US3526225A - Jet-type hypodermic injection device - Google Patents

Jet-type hypodermic injection device Download PDF

Info

Publication number
US3526225A
US3526225A US702110A US3526225DA US3526225A US 3526225 A US3526225 A US 3526225A US 702110 A US702110 A US 702110A US 3526225D A US3526225D A US 3526225DA US 3526225 A US3526225 A US 3526225A
Authority
US
United States
Prior art keywords
cylinder
piston
fluid
support member
spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US702110A
Inventor
Masahide Isobe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Sokuhan Co Ltd
Original Assignee
Tokyo Sokuhan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Sokuhan Co Ltd filed Critical Tokyo Sokuhan Co Ltd
Application granted granted Critical
Publication of US3526225A publication Critical patent/US3526225A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/30Syringes for injection by jet action, without needle, e.g. for use with replaceable ampoules or carpules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/20Automatic syringes, e.g. with automatically actuated piston rod, with automatic needle injection, filling automatically
    • A61M5/204Automatic syringes, e.g. with automatically actuated piston rod, with automatic needle injection, filling automatically connected to external reservoirs for multiple refilling

Definitions

  • Kamm Anorney-McGlew and Toren ABSTRACT An exit injector for administering hypodermic I injections without the use of a hypodermic needle, is formed of a hydraulic cylinder containing a movable, spring actuated piston positionable between a loaded and a discharged position.
  • a second cylinder containing another piston is arranged in the injector to receive and discharge the fluid to be injected U.S.Cl 128/173, and it is filled when the piston in the hydraulic chamber is l28/2l8 moved to its loaded position.
  • the hydraulic cylinder Int. Cl A61m 5/30 piston is moved to its discharged position, at the same time the Field ofSearch l28/l73H, other piston discharges the fluid to be injected from the 218,2l8.2 second cylinder.
  • the present invention is directed to an improvement in hypodermic injection devices and more particularly it is concerned with an exit injector, that is an injection device for hypodermically administering fluid to be injected without the use of an injection needle.
  • hypodermic injections are being administered to a large number of persons using an exit injector of the usual type
  • the person operating the injector is liable to be fatigued because of its size and weight, and further because the means for determining the quantity of fluid to be injected is inconvenient.
  • a primary object of the present invention is to lessen the size and weight of the injector.
  • Another object of the invention is to afford means for facilitating the determination of the quantity of fluid to be injected.
  • a further object of the invention is to incorporate means for regulating the quantity of fluid to be injected as an integral part of the device.
  • Another object of the invention is to position the vessel containing the fluid to be injected in such a location that it limits the interference with the positioning of the device at the site of the injection.
  • Another object of the invention is to provide a spring actuating arrangement for simply and rapidly instituting the injection operation.
  • the present invention concerns an exit injector formed of a pair of axially aligned cylinders.
  • the first cylinder contains a piston, a spring and a spring support member and is mounted on a pistol grip member.
  • the piston By delivering the pressurized fluid into the first cylinder the piston is located in a loaded position relative to the position of the spring support member.
  • a screw member Positioned at the opposite end of the first cylinder from its connection to the second cylinder is a screw member for locating the spring support member within the first cylinder and thereby determining the loaded position of the piston.
  • another piston is secured to the piston in the first cylinder and is positionable in the second cylinder relative to the location of the first piston within the first cylinder.
  • the second piston in the second cylinder is also in a loaded position and fluid to be injected is drawn into the second cylinder from a vessel containing the fluid which is mounted on the second cylinder.
  • the second cylinder has a nozzle opening for discharging the fluid to be injected.
  • the container for the fluid to be injected is positioned at an oblique angle to the axis of the second cylinder sloping backwardly toward the first cylinder to afford the minimum interference with the line ofsight ofthe operator of the injector.
  • a pair of viewing slots are provided in the barrel of the first cylinder for determining the amount of fluid which the injector is regulated to deliver.
  • the drawing contains a side elevational view of an injector according to the present invention.
  • an exit injector A having an axially extending hydraulic cylinder 1 with a first end la and a second end lb.
  • a piston 2 Located within the cylinder 1 at its first end la is a piston 2 movably positionable between a loaded position and a discharged position.
  • a helically coiled spring 3 At the rear of the piston 2 facing toward the second end lb of the cylinder is a helically coiled spring 3.
  • the end of the spring adjacent the second end of the hydraulic cylinder abuts against a spring support member 5.
  • Fitted within the spring support member is a screw member 4 for regulating the position of the spring support member in the cylinder, which in turn, establishes the quantity of fluid to be injected by the exit injector A.
  • the piston 2 has an axially extending section 2a extending axially within the helically coiled spring 3 and the section 2a has an end surface 2b facing toward the second end of the cylinder 1.
  • an axially extending section 5a of the spring support member 5 Opposite the section 2a and also located within the spring is an axially extending section 5a of the spring support member 5 which faces toward the piston and has a surface 5b arranged to contact the surface 2b of the piston when it is disposed in its loaded position.
  • a cap 6 is threaded into the cylinder for properly positioning the screw member 4.
  • a ball 7 is partially positioned within a hole indented in the peripheral surface of flange 50 on the spring support member and extends into a semi-circular groove 8 formed in the inner surface of the cylinder and extending along a line parallel to the axis of the cylinder.
  • balls 9 are provided between a shoulder 4a on the outer end of the screw member 4 and an oppositely arranged shoulder 6a on the cap 6.
  • a knob 10 is fitted to the outer end of the screw member 4 at the second end lb of the cylinder for regulating the position of the spring support member 5 within the cylinder.
  • a nut 12 secures a second or injection fluid cylinder to the first or hydraulic cylinder.
  • the second cylinder ll is in axial alignment with the first cylinder 1 and contains a piston 13 positionable through the second cylinder and secured to the forward end of the piston 2 in the first cylinder.
  • a non-return outlet ball valve 14 is housed within a valve body 15.
  • the valve body is aligned with a nozzle 16 secured within a nozzle holder 17 and the nozzle holder and the valve body are secured to the second cylinder 11 by means ofa cap 18.
  • the front end ofthe cap 18 is provided with a series of notches or grooves for preventing any slippage of the injector when it is positioned against the skin of a patient.
  • a projection 19 On the upper surface of the cylinder 11, closely spaced from its front end Ila, is a projection 19 having a passageway therethrough for admitting fluid to be injected into the cylinder.
  • An inlet adaptor 21 is positioned within the projection 19 and is secured in place by an intermediate washer 22 which also has an outer peripheral thread.
  • the outer end of the adaptor 2l spaced from the projection 19 has a tapered nose portion 21a to which a second adaptor 25 is secured by means of a nut 26.
  • Extending through the second adaptor 25 is an inlet tube 24 for delivering injection fluid into the cylinder 11 and a vent tube 23 is positioned concentrically within the tube 24. Both the inlet tube 24 and the vent tube 23 extend into a bottle 28 holding the injection fluid.
  • Holes 27 are provided in the sides of the inlet tube 24 for admitting the injection fluid into the tube for passage therefrom into the cylinder II.
  • the vent tube 23 extends exteriorly of the bottle 28 and is connected at its outer end to an air filter 29 which contains sterilized absorbent cotton for preventing dirt from entering the bottle 28 when air is being admitted into it.
