respectively, so as to be actuated thereby, the pinion of said first control means being rotatably mounted on a stationary shaft provided in said control portion and having a coaxial gear integral therewith, said coaxial gear being coupled with a gear integral with said first lever through the interposition of an idle gear rotatably mounted on a center shaft fixedly secured to said rotatable disc along the axis of rotation thereof while the pinion of said second control means is fixedly secured to said center shaft so as to be rotated together with said second lever, so that the pinion of said first control means is rotated by either of the operation of said first lever and the rotation of said disc by the operation of said second lever which also causes the rotation of the pinion of said second control means.

10. Mechanism according to claim 6, wherein said first and second control means are provided with brake means adapted to releasably apply braking force thereto thereby permitting the bent state of said first and second sections to be positively maintained.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3071161 *16 May 19601 Jan 1963Bausch & LombBidirectionally flexible segmented tube
US3091235 *15 Jun 196028 May 1963American Optical CorpDiagnostic instruments
US3162214 *16 Jan 196322 Dec 1964American Optical CorpFlexible tubular structures
US3190286 *31 Oct 196122 Jun 1965Bausch & LombFlexible viewing probe for endoscopic use
US3253524 *2 Jan 196331 May 1966Olympus Optical CoFlexible tube assembly
GB880639A * Title not available
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3694094 *22 Dec 197026 Sep 1972NasaBorescope with variable angle scope
US3788303 *24 Jan 197229 Jan 1974American Cystoscope Makers IncOrthogonally deflectable endoscope
US3892228 *3 Oct 19731 Jul 1975Olympus Optical CoApparatus for adjusting the flexing of the bending section of an endoscope
US4078555 *23 Dec 197514 Mar 1978Nagashige TakahashiControl device for an endoscope
US4351323 *10 Oct 198028 Sep 1982Kabushiki Kaisha Medos KenkyushoCurvable pipe assembly in endoscope
US4432349 *5 Oct 198121 Feb 1984Fuji Photo Optical Co., Ltd.Articulated tube structure for use in an endoscope
US4461282 *2 May 197924 Jul 1984Kabushiki Kaisha Medos KenkyushoMechanism for direction changing of endoscope top end
US4530568 *19 Nov 198223 Jul 1985American Hospital Supply CorporationFlexible optical inspection system
US4561427 *29 Dec 198331 Dec 1985Masazumi TakadaEndoscope
US4655257 *1 Nov 19857 Apr 1987Kabushiki Kaisha Machida SeisakushoGuide tube assembly for industrial endoscope
US4659195 *31 Jan 198621 Apr 1987American Hospital Supply CorporationEngine inspection system
US4686963 *5 Mar 198618 Aug 1987Circon CorporationTorsion resistant vertebrated probe of simple construction
US4688555 *25 Apr 198625 Aug 1987Circon CorporationEndoscope with cable compensating mechanism
US4762118 *28 Jul 19879 Aug 1988Welch Allyn, Inc.Self-adjusting steering mechanism for borescope, endoscope, or guide tube
US4762119 *28 Jul 19879 Aug 1988Welch Allyn, Inc.Self-adjusting steering mechanism for borescope or endoscope
US4773395 *12 May 198727 Sep 1988Olympus Optical Co., Ltd.Endoscope
US4787369 *14 Aug 198729 Nov 1988Welch Allyn, Inc.Force relieving, force limiting self-adjusting steering for borescope or endoscope
US4790294 *28 Jul 198713 Dec 1988Welch Allyn, Inc.Ball-and-socket bead endoscope steering section