  • a holder member 30 Secured to the outer peripheral thread of the washer 22 is a holder member 30 from which extend a plurality of resilient gripping wires 31 for holding the bottle 28 firmly in position.
  • the various elements arranged for admitting injector fluid from the bottle 28 into the cylinder ll are arranged along an axis disposed obliquely to the axis of the cylinder and sloping backwardly from the forward end of the cylinder toward the hydraulic cylinder 1.
  • the bottle 28 is arranged in this fashion to limit any interference in the field of vision of the person operating the injector at the injection end of the device.
  • a pair of viewing slots 32, 33 each located at one end of the cylinder for determining the quantity of injector fluid to be supplied by the device.
  • a stepped shoulder 34 on the forward end of the piston 2 acts as an indicator for exhibiting the quantity of fluid received into the cylinder 11.
  • a forward surface 35 of the flange c of the spring support member 5 forms the indicator for displaying the amount of fluid that is to be discharged from the injector.
  • Each of the slots is graduated into ten equal parts from 0. 1 cc to 1.0cc.
  • An air vent is provided from the upper surface of the hydraulic cylinder 1 by means of a ball 36 and a threaded member 37.
  • a pistol-like grip member 38 is secured to the underside of the cylinder 1 close to its first end la by means of a holder member 39 which provides a passageway from the grip 38 into the cylinder 1.
  • a nonreturn ball valve 40 which closes the passageway into the hydraulic cylinder 1.
  • the valve 40 is opened and closed by a trigger mechanism comprised of a push pin 41, a lever 42, a rod 43 and a trigger 44.
  • Extending through the grip member 38 is a conduit 45 for inlet and outlet of pressurized fluid to the passageway controlled by the valve 40.
  • a connector member 46 is located for securing a hydraulic hose (not shown in the drawing) to the conduit 45.
  • the injector device A illustrated in the drawing operates as follows: pressurized fluid is supplied to the cylinder through the conduit 45 and the valve 40, the inflowing fluid depressing the spring which holds the ball valve in its closed position. Within the cylinder 1 the pressurized fluid forces the piston toward the rear or second end of the cylinder and compresses the spring 3 which is concentrically disposed about the section 2a of the piston and section 5a of the spring support member. The spring contracts until the surface 2!; of the piston comes in contact with the surface 5! of the spring support member. Simultaneously the piston 13 within the second cylinder 11 is withdrawn from the discharge end 110 of the cylinder drawing injection fluid into the cylinder from the bottle 28.
  • the amount of injection fluid removed by suction from the bottle is determined by the distance the piston moves rearwardly toward the spring support member 5.
  • the non-return outlet ball valve 14 closes and the non-return inlet ball valve in the projection 19 opens automatically by suction force and the fluid is drawn through the holes 27 in the inlet tube 24 then through the adaptor 25, the other adaptor 21 and the ball valve 20 before it finally enters the cylinder.
  • the injection fluid is removed from the bottle, air passes through the filter 29 into the vent tube 23 and finally into the bottle 28 to prevent the establishment ofa vacuum in the bottle which would interfere with the suction of injection fluid into the cylinder 11.
  • the valve device connected between the cylinder 1 and the water tank may be such that the valve will automatically open when the piston of the water pump reaches the end of its travel and will connect the fluid within the cylinder with the fluid in the tank, thereby the device will operate advantageously and surely.
  • Regulation of the quantity of injection fluid withdrawn from the bottle 28 each time the piston 2 is moved into its loaded position is achieved by positioning the screw member 4 by means of the knob 10. The position of the screw member determines the position of the spring support member within the cylinder. As the spring support member 5 extends further into the cylinder the quantity of injection fluid is reduced.
  • the forward face of the flange 5c will indicate as line 35 in the viewing slot 33 the amount of injection fluid to be admitted to the cylinder 11 when the pistons are moved into the loaded position.
  • the viewing slot 33 exhibits the position of the spring support member 5 which indicates the amount of liquid to be injected irrespective of whether or not the piston is in its loaded position.
  • the stepped shoulder 34 at the leading edge of the piston 2 is used as the indicator of the quantity of fluid to be injected.
  • the viewing slot 32 only indicates the quantity of fluid to be injected when the piston is moved into its loaded position.
  • the end surface 2b of the piston and the end surface 511 of the support member are spaced apart, whereby the piston is in its discharged position and its stepped shoulder 34 does not indicate the quantity of injection fluid to be used.
  • the stepped shoulder 34 rides rearwardly and indicates, in the viewing slot 32, the amount of injection fluid to be used. Accordingly, the two viewing slots may be employed to afford a check of one against the other.
  • the piston 2 is always moved by the pressurized fluid until the surface 2b of the piston contacts the surface 5b of the spring support member so that the amount of compression of the spring 3 becomes con stant and thus the exit force of the injection fluid is constant at the moment the trigger 44 is released, independent of the quantity of the injection fluid.
  • the injector device is shown with a bottle 28 adapted for administering a large number of injections, however, by withdrawing the nut 26 and removing the adaptor 25 from the inlet adaptor 21 an ordinary injection needle can be inserted into the tapered nose portion 21a of the inlet adaptor and an ordinary ampoule of injection fluid can be positioned on the device so that it may serve for administering individual inoculation injections.
  • the screw member for regulating the amount of injection fluid drawn into the injection device was positioned on the outside of the hydraulic cylinder at the opposite end thereof from the injection nozzle and as a result the length and weight of the body of the device, as well as the diameter of the screw were large and the turning of the screw member required considerable force which was quite inconvenient in administering a number of injections.
  • the screw member for regulating the quantity of injection fluid within the rear end of the hydraulic cylinder, the length and weight of the device is kept to a minimum as well as is the diameter of the screw member and accordingly, the adjustment of the screw is considerably easier to manipulate than had been experienced in the past.
  • a viewing slot was provided only at the forward end of the hydraulic cylinder so that it was only possible to determine the quantity of injection fluid when the piston was positioned in its loaded position, however, in the present arrangement with a viewing slot at each end of the hydraulic cylinder it is possible to determine the quantity ofinjection fluid to be used by checking the location of the flange of the spring support member in the viewing slot and the piston does not have to be disposed in its loaded position.
  • an injector device of smaller size, lighter weight and more easily manipulatable is available as compared to injectors which had been previously employed.
  • An exit injector for administering hypodermic injections without the use of a hypodermic needle comprising a first cylinder, said first cylinder having a first end and a second end, a first piston located within said first cylinder and movably positionable therein between a loaded position and a discharged position, a spring disposed within said first cylinder and arranged in contact with said piston at least in its loaded position for moving said piston from its loaded to its discharged position, said spring having a coiled configuration affording an axially extending open space, a spring support member movably positionable within said first cylinder and arranged in contact with the opposite end of said spring from said first piston, said spring support member arranged to act as a stop for said first piston in its loaded position, said spring support member located adjacent the second end of said first cylinder and comprising an axially extending section disposed within the open space in said spring and having a stop surface facing toward the first end of said first cylinder and a radially extending flange section located at the end of said spring support

Description

inventor Masahide Isobe Hayamamachi, Miura-gun, Japan Appl. No. 702,110 Filed Jan. 31, 1968 Patented Sept. 1, 1970 Assignee Tokyo Sokuhan Co. Ltd.
Kawagawa-ken, Japan Priority March 31, 1967 Japan 42/20,498
JET-TYPE HYPODERMIC INJECTION DEVICE 3 Claims, 1 Drawing Fig.
[56] References Cited UNITED STATES PATENTS 2,737,946 3/l956 Hein l28/l73(1-1)UX 2,825,332 3/1958 Johnson l28/l73(H)UX 3,057,349 lO/l962 lsmach l28/l73(H)UX 3,202,151 8/1965 Kath 128/173(H)UX 3,330,277 7/1967 Gabriels ..l28/173(1-1)UX Primary Examiner-William E. Kamm Anorney-McGlew and Toren ABSTRACT: An exit injector for administering hypodermic I injections without the use of a hypodermic needle, is formed of a hydraulic cylinder containing a movable, spring actuated piston positionable between a loaded and a discharged position. A second cylinder containing another piston is arranged in the injector to receive and discharge the fluid to be injected U.S.Cl 128/173, and it is filled when the piston in the hydraulic chamber is l28/2l8 moved to its loaded position. When the hydraulic cylinder Int. Cl A61m 5/30 piston is moved to its discharged position, at the same time the Field ofSearch l28/l73H, other piston discharges the fluid to be injected from the 218,2l8.2 second cylinder.
37 3s 5 3 1711320 s i2 32 I. 2 0. 21:51: 3 3 5 l A i U a 215347 a9 INVENTOR, MA sA H105 1.505s
Patented Sept. 1, 1970 JET-TYPE HYPODERMIC INJECTION DEVICE SUMMARY OF THE INVENTION The present invention is directed to an improvement in hypodermic injection devices and more particularly it is concerned with an exit injector, that is an injection device for hypodermically administering fluid to be injected without the use of an injection needle.
In instances where hypodermic injections are being administered to a large number of persons using an exit injector of the usual type, the person operating the injector is liable to be fatigued because of its size and weight, and further because the means for determining the quantity of fluid to be injected is inconvenient.
Accordingly, a primary object of the present invention is to lessen the size and weight of the injector.
Another object of the invention is to afford means for facilitating the determination of the quantity of fluid to be injected.
A further object of the invention is to incorporate means for regulating the quantity of fluid to be injected as an integral part of the device.
Still, another object of the invention is to position the vessel containing the fluid to be injected in such a location that it limits the interference with the positioning of the device at the site of the injection.
Yet, another object of the invention is to provide a spring actuating arrangement for simply and rapidly instituting the injection operation.
Therefore, the present invention concerns an exit injector formed of a pair of axially aligned cylinders. The first cylinder contains a piston, a spring and a spring support member and is mounted on a pistol grip member. By delivering the pressurized fluid into the first cylinder the piston is located in a loaded position relative to the position of the spring support member. Positioned at the opposite end of the first cylinder from its connection to the second cylinder is a screw member for locating the spring support member within the first cylinder and thereby determining the loaded position of the piston.
In the second cylinder another piston is secured to the piston in the first cylinder and is positionable in the second cylinder relative to the location of the first piston within the first cylinder. When the first piston is in its loaded position the second piston in the second cylinder is also in a loaded position and fluid to be injected is drawn into the second cylinder from a vessel containing the fluid which is mounted on the second cylinder. At its free end the second cylinder has a nozzle opening for discharging the fluid to be injected. The container for the fluid to be injected is positioned at an oblique angle to the axis of the second cylinder sloping backwardly toward the first cylinder to afford the minimum interference with the line ofsight ofthe operator of the injector.
A pair of viewing slots are provided in the barrel of the first cylinder for determining the amount of fluid which the injector is regulated to deliver.
The various features of novelty which characterize the invention are pointed out with particularity in the claims annexed to and forming a part of this specification. For a better understanding of the invention, its operating advantages and specific objects attained by its use, reference should be had to the accompanying drawings and descriptive matter in which there is illustrated and described a preferred embodiment of the invention.
BRIEF DESCRIPTION OF THE DRAWING The drawing contains a side elevational view of an injector according to the present invention.
DETAILED DESCRIPTION OF THE INVENTION In the drawing an exit injector A is illustrated having an axially extending hydraulic cylinder 1 with a first end la and a second end lb. Located within the cylinder 1 at its first end la is a piston 2 movably positionable between a loaded position and a discharged position. At the rear of the piston 2 facing toward the second end lb of the cylinder is a helically coiled spring 3. The end of the spring adjacent the second end of the hydraulic cylinder, abuts against a spring support member 5. Fitted within the spring support member is a screw member 4 for regulating the position of the spring support member in the cylinder, which in turn, establishes the quantity of fluid to be injected by the exit injector A. The piston 2 has an axially extending section 2a extending axially within the helically coiled spring 3 and the section 2a has an end surface 2b facing toward the second end of the cylinder 1. Opposite the section 2a and also located within the spring is an axially extending section 5a of the spring support member 5 which faces toward the piston and has a surface 5b arranged to contact the surface 2b of the piston when it is disposed in its loaded position.
At the second end lb of the cylinder 1 a cap 6 is threaded into the cylinder for properly positioning the screw member 4. To prevent any relative circumferential movement between the spring support member 5 and the inner surface of the hydraulic cylinder 1, a ball 7 is partially positioned within a hole indented in the peripheral surface of flange 50 on the spring support member and extends into a semi-circular groove 8 formed in the inner surface of the cylinder and extending along a line parallel to the axis of the cylinder. Further, to afford smooth movement of the screw member 4 within the cylinder, balls 9 are provided between a shoulder 4a on the outer end of the screw member 4 and an oppositely arranged shoulder 6a on the cap 6. A knob 10 is fitted to the outer end of the screw member 4 at the second end lb of the cylinder for regulating the position of the spring support member 5 within the cylinder.