US4796607 *28 Jul 198710 Jan 1989Welch Allyn, Inc.Endoscope steering section
US4846573 *10 Apr 198711 Jul 1989Identechs CorporationShape memory effect alloy pull wire articulator for borescopes
US4873965 *15 Jul 198817 Oct 1989Guido DanieliFlexible endoscope
US5014685 *30 Jun 198914 May 1991Asahi Kogaku Kogyo Kabushiki KaishaBrake for bending control device of endoscope
US5051823 *18 Jan 199024 Sep 1991Fuji Optical Systems, Inc.Dental instrument including laser device and electronic video dental camera
US5164826 *19 Aug 199117 Nov 1992Westinghouse Electric Corp.Method and apparatus for visual inspection of the internal structure of apparatus through internal passages
US5174276 *20 Nov 198929 Dec 1992Hillway Surgical LimitedEndoscope device for applying an aneurysm clip
US5199950 *22 Aug 19916 Apr 1993Willy Rusch AgMedical instrument
US5251025 *2 Aug 19895 Oct 1993Fuji Optical Systems, Inc.Electronic video dental camera
US5290168 *19 Feb 19921 Mar 1994Optical Systems, Inc.Electronic video dental camera
US5390663 *23 Dec 199321 Feb 1995Schaefer; Nicholas E.Canal obstruction remover
US5398670 *31 Aug 199321 Mar 1995Ethicon, Inc.Elongated medical instrument
US5413107 *16 Feb 19949 May 1995Tetrad CorporationUltrasonic probe having articulated structure and rotatable transducer head
US5429502 *1 Jun 19934 Jul 1995Fuji Optical Systems, Inc.Electronic video dental camera
US5441483 *8 Nov 199315 Aug 1995Avitall; BoazCatheter deflection control
US5448989 *18 Feb 199412 Sep 1995Richard Wolf GmbhMedical instrument shaft capable of positive and non-positive linking of segments
US5454824 *22 Sep 19933 Oct 1995United States Surgical CorporationFor application of surgical fasteners
US5462527 *29 Jun 199331 Oct 1995C.R. Bard, Inc.Actuator for use with steerable catheter
US5472017 *17 Nov 19925 Dec 1995Life Medical Technologies, Inc.Deflectable catheter
US5487757 *21 Feb 199530 Jan 1996Medtronic CardiorhythmMulticurve deflectable catheter
US5545200 *22 Nov 199413 Aug 1996Medtronic CardiorhythmSteerable electrophysiology catheter
US5549542 *17 Nov 199227 Aug 1996Life Medical Technologies, Inc.Deflectable endoscope
US5601538 *7 Mar 199511 Feb 1997Medtronic, Inc.Flow directed catheter with hydrophilic distal end
US5632432 *19 Dec 199427 May 1997Ethicon Endo-Surgery, Inc.For applying surgical fasteners to tissue
US5666970 *2 May 199516 Sep 1997Heart Rhythm Technologies, Inc.Locking mechanism for catheters
US5669544 *2 Oct 199623 Sep 1997Ethicon Endo-Surgery, Inc.Surgical instrument
US5673840 *2 Oct 19967 Oct 1997Ethicon Endo-Surgery, Inc.Surgical instrument
US5673841 *3 Oct 19967 Oct 1997Ethicon Endo-Surgery, Inc.Locking mechanism
US5680982 *2 Oct 199628 Oct 1997Ethicon Endo-Surgery, Inc.Surgical instrument
US5692668 *2 Oct 19962 Dec 1997Ethicon Endo-Surgery, Inc.Surgical instrument
US5704898 *17 Nov 19956 Jan 1998Circon CorporationArticulation mechanism for an endoscope
US5715817 *7 Jun 199510 Feb 1998C.R. Bard, Inc.Bidirectional steering catheter
US5752644 *11 Jul 199519 May 1998United States Surgical CorporationDisposable loading unit for surgical stapler
US5762067 *30 May 19969 Jun 1998Advanced Technology Laboratories, Inc.Ultrasonic endoscopic probe
US5762603 *16 Sep 19979 Jun 1998Pinotage, LlcEndoscope having elevation and azimuth control of camera assembly
US5807249 *13 Feb 199715 Sep 1998Medtronic, Inc.Reduced stiffness, bidirectionally deflecting catheter assembly
US5813976 *2 Apr 199629 Sep 1998Filipi; Charles J.Stabilizing instrumentation for the performing of endoscopic surgical procedures