At the first end 1a of the hydraulic cylinder 1 a nut 12 secures a second or injection fluid cylinder to the first or hydraulic cylinder. The second cylinder ll is in axial alignment with the first cylinder 1 and contains a piston 13 positionable through the second cylinder and secured to the forward end of the piston 2 in the first cylinder. At the outlet end 11a of the second cylinder 11 a non-return outlet ball valve 14 is housed within a valve body 15. The valve body is aligned with a nozzle 16 secured within a nozzle holder 17 and the nozzle holder and the valve body are secured to the second cylinder 11 by means ofa cap 18. The front end ofthe cap 18 is provided with a series of notches or grooves for preventing any slippage of the injector when it is positioned against the skin of a patient.
On the upper surface of the cylinder 11, closely spaced from its front end Ila, is a projection 19 having a passageway therethrough for admitting fluid to be injected into the cylinder. An inlet adaptor 21 is positioned within the projection 19 and is secured in place by an intermediate washer 22 which also has an outer peripheral thread. The outer end of the adaptor 2l spaced from the projection 19 has a tapered nose portion 21a to which a second adaptor 25 is secured by means of a nut 26. Extending through the second adaptor 25 is an inlet tube 24 for delivering injection fluid into the cylinder 11 and a vent tube 23 is positioned concentrically within the tube 24. Both the inlet tube 24 and the vent tube 23 extend into a bottle 28 holding the injection fluid. Holes 27 are provided in the sides of the inlet tube 24 for admitting the injection fluid into the tube for passage therefrom into the cylinder II. The vent tube 23 extends exteriorly of the bottle 28 and is connected at its outer end to an air filter 29 which contains sterilized absorbent cotton for preventing dirt from entering the bottle 28 when air is being admitted into it.
Secured to the outer peripheral thread of the washer 22 is a holder member 30 from which extend a plurality of resilient gripping wires 31 for holding the bottle 28 firmly in position. The various elements arranged for admitting injector fluid from the bottle 28 into the cylinder ll are arranged along an axis disposed obliquely to the axis of the cylinder and sloping backwardly from the forward end of the cylinder toward the hydraulic cylinder 1. The bottle 28 is arranged in this fashion to limit any interference in the field of vision of the person operating the injector at the injection end of the device.
Along the side face of the hydraulic cylinder 1 are a pair of viewing slots 32, 33 each located at one end of the cylinder for determining the quantity of injector fluid to be supplied by the device. In the viewing slot 32 a stepped shoulder 34 on the forward end of the piston 2 acts as an indicator for exhibiting the quantity of fluid received into the cylinder 11. Similarly, in the slot 33 a forward surface 35 of the flange c of the spring support member 5 forms the indicator for displaying the amount of fluid that is to be discharged from the injector. Each of the slots is graduated into ten equal parts from 0. 1 cc to 1.0cc.
An air vent is provided from the upper surface of the hydraulic cylinder 1 by means of a ball 36 and a threaded member 37.
A pistol-like grip member 38 is secured to the underside of the cylinder 1 close to its first end la by means of a holder member 39 which provides a passageway from the grip 38 into the cylinder 1. Located within the holder member 39 is a nonreturn ball valve 40 which closes the passageway into the hydraulic cylinder 1. The valve 40 is opened and closed by a trigger mechanism comprised of a push pin 41, a lever 42, a rod 43 and a trigger 44. Extending through the grip member 38 is a conduit 45 for inlet and outlet of pressurized fluid to the passageway controlled by the valve 40. At the lower end of the conduit 45 a connector member 46 is located for securing a hydraulic hose (not shown in the drawing) to the conduit 45.
The injector device A illustrated in the drawing operates as follows: pressurized fluid is supplied to the cylinder through the conduit 45 and the valve 40, the inflowing fluid depressing the spring which holds the ball valve in its closed position. Within the cylinder 1 the pressurized fluid forces the piston toward the rear or second end of the cylinder and compresses the spring 3 which is concentrically disposed about the section 2a of the piston and section 5a of the spring support member. The spring contracts until the surface 2!; of the piston comes in contact with the surface 5!) of the spring support member. Simultaneously the piston 13 within the second cylinder 11 is withdrawn from the discharge end 110 of the cylinder drawing injection fluid into the cylinder from the bottle 28. The amount of injection fluid removed by suction from the bottle is determined by the distance the piston moves rearwardly toward the spring support member 5. As the injector fluid is drawn into the cylinder 11, the non-return outlet ball valve 14 closes and the non-return inlet ball valve in the projection 19 opens automatically by suction force and the fluid is drawn through the holes 27 in the inlet tube 24 then through the adaptor 25, the other adaptor 21 and the ball valve 20 before it finally enters the cylinder. As the injection fluid is removed from the bottle, air passes through the filter 29 into the vent tube 23 and finally into the bottle 28 to prevent the establishment ofa vacuum in the bottle which would interfere with the suction of injection fluid into the cylinder 11.
When the supply of pressurized fluid to the cylinder 1 is discontinued the ball valve 40 is closed under the action of its spring and the pressurized fluid is sealed within the cylinder continuing to compress the spring and hold the piston in its loaded position. At this point the pressurized fluid within the conduit 45 is automatically connected with the tank ofa water pump (not shown) which acts as a valve device so that when trigger 44 is pulled or depressed the non-return valve 40 opens under the upward action of the push pin 4] and the pressurized fluid within the cylinder escapes to the tank of the water pump through the conduit 45.
When the pressurized fluid is released from the cylinder 1, the spring 3 which has been compressed quickly expands and moves the piston 2 toward the first end la of the cylinder 1. Similarly the piston 13 which is secured to the piston 2 rides forwardly through the cylinder 11 toward the discharge end lla causing the valve 14 to open and the injection fluid to be forced under high pressure through the nozzle 16. During the forward movement of the piston 13 the valve 20 in the projection 19 is closed to prevent any backflow of the injection fluid into the bottle 28.
The valve device connected between the cylinder 1 and the water tank (not shown) may be such that the valve will automatically open when the piston of the water pump reaches the end of its travel and will connect the fluid within the cylinder with the fluid in the tank, thereby the device will operate advantageously and surely. Regulation of the quantity of injection fluid withdrawn from the bottle 28 each time the piston 2 is moved into its loaded position is achieved by positioning the screw member 4 by means of the knob 10. The position of the screw member determines the position of the spring support member within the cylinder. As the spring support member 5 extends further into the cylinder the quantity of injection fluid is reduced. The forward face of the flange 5c will indicate as line 35 in the viewing slot 33 the amount of injection fluid to be admitted to the cylinder 11 when the pistons are moved into the loaded position. The viewing slot 33 exhibits the position of the spring support member 5 which indicates the amount of liquid to be injected irrespective of whether or not the piston is in its loaded position.
However, concerning view slot 32 the stepped shoulder 34 at the leading edge of the piston 2 is used as the indicator of the quantity of fluid to be injected. The viewing slot 32 only indicates the quantity of fluid to be injected when the piston is moved into its loaded position. in the drawing it will be noted that the end surface 2b of the piston and the end surface 511 of the support member are spaced apart, whereby the piston is in its discharged position and its stepped shoulder 34 does not indicate the quantity of injection fluid to be used. However, when the two surfaces 2b, 5b are brought into contact by compressing the spring, the stepped shoulder 34 rides rearwardly and indicates, in the viewing slot 32, the amount of injection fluid to be used. Accordingly, the two viewing slots may be employed to afford a check of one against the other.
Although the quantity of injection fluid is regulated by turning the screw member 4 and properly positioning the spring support member 5 within the cylinder, the piston 2 is always moved by the pressurized fluid until the surface 2b of the piston contacts the surface 5b of the spring support member so that the amount of compression of the spring 3 becomes con stant and thus the exit force of the injection fluid is constant at the moment the trigger 44 is released, independent of the quantity of the injection fluid.
ln the drawing the injector device is shown with a bottle 28 adapted for administering a large number of injections, however, by withdrawing the nut 26 and removing the adaptor 25 from the inlet adaptor 21 an ordinary injection needle can be inserted into the tapered nose portion 21a of the inlet adaptor and an ordinary ampoule of injection fluid can be positioned on the device so that it may serve for administering individual inoculation injections.
ln exit injectors used up until the present time the screw member for regulating the amount of injection fluid drawn into the injection device was positioned on the outside of the hydraulic cylinder at the opposite end thereof from the injection nozzle and as a result the length and weight of the body of the device, as well as the diameter of the screw were large and the turning of the screw member required considerable force which was quite inconvenient in administering a number of injections. However, in the present invention, by incorporating the screw member for regulating the quantity of injection fluid within the rear end of the hydraulic cylinder, the length and weight of the device is kept to a minimum as well as is the diameter of the screw member and accordingly, the adjustment of the screw is considerably easier to manipulate than had been experienced in the past.
Further, in the injectors previously used, a viewing slot was provided only at the forward end of the hydraulic cylinder so that it was only possible to determine the quantity of injection fluid when the piston was positioned in its loaded position, however, in the present arrangement with a viewing slot at each end of the hydraulic cylinder it is possible to determine the quantity ofinjection fluid to be used by checking the location of the flange of the spring support member in the viewing slot and the piston does not have to be disposed in its loaded position.
Accordingly, due to the present invention, an injector device of smaller size, lighter weight and more easily manipulatable is available as compared to injectors which had been previously employed.
While a specific embodiment of the invention has been shown and described in detail to illustrate the application of the inventive principles, it will be understood that the invention may be embodied otherwise without departing from such principles.
I claim:
1. An exit injector for administering hypodermic injections without the use of a hypodermic needle comprising a first cylinder, said first cylinder having a first end and a second end, a first piston located within said first cylinder and movably positionable therein between a loaded position and a discharged position, a spring disposed within said first cylinder and arranged in contact with said piston at least in its loaded position for moving said piston from its loaded to its discharged position, said spring having a coiled configuration affording an axially extending open space, a spring support member movably positionable within said first cylinder and arranged in contact with the opposite end of said spring from said first piston, said spring support member arranged to act as a stop for said first piston in its loaded position, said spring support member located adjacent the second end of said first cylinder and comprising an axially extending section disposed within the open space in said spring and having a stop surface facing toward the first end of said first cylinder and a radially extending flange section located at the end of said spring support member closest to said second end of said first cylinder, a second cylinder secured to and extending axially from one end of said first cylinder, said second cylinder having a first end connected to the first end of said first cylinder and a second end spaced therefrom, a second piston disposed within said second cylinder and secured to said first piston and movable therewith within second cylinder between a loaded position and a discharged position, said second cylinder in combination with said second piston forming a variable volume chamber for receiving fluid to be injected, said second cylinder having an opening located at the second end thereof for discharging fluid to be injected, and a screw member positioned within and at the second end of said first cylinder and arranged to position said spring support member within said first cylinder whereby the position of said spring support member determines the extent of movement of said first piston and said second piston secured thereto and in turn determines the quantity of fluid to be injected to be received into said second cylinder.
2. An exit injector as set forth in claim 1 wherein said first piston has an axially extending section directed toward the second end of said first cylinder and located within the open space in said spring and having a contact surface located at the end of said section facing toward the second end of said first cylinder, whereby when said first piston is positioned in its loaded position the contact surface thereof is in contacting relationship with the stop surface of said spring support member.
3. An exit injector as set forth in claim 1 wherein the inner surface of said first cylinder at the second end thereof has a groove extending in parallel relationship with the axis of said cylinder, a ball member disposed within said groove and extending inwardly therefrom, a hole indented in the periphery of said flange of said spring support member for receiving said ball for preventing relative circumferential dislocation of said spring support member relative to said first cylinder.
US702110A 1967-03-31 1968-01-31 Jet-type hypodermic injection device Expired - Lifetime US3526225A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2049867 1967-03-31