US5817057 *13 Sep 19966 Oct 1998Micro Interventional Systems, Inc.Fluid propulsion steerable catheter and method
US5826776 *2 Oct 199627 Oct 1998Ethicon Endo-Surgery, Inc.Surgical instrument
US5873817 *12 May 199723 Feb 1999Circon CorporationEndoscope with resilient deflectable section
US5888192 *4 Dec 199730 Mar 1999Richard Wolf GmbhControl device for endocscopes
US5911353 *18 Mar 199815 Jun 1999United States Surgical CorporationDisposable loading unit for surgical stapler
US5987344 *27 Aug 199716 Nov 1999Medtronic, Inc.Handle for catheter assembly with multifunction wire
US6007484 *23 Apr 199828 Dec 1999Image Technologies CorporationEndoscope having elevation and azimuth control of camera
US6156027 *25 Aug 19995 Dec 2000Medtronic, Inc.Handle for catheter assembly with multifunction wire
US6165123 *27 Aug 199826 Dec 2000Pinotage LlcControllable multi-directional positioning system
US616991627 Aug 19992 Jan 2001Medtronic Inc.Electrophysiology catheter with multifunctional wire and method for making
US6270453 *27 Dec 19997 Aug 2001Suzuki Motor CorporationBending device for examining insertion tube
US639872525 Aug 19994 Jun 2002Pinotage, LlcEndoscope having elevation and azimuth control of camera
US641320929 Mar 19992 Jul 2002Med Images, Inc.Imaging system with condensation control
US642847025 Aug 19996 Aug 2002Pinotage, LlcImaging system and components thereof
US6699182 *8 Jan 20022 Mar 2004Xion GmbhEndoscope-type device, particularly for emergency intubation
US674323925 May 20001 Jun 2004St. Jude Medical, Inc.Devices with a bendable tip for medical procedures
US67801511 Mar 200224 Aug 2004Acmi CorporationFlexible ureteropyeloscope
US6811532 *2 Oct 20012 Nov 2004Olympus CorporationEndoscope
US6837849 *2 Oct 20014 Jan 2005Olympus CorporationEndoscope
US6887195 *7 Jul 20003 May 2005Karl Storz Gmbh & Co. KgEndoscope-type device, especially for emergency intubation
US6899673 *2 Oct 200131 May 2005Olympus CorporationEndoscope
US709063723 May 200315 Aug 2006Novare Surgical Systems, Inc.Articulating mechanism for remote manipulation of a surgical or diagnostic tool
US713499324 Mar 200414 Nov 2006Ge Inspection Technologies, LpMethod and apparatus for improving the operation of a remote viewing device by changing the calibration settings of its articulation servos
US714765012 Apr 200412 Dec 2006Woojin LeeSurgical instrument
US7232447 *12 Jun 200319 Jun 2007Boston Scientific Scimed, Inc.Suturing instrument with deflectable head
US733851314 Dec 20054 Mar 2008Cambridge Endoscopic Devices, Inc.Surgical instrument
US73645828 May 200629 Apr 2008Cambridge Endoscopic Devices, Inc.Surgical instrument
US741048324 Nov 200412 Aug 2008Novare Surgical Systems, Inc.Hand-actuated device for remote manipulation of a grasping tool
US7553277 *30 Aug 200630 Jun 2009Karl Storz Gmbh & Co. KgEndoscope with variable direction of view
US761506613 Jul 200510 Nov 2009Novare Surgical Systems, Inc.Articulating mechanism for remote manipulation of a surgical or diagnostic tool
US761506719 Sep 200610 Nov 2009Cambridge Endoscopic Devices, Inc.Surgical instrument
US7635288 *3 Feb 200622 Dec 2009Folkmanis, Inc.Animated hand puppet & animator therefor
US76485192 Jan 200719 Jan 2010Cambridge Endoscopic Devices, Inc.Surgical instrument
US767811724 Sep 200416 Mar 2010Novare Surgical Systems, Inc.Articulating mechanism with flex-hinged links
US76823079 Nov 200523 Mar 2010Novare Surgical Systems, Inc.Articulating mechanism for remote manipulation of a surgical or diagnostic tool