Publications (1)

Publication Number Publication Date
US3526225A true US3526225A (en) 1970-09-01

Family

ID=12028809

Family Applications (1)

Application Number Title Priority Date Filing Date
US702110A Expired - Lifetime US3526225A (en) 1967-03-31 1968-01-31 Jet-type hypodermic injection device

Country Status (1)

Country Link
US (1) US3526225A (en)

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3859996A (en) * 1973-07-18 1975-01-14 Mizzy Inc Multi-dose injector
US4177810A (en) * 1977-12-23 1979-12-11 Damon Corporation Pneumatic injection apparatus
US4266541A (en) * 1978-09-19 1981-05-12 Halen-Elliot Do Brazil Industria E Comercio Equipamentos De Precisao Ltda. Pressure hypodermic injector for intermittent vaccination
US4342310A (en) * 1980-07-08 1982-08-03 Istvan Lindmayer Hydro-pneumatic jet injector
US4403986A (en) * 1981-04-16 1983-09-13 Hoechst Aktiengesellschaft Needle-less injection instrument
EP0114792A2 (en) * 1983-01-24 1984-08-01 SICIM SpA Endermic injector device
EP0133471A1 (en) * 1983-06-29 1985-02-27 "FEG" Fegyver- és Gázkészülékgyár Needle-free injection device, e.g. for injecting insulin
US4592742A (en) * 1984-08-28 1986-06-03 Sergio Landau Pressure hypodermic syringe
US4662878A (en) * 1985-11-13 1987-05-05 Patents Unlimited Ltd. Medicine vial adaptor for needleless injector
US4722729A (en) * 1984-07-24 1988-02-02 Hoechst Aktiengesellschaft Needleless injection instrument
EP0286798A2 (en) * 1987-02-17 1988-10-19 Fegyver- és Gázkeszülékgyár Needleless injection device
US4850967A (en) * 1986-06-17 1989-07-25 Sicim Spa Portable endermic injector
US4856567A (en) * 1986-08-04 1989-08-15 Sicim Spa Loader-mixer device for endermic injectors
US5024656A (en) * 1988-08-30 1991-06-18 Injet Medical Products, Inc. Gas-pressure-regulated needleless injection system
US5080648A (en) * 1987-06-08 1992-01-14 Antonio Nicholas F D Hypodermic fluid dispenser
US5092842A (en) * 1987-05-08 1992-03-03 Wilhelm Haselmeier Gmbh & Co. Injection device with a cocking element and a second setting element
US5480381A (en) * 1991-08-23 1996-01-02 Weston Medical Limited Needle-less injector
US5599302A (en) * 1995-01-09 1997-02-04 Medi-Ject Corporation Medical injection system and method, gas spring thereof and launching device using gas spring
US5643211A (en) * 1996-02-29 1997-07-01 Medi-Ject Corporation Nozzle assembly having a frangible plunger
US5697917A (en) * 1996-02-29 1997-12-16 Medi-Ject Corporation Nozzle assembly with adjustable plunger travel gap
US5722953A (en) * 1996-02-29 1998-03-03 Medi-Ject Corporation Nozzle assembly for injection device
US5746714A (en) * 1993-04-05 1998-05-05 P.A.T.H. Air powered needleless hypodermic injector
US5769138A (en) * 1996-04-01 1998-06-23 Medi-Ject Corporation Nozzle and adapter for loading medicament into an injector
US5782802A (en) * 1996-03-22 1998-07-21 Vitajet Corporation Multiple use needle-less hypodermic injection device for individual users
US5800388A (en) * 1996-02-29 1998-09-01 Medi-Ject Corporation Plunger/ram assembly adapted for a fluid injector
US5807340A (en) * 1995-06-06 1998-09-15 Pokras; Norman M. Self refilling I.V. syringe
US5865795A (en) * 1996-02-29 1999-02-02 Medi-Ject Corporation Safety mechanism for injection devices
US5875976A (en) * 1996-12-24 1999-03-02 Medi-Ject Corporation Locking mechanism for nozzle assembly
US5921967A (en) * 1996-02-29 1999-07-13 Medi-Ject Corporation Plunger for nozzle assembly
US5934510A (en) * 1996-06-07 1999-08-10 Anderson; Mark L. Fluid dispenser apparatus
US6056716A (en) * 1987-06-08 2000-05-02 D'antonio Consultants International Inc. Hypodermic fluid dispenser
US6253961B1 (en) * 1997-06-06 2001-07-03 Mark L. Anderson Fluid dispenser apparatus
US6364170B1 (en) 1996-06-07 2002-04-02 Mark L. Anderson Fluid dispenser apparatus
US20030088207A1 (en) * 1999-11-23 2003-05-08 Felton International, Inc. Jet injector with hand piece
WO2003068296A2 (en) * 2002-02-12 2003-08-21 Medical International Technology (Mit) Inc. Needleless injector
US6770054B1 (en) 1999-11-23 2004-08-03 Felton International, Inc. Injector assembly with driving means and locking means
US20050020984A1 (en) * 2002-02-15 2005-01-27 Lesch Paul R. Injector with bypass channel
US20050119608A1 (en) * 2003-10-24 2005-06-02 Sergio Landau Spring powered needle-free injection system
US20060106333A1 (en) * 1999-10-11 2006-05-18 Leon Nanthaniel J Universal protector cap with auto-disable features for needle-free injectors
US7887506B1 (en) 1999-11-23 2011-02-15 Pulse Needlefree Systems, Inc. Safety mechanism to prevent accidental patient injection and methods of same
US8915889B2 (en) 2008-08-05 2014-12-23 Antares Pharma, Inc. Multiple dosage injector
US8945063B2 (en) 2009-03-20 2015-02-03 Antares Pharma, Inc. Hazardous agent injection system
US9180259B2 (en) 2005-01-24 2015-11-10 Antares Pharma, Inc. Prefilled syringe jet injector
US9220660B2 (en) 2011-07-15 2015-12-29 Antares Pharma, Inc. Liquid-transfer adapter beveled spike
US9333309B2 (en) 2002-02-11 2016-05-10 Antares Pharma, Inc. Intradermal injector
US9364610B2 (en) 2012-05-07 2016-06-14 Antares Pharma, Inc. Injection device with cammed ram assembly
US9446195B2 (en) 2011-07-15 2016-09-20 Antares Pharma, Inc. Injection device with cammed ram assembly
US9707354B2 (en) 2013-03-11 2017-07-18 Antares Pharma, Inc. Multiple dosage injector with rack and pinion dosage system
US9744302B2 (en) 2013-02-11 2017-08-29 Antares Pharma, Inc. Needle assisted jet injection device having reduced trigger force
US9775697B2 (en) 2014-01-27 2017-10-03 Te Pari Products Limited Fluid dispenser
US9808582B2 (en) 2006-05-03 2017-11-07 Antares Pharma, Inc. Two-stage reconstituting injector
US9950125B2 (en) 2012-04-06 2018-04-24 Antares Pharma, Inc. Needle assisted jet injection administration of testosterone compositions