US768682620 Jul 200530 Mar 2010Cambridge Endoscopic Devices, Inc.Surgical instrument
US7699846 *14 Feb 200620 Apr 2010Gyrus Ent L.L.C.Surgical instrument and method
US770875828 Nov 20064 May 2010Cambridge Endoscopic Devices, Inc.Surgical instrument
US77668218 Jun 20053 Aug 2010Henke-Sass, Wolf GmbhBendable portion of an insertion tube of an endoscope and method of producing it
US778525223 Nov 200431 Aug 2010Novare Surgical Systems, Inc.Articulating sheath for flexible instruments
US778982630 Sep 20047 Sep 2010Boston Scientific Scimed, Inc.Manually controlled endoscope
US782880826 Aug 20049 Nov 2010Novare Surgical Systems, Inc.Link systems and articulation mechanisms for remote manipulation of surgical or diagnostic tools
US78420283 Oct 200530 Nov 2010Cambridge Endoscopic Devices, Inc.Surgical instrument guide device
US786255416 Apr 20074 Jan 2011Intuitive Surgical Operations, Inc.Articulating tool with improved tension member system
US791444529 Apr 200929 Mar 2011Syntheon, LlcTorque-transmitting, variably-flexible, corrugated insertion device and method for transmitting torque and variably flexing a corrugated insertion device
US79677411 May 200728 Jun 2011Ethicon Endo-Surgery, Inc.Endoscopic guide device
US79811233 Feb 201019 Jul 2011Evalve, Inc.Surgical device for connecting soft tissue
US798862110 Aug 20062 Aug 2011Syntheon, LlcTorque-transmitting, variably-flexible, corrugated insertion device and method for transmitting torque and variably flexing a corrugated insertion device
US802953127 Sep 20064 Oct 2011Cambridge Endoscopic Devices, Inc.Surgical instrument
US80837652 Dec 200927 Dec 2011Cambridge Endoscopic Devices, Inc.Surgical instrument
US8092374 *2 Mar 200610 Jan 2012Kevin SmithVariably flexible insertion device and method for variably flexing an insertion device
US810082416 Apr 200724 Jan 2012Intuitive Surgical Operations, Inc.Tool with articulation lock
US810535016 Aug 200631 Jan 2012Cambridge Endoscopic Devices, Inc.Surgical instrument
US81237033 Feb 201028 Feb 2012Evalve, Inc.Steerable access sheath and methods of use
US8133170 *18 Mar 200913 Mar 2012Tetsumaru MIYAWAKIEndoscope
US81824173 May 200522 May 2012Intuitive Surgical Operations, Inc.Articulating mechanism components and system for easy assembly and disassembly
US8182418 *25 Feb 200822 May 2012Intuitive Surgical Operations, Inc.Systems and methods for articulating an elongate body
US82214503 Mar 200817 Jul 2012Cambridge Endoscopic Devices, Inc.Surgical instrument
US825736918 Sep 20084 Sep 2012Boston Scientific Scimed, Inc.Suturing instrument with pivotable distal portion
US825738611 Sep 20074 Sep 2012Cambridge Endoscopic Devices, Inc.Surgical instrument
US827737510 Aug 20102 Oct 2012Intuitive Surgical Operations, Inc.Flexible segment system
US829280214 Jan 201123 Oct 2012Syntheon, LlcMethod for transmitting torque and variably flexing a corrugated insertion device
US829813714 Jan 201130 Oct 2012Syntheon, LlcMethod for transmitting torque and variably flexing a corrugated insertion device
US8317811 *24 May 200627 Nov 2012Corporacio Sanitaria Parc TauliSurgical instrument for endoscopic surgery
US832329716 Mar 20104 Dec 2012Intuitive Surgical Operations, Inc.Articulating mechanism with flex-hinged links
US83666075 Aug 20105 Feb 2013Boston Scientific Scimed, Inc.Manually controlled endoscope
US8374722 *21 Jun 201012 Feb 2013Oliver Crispin Robotics LimitedRobotic arm