Cited By (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3859996A (en) * 1973-07-18 1975-01-14 Mizzy Inc Multi-dose injector
US4177810A (en) * 1977-12-23 1979-12-11 Damon Corporation Pneumatic injection apparatus
US4266541A (en) * 1978-09-19 1981-05-12 Halen-Elliot Do Brazil Industria E Comercio Equipamentos De Precisao Ltda. Pressure hypodermic injector for intermittent vaccination
US4342310A (en) * 1980-07-08 1982-08-03 Istvan Lindmayer Hydro-pneumatic jet injector
US4403986A (en) * 1981-04-16 1983-09-13 Hoechst Aktiengesellschaft Needle-less injection instrument
EP0114792A2 (en) * 1983-01-24 1984-08-01 SICIM SpA Endermic injector device
EP0114792A3 (en) * 1983-01-24 1984-08-22 Sicim Spa Endermic injector device
EP0133471A1 (en) * 1983-06-29 1985-02-27 "FEG" Fegyver- és Gázkészülékgyár Needle-free injection device, e.g. for injecting insulin
US4626242A (en) * 1983-06-29 1986-12-02 Radelkis Elektrokemiai Muszergyarto Ipari Szovetkezet Siphon-cartridge activated automatic inoculating device wihtout needle for individual acculation, e.g. for insulinization
US4722729A (en) * 1984-07-24 1988-02-02 Hoechst Aktiengesellschaft Needleless injection instrument
US4592742A (en) * 1984-08-28 1986-06-03 Sergio Landau Pressure hypodermic syringe
US4662878A (en) * 1985-11-13 1987-05-05 Patents Unlimited Ltd. Medicine vial adaptor for needleless injector
US4850967A (en) * 1986-06-17 1989-07-25 Sicim Spa Portable endermic injector
US4856567A (en) * 1986-08-04 1989-08-15 Sicim Spa Loader-mixer device for endermic injectors
EP0286798A2 (en) * 1987-02-17 1988-10-19 Fegyver- és Gázkeszülékgyár Needleless injection device
EP0286798A3 (en) * 1987-02-17 1989-09-20 Fegyver- és Gázkeszülékgyár Needleless injection device
US5092842A (en) * 1987-05-08 1992-03-03 Wilhelm Haselmeier Gmbh & Co. Injection device with a cocking element and a second setting element
US5080648A (en) * 1987-06-08 1992-01-14 Antonio Nicholas F D Hypodermic fluid dispenser
US5318522A (en) * 1987-06-08 1994-06-07 Antonio Nicholas F D Hypodermic fluid dispenser
US6056716A (en) * 1987-06-08 2000-05-02 D'antonio Consultants International Inc. Hypodermic fluid dispenser
US5024656A (en) * 1988-08-30 1991-06-18 Injet Medical Products, Inc. Gas-pressure-regulated needleless injection system
US5480381A (en) * 1991-08-23 1996-01-02 Weston Medical Limited Needle-less injector
US5746714A (en) * 1993-04-05 1998-05-05 P.A.T.H. Air powered needleless hypodermic injector
US5891085A (en) * 1995-01-09 1999-04-06 Medi-Ject Corporation Nozzle assembly with lost motion connection for medical injector assembly
US5846233A (en) * 1995-01-09 1998-12-08 Medi-Ject Corporation Coupling device for medical injection system
US5599302A (en) * 1995-01-09 1997-02-04 Medi-Ject Corporation Medical injection system and method, gas spring thereof and launching device using gas spring
US5919159A (en) * 1995-01-09 1999-07-06 Medi-Ject Corporation Medical injection system and method, gas spring thereof and launching device using gas spring
US5807340A (en) * 1995-06-06 1998-09-15 Pokras; Norman M. Self refilling I.V. syringe
US5722953A (en) * 1996-02-29 1998-03-03 Medi-Ject Corporation Nozzle assembly for injection device
US5865795A (en) * 1996-02-29 1999-02-02 Medi-Ject Corporation Safety mechanism for injection devices
US5800388A (en) * 1996-02-29 1998-09-01 Medi-Ject Corporation Plunger/ram assembly adapted for a fluid injector
US5697917A (en) * 1996-02-29 1997-12-16 Medi-Ject Corporation Nozzle assembly with adjustable plunger travel gap
US5921967A (en) * 1996-02-29 1999-07-13 Medi-Ject Corporation Plunger for nozzle assembly
US5643211A (en) * 1996-02-29 1997-07-01 Medi-Ject Corporation Nozzle assembly having a frangible plunger
US5782802A (en) * 1996-03-22 1998-07-21 Vitajet Corporation Multiple use needle-less hypodermic injection device for individual users
US5769138A (en) * 1996-04-01 1998-06-23 Medi-Ject Corporation Nozzle and adapter for loading medicament into an injector
US6364170B1 (en) 1996-06-07 2002-04-02 Mark L. Anderson Fluid dispenser apparatus
US5934510A (en) * 1996-06-07 1999-08-10 Anderson; Mark L. Fluid dispenser apparatus
US5875976A (en) * 1996-12-24 1999-03-02 Medi-Ject Corporation Locking mechanism for nozzle assembly
US6253961B1 (en) * 1997-06-06 2001-07-03 Mark L. Anderson Fluid dispenser apparatus
US20060106333A1 (en) * 1999-10-11 2006-05-18 Leon Nanthaniel J Universal protector cap with auto-disable features for needle-free injectors
US20030088207A1 (en) * 1999-11-23 2003-05-08 Felton International, Inc. Jet injector with hand piece
US6770054B1 (en) 1999-11-23 2004-08-03 Felton International, Inc. Injector assembly with driving means and locking means
US7887506B1 (en) 1999-11-23 2011-02-15 Pulse Needlefree Systems, Inc. Safety mechanism to prevent accidental patient injection and methods of same
US7029457B2 (en) 1999-11-23 2006-04-18 Felton International, Inc. Jet injector with hand piece
US9737670B2 (en) 2002-02-11 2017-08-22 Antares Pharma, Inc. Intradermal injector
US9333309B2 (en) 2002-02-11 2016-05-10 Antares Pharma, Inc. Intradermal injector
WO2003068296A2 (en) * 2002-02-12 2003-08-21 Medical International Technology (Mit) Inc. Needleless injector
WO2003068296A3 (en) * 2002-02-12 2003-10-16 Medical Internat Technology Mi Needleless injector
US7488308B2 (en) * 2002-02-15 2009-02-10 Antares Pharma, Inc. Injector with bypass channel
US20050020984A1 (en) * 2002-02-15 2005-01-27 Lesch Paul R. Injector with bypass channel
US7442182B2 (en) 2003-10-24 2008-10-28 Bioject, Inc. Spring powered needle-free injection system
US20050119608A1 (en) * 2003-10-24 2005-06-02 Sergio Landau Spring powered needle-free injection system
US11446441B2 (en) 2005-01-24 2022-09-20 Antares Pharma, Inc. Prefilled syringe injector
US9629959B2 (en) 2005-01-24 2017-04-25 Antares Pharma, Inc. Prefilled syringe jet injector
US9180259B2 (en) 2005-01-24 2015-11-10 Antares Pharma, Inc. Prefilled syringe jet injector
US10478560B2 (en) 2005-01-24 2019-11-19 Antares Pharma, Inc. Prefilled syringe injector
US9808582B2 (en) 2006-05-03 2017-11-07 Antares Pharma, Inc. Two-stage reconstituting injector
US11547808B2 (en) 2006-05-03 2023-01-10 Antares Pharma, Inc. Two-stage reconstituting injector
US10688250B2 (en) 2006-05-03 2020-06-23 Antares Pharma, Inc. Two-stage reconstituting injector
US8915889B2 (en) 2008-08-05 2014-12-23 Antares Pharma, Inc. Multiple dosage injector
US9750881B2 (en) 2009-03-20 2017-09-05 Antares Pharma, Inc. Hazardous agent injection system
US11497753B2 (en) 2009-03-20 2022-11-15 Antares Pharma, Inc. Hazardous agent injection system
US8945063B2 (en) 2009-03-20 2015-02-03 Antares Pharma, Inc. Hazardous agent injection system
US10555954B2 (en) 2009-03-20 2020-02-11 Antares Pharma, Inc. Hazardous agent injection system
US11185642B2 (en) 2011-07-15 2021-11-30 Antares Pharma, Inc. Injection device with cammed ram assembly
US9446195B2 (en) 2011-07-15 2016-09-20 Antares Pharma, Inc. Injection device with cammed ram assembly
US9220660B2 (en) 2011-07-15 2015-12-29 Antares Pharma, Inc. Liquid-transfer adapter beveled spike
US10279131B2 (en) 2011-07-15 2019-05-07 Antares Pharma, Inc. Injection device with cammed RAM assembly
US10568809B2 (en) 2011-07-15 2020-02-25 Ferring B.V. Liquid-transfer adapter beveled spike
US10821072B2 (en) 2012-04-06 2020-11-03 Antares Pharma, Inc. Needle assisted jet injection administration of testosterone compositions
US9950125B2 (en) 2012-04-06 2018-04-24 Antares Pharma, Inc. Needle assisted jet injection administration of testosterone compositions
US11771646B2 (en) 2012-04-06 2023-10-03 Antares Pharma, Inc. Needle assisted jet injection administration of testosterone compositions
US10905827B2 (en) 2012-05-07 2021-02-02 Antares Pharma, Inc. Injection device with cammed ram assembly
US10357609B2 (en) 2012-05-07 2019-07-23 Antares Pharma, Inc. Needle assisted jet injection device having reduced trigger force
US11446440B2 (en) 2012-05-07 2022-09-20 Antares Pharma, Inc. Needle assisted injection device having reduced trigger force
US9364611B2 (en) 2012-05-07 2016-06-14 Antares Pharma, Inc. Needle assisted jet injection device having reduced trigger force
US9364610B2 (en) 2012-05-07 2016-06-14 Antares Pharma, Inc. Injection device with cammed ram assembly
US10881798B2 (en) 2013-02-11 2021-01-05 Antares Pharma, Inc. Needle assisted injection device having reduced trigger force
US9744302B2 (en) 2013-02-11 2017-08-29 Antares Pharma, Inc. Needle assisted jet injection device having reduced trigger force
US11813435B2 (en) 2013-02-11 2023-11-14 Antares Pharma, Inc. Needle assisted injection device having reduced trigger force
US10610649B2 (en) 2013-03-11 2020-04-07 Antares Pharma, Inc. Multiple dosage injector with rack and pinion dosage system
US9707354B2 (en) 2013-03-11 2017-07-18 Antares Pharma, Inc. Multiple dosage injector with rack and pinion dosage system
US11628260B2 (en) 2013-03-11 2023-04-18 Antares Pharma, Inc. Multiple dosage injector with rack and pinion dosage system
US9775697B2 (en) 2014-01-27 2017-10-03 Te Pari Products Limited Fluid dispenser
US10299903B2 (en) 2014-01-27 2019-05-28 Te Pari Products Limited Fluid dispenser