US84091756 May 20092 Apr 2013Woojin LeeSurgical instrument guide device
US840924416 Apr 20072 Apr 2013Intuitive Surgical Operations, Inc.Tool with end effector force limiter
US840924522 May 20072 Apr 2013Woojin LeeSurgical instrument
US84197207 Feb 201216 Apr 2013National Advanced Endoscopy Devices, IncorporatedFlexible laparoscopic device
US841974715 Jun 201016 Apr 2013Intuitive Surgical Operations, Inc.Link systems and articulation mechanisms for remote manipulation of surgical or diagnostic tools
US844953031 Mar 200928 May 2013Karl Storz Gmbh & Co. KgMedical instrument with a lockable bend control mechanism
US846547517 Aug 200918 Jun 2013Intuitive Surgical Operations, Inc.Instrument with multiple articulation locks
US853534723 Apr 201017 Sep 2013Intuitive Surgical Operations, Inc.Articulating mechanisms with bifurcating control
US855680421 May 200715 Oct 2013Syntheon, LlcTorque-transmitting, variably flexible insertion device and method for transmitting torque and variably flexing an insertion device
US856264016 Apr 200722 Oct 2013Intuitive Surgical Operations, Inc.Tool with multi-state ratcheted end effector
US860864724 Apr 201217 Dec 2013Intuitive Surgical Operations, Inc.Systems and methods for articulating an elongate body
US867283329 Sep 201118 Mar 2014Intuitive Surgical Operations, Inc.Side looking minimally invasive surgery instrument assembly
US867909913 Sep 201225 Mar 2014Intuitive Surgical Operations, Inc.Side looking minimally invasive surgery instrument assembly
US86966395 Dec 201115 Apr 2014Syntheon, LlcVariably flexible insertion device and method for variably flexing an insertion device
US870889418 Sep 201229 Apr 2014Syntheon, LlcMethod for variably flexing and steering an insertion device
US87090215 Nov 200729 Apr 2014Boston Scientific Scimed, Inc.Suturing instrument
US87090376 Apr 201029 Apr 2014Woojin LeeSurgical instrument
US87409189 Jun 20113 Jun 2014Evalve, Inc.Surgical device for connecting soft tissue
US87712951 May 20098 Jul 2014Boston Scientific Scimed, Inc.Suturing instrument and method for uterine preservation
US880175229 Jul 200912 Aug 2014Covidien LpArticulating surgical device
US880741526 Jun 200719 Aug 2014Medigus Ltd.Stapler for endoscopes
US20070251975 *26 Jun 20071 Nov 2007Medigus Ltd.Stapler for endoscopes
US20090171161 *10 Dec 20082 Jul 2009Usgi Medical, Inc.Steerable endoscopic instruments
US20100004508 *10 Sep 20097 Jan 2010Olympus Medical Systems Corp.Multijointed bending mechanism and multijointed medical equipment having multijointed bending mechanism
US20110054687 *21 Jun 20103 Mar 2011Robert Oliver BuckinghamRobotic Arm
US20110090331 *15 Oct 200921 Apr 2011Perceptron, Inc.Articulating imager for video borescope
US20120238952 *30 May 201220 Sep 2012Usgi Medical, Inc.Endoluminal surgical tool with small bend radius steering section
US20130012958 *9 Jul 201210 Jan 2013Stanislaw MarczykSurgical Device with Articulation and Wrist Rotation
US20130023859 *11 Jul 201224 Jan 2013Tyco Healthcare Group LpArticulating Links with Middle Link Control System
USRE3870815 Jun 20011 Mar 2005United States Surgical CorporationDisposable loading unit for surgical stapler
USRE4147519 Jul 20053 Aug 2010Gyrus Acmi, Inc.Flexible ureteropyeloscope
DE2752325A1 *23 Nov 19776 Jul 1978Nagashige TakahashiEndoskop mit steuereinrichtung fuer die biegung eines endabschnittes
DE2917465A1 *30 Apr 197913 Dec 1979Medos Kenkyusho KkRichtungsumsteuergeraet
DE3390340T1 *14 Nov 198330 May 1985 Title not available