Similar Documents

Publication Publication Date Title
US3526225A (en) Jet-type hypodermic injection device
US3057349A (en) Multi-dose jet injection device
US3805783A (en) Hand powered hypodermic jet injector gun
US3292622A (en) Power operated inoculator
US4194505A (en) Containerized hypodermic module
US4266541A (en) Pressure hypodermic injector for intermittent vaccination
US3908651A (en) Medicament injection device
US3727614A (en) Multiple dosage inoculator
US2821981A (en) Multi-shot inoculant injector instrument with adjustable ejection pressure control
CA1178503A (en) Needleless hypodermic injector
EP1474192B1 (en) Needleless injector
US6056728A (en) Device for dispensing discrete doses of a liquid
US4103684A (en) Hydraulically powered hypodermic injector with adapters for reducing and increasing fluid injection force
US5499972A (en) Hypodermic jet injector
US4403989A (en) Injection device
US4342310A (en) Hydro-pneumatic jet injector
US4722728A (en) Needleless hypodermic injector
US3584626A (en) Hypodermic syringe
US3130723A (en) Multidose jet injector
US10179226B2 (en) Pressure limiting mechanism for fluid displacement and pressurizing syringe and method of assembly
GB995605A (en) Improvements relating to hypodermic injection apparatus
US2156023A (en) Hypodermic and other syringes
US3677246A (en) Hypodermic syringe
US6736795B2 (en) Device for administering an injectable product
US2687724A (en) Inoculant injector instrument