DE3905455A1 *22 Feb 198931 Aug 1989Asahi Optical Co LtdVorrichtung zum einstellen der biegung eines endoskops
DE4417637A1 *19 May 199423 Nov 1995Rudolf Dr Med BertagnoliInstrument zur perkutanen Behandlung von Gewebeteilen
DE10100533A1 *9 Jan 200118 Jul 2002Xion GmbhEndoscope device especially for emergency medical intubations has improved positioning and control elements that are also more economical and easier to repair than existing devices
DE10308902B4 *28 Feb 200318 Jul 2013Gyrus ACMI, Inc. (n.d.Ges.d. Staates Delaware)Flexibles Ureteropyeloskop
DE19520717A1 *12 Jun 199519 Dec 1996Aesculap AgInstrument for surgical use
DE19520717C2 *12 Jun 199524 Sep 1998Aesculap Ag & Co KgChirurgisches Rohrschaftinstrument
DE19650721A1 *6 Dec 199618 Jun 1998Wolf Gmbh RichardControl drive for endoscope
DE19650721C2 *6 Dec 199612 Aug 1999Wolf Gmbh RichardSteuervorrichtung zum Lenken des distalen Endes eines Endoskops
DE19932022A1 *9 Jul 19998 Feb 2001Etm Endoskopische Technik GmbhEndoskopartige Vorrichtung, insbesondere für die Notfallintubation
EP0094791A2 *11 May 198323 Nov 1983Advanced Technology Laboratories, Inc.Ultrasonic endoscope having elongated array mounted in manner allowing it to remain flexible
EP0306723A1 *11 Aug 198815 Mar 1989Richard Wolf GmbHControl device for deflecting the distal end of an endoscope
EP1224904A2 *19 Dec 200124 Jul 2002XION GmbHEndoscopic device especially for intubation emergency
EP1624792A2 *18 May 200415 Feb 2006Evalve, Inc.Articulatable access sheath and methods of use
EP1681013A1 *2 Sep 200519 Jul 2006Olympus CorporationEndoscope
EP1955659A118 Nov 200513 Aug 2008Novare Surgical Systems, Inc.Articulating mechanisms and link systems with torque transmission in remote manipulation of instruments and tools
EP2106751A127 Mar 20097 Oct 2009Karl Storz GmbH & Co. KGMedical instrument with adjustable angle control
EP2320262A110 Nov 200911 May 2011Siemens AktiengesellschaftInspection device and method for positioning an inspection device
EP2335558A115 Sep 200522 Jun 2011Novare Surgical Systems, Inc.Articulating sheath for flexible instruments
EP2596742A123 May 200529 May 2013Novare Surgical Systems, Inc.Articulating mechanism with flex-hinged links
WO1984002196A1 *14 Nov 19837 Jun 1984Haduch Judith E Legal RepresenFlexible inspection system
WO1994010897A1 *17 Nov 199326 May 1994Omega Universal Tech LtdDeflectable medical instrument
WO1994011057A1 *16 Nov 199326 May 1994Boaz AvitallCatheter deflection control
WO1997018746A2 *15 Nov 199629 May 1997Circon CorpArticulation mechanism for an endoscope
WO2002050619A2 *21 Dec 200127 Jun 2002Foster Miller IncSteerable delivery system
WO2005094661A1 *23 Mar 200513 Oct 2005Cathrx Pty LtdA catheter steering device
WO2006073581A218 Nov 200513 Jul 2006Novare Sorgical Systems IncArticulating mechanisms and link systems with torque transmission in remote manipulation of instruments and tools
WO2011058008A19 Nov 201019 May 2011Siemens AktiengesellschaftInspection device and method for positioning an inspection device
WO2011058010A19 Nov 201019 May 2011Siemens AktiengesellschaftInspection device and method for positioning an inspection device
WO2013180904A1 *6 May 20135 Dec 2013Usgi Medical, Inc.Endoluminal surgical tool with small bend radius steering section
Classifications
U.S. Classification600/141, 600/148, 356/241.4
International ClassificationA61B1/005
Cooperative ClassificationA61M25/0138, A61B1/0055
European ClassificationA61B1/005B6