US3474254A - Photoelectronic apparatus for scanning textile material - Google Patents

Photoelectronic apparatus for scanning textile material Download PDF

Info

Publication number
US3474254A
US3474254A US708209A US3474254DA US3474254A US 3474254 A US3474254 A US 3474254A US 708209 A US708209 A US 708209A US 3474254D A US3474254D A US 3474254DA US 3474254 A US3474254 A US 3474254A
Authority
US
United States
Prior art keywords
light
reflected
defect
photoelectronic
sensitive means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US708209A
Inventor
Winfried Piepenbrink
Adolf Triller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3474254A publication Critical patent/US3474254A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/8901Optical details; Scanning details

Definitions

  • This invention relates to a photoelectronic arrangement for scanning material strips, particularly strips of textile fabric, for the purpose of determining defects in the fabric caused, for example by the breaking of a thread or of a needle.
  • a photoelectronic arrangement for scanning material strips, particularly strips of textile fabric, for the purpose of determining defects in the fabric caused, for example by the breaking of a thread or of a needle.
  • an optical head transversely above the material, said head comprising a lamp and a photoelectronic receiver.
  • a dark longitudinal line occurs at this point of the material which line is detected by the photoelectronic arrangement.
  • the afore-described method of detecting defects is not operative when the fabric is made of threads of different colors, for example when it is constituted as a white material having dark longitudinal lines. In such cases, the contrast of the darker threads with respect to the brighter base material may then be a multiple of the defect contrast. It will then be impossible for the photoelectronic arrangement to distinguish the intended black lines from defect lines.
  • the invention is based on the known utilization of socalled back reflectors constituted by reflecting material underneath the strip of textile fabric. It is known that back reflectors reflect the light directed onto them only in the direction of incidence.
  • the surface of the material to be examined may be regarded as a diffuse reflector uniformly reflecting the light directed thereon in the solid angle 21r. With relatively compact material, the diffuse radiation reflected in the optical head is dominant and accordingly the signal is modulated by the dark or bright lines in the material.
  • the invention contemplates a photoelectronic defect 3,474,254 Patented Oct. 21, 1969 monitoring apparatus, particularly for monitoring woven material strips including a light sensitive scanning device for scanning the material strip in a transverse direction and comprising a back reflector placed underneath the material strip to be monitored.
  • the monitoring arrangement is characterized, according to the invention, by the provision of two light detectors the outputs of which are connected in a bridge or differential connection, one of said light detectors being responsive only to the diffuse light reflected by the material strip, the second light de tector being responsive, with the same sensitivity, as the first light detector to the light diffusely reflected by the material strip and further being arranged in autocollimation with respect to the light source, and thereby also responsive to the light reflected by the back reflector.
  • the same diffusely reflecting radiation is directed onto both light detectors which are photoelectronic transducers and no signal occurs at the output of the bridge connection.
  • the transducer in the autocollimation radiation path additionally receives the light passing through the defect and again reflected back, and the bridge is correspondingly tuned out and generates a defect signal.
  • the arrangement is designed such that both light detectors are arranged in autocollimation with respect to the light source and the light source emits polarized light, and at least before one light detector there is arranged a polarizing device which polarizes perpendicularly to the polarization device of the light source.
  • a polarization device is arranged only before one light detector, a means is employed through which the output signal of that light detector before which no polarization device is arranged, upon admittance with stray light, occurs with the same intensity as the signal supplied by the other light detector before which there is arranged the polarization device.
  • Polarization devices polarizing perpendicularly to one another may also be provided before both light detectors, whereby it is insured that both light detectors respond with the same intensity to the diffusely reflected light.
  • the light reflected by the back reflector may be accordingly received by one transducer only, whereas the light reflected by the material being examined is received by both transducers.
  • a tuning-out of the bridge is effected only by the light passing through a defect in the material being examined.
  • the polarization filter oriented parallel to the polarizer and placed in front of the light transducer for the polarized reflected light may be omitted.
  • a light divider is used having a reflectionztransmission ratio of approx. 0.67:0.33 so as to obtain on both receivers equal intensity of the non-polarized radiation.
  • FIGURE 1 is a diagrammatic illustration of an arrangement according to the invention with geometrically separated transducers
  • FIGURE 2 shows the material to be examined
  • FIGURE 3 shows a modified arrangement with polarization filters.
  • a beam emitted by a lamp 1 is deflected by a semi-reflecting mirror 2 and is focused by a lens 3 onto a material strip 4 which is to be examined for defects.
  • a back reflector 5 composed of reflecting material is placed underneath the material strip 4. The back reflector reflects light directed thereon in the direction of incidence and with the same vibration direction, i.e. polarization direction.
  • the back reflector may be a foil known as Scotchlite which is a reflective foil consisting of glass pellets partially embedded in a synthetic resin material and backed with a mirror.
  • the light reflected by the reflector 5 is reflected in the direction of transmission and thus, after passing through the mirror 2, arrives at a photoresistance 6.
  • the photoresistance 6 also receives a part of the light diffusely strayed in all directions by the material via lens 3.
  • the light diffusely strayed in all directions by the material 4 also passes through the lens 3 to the photoresistancc 7.
  • a diaphragm 9 serves for controlling the transmitted beam.
  • the photoresistances 6 and 7 are connected in opposition in a balanced bridge and a signal will occur at output terminals of the bridge only when the photoresistances 6 and 7 are irradiated differently, i.e. when light passes through the material 4 due to the presence therein of a light passing defect 4".
  • FIG. 2 a material 4 with dark lines 4' and a defect 4" is shown.
  • a polarization filter 10 is arranged in front of the lamp 1.
  • a semi-reflecting mirror 13 which directs approximately 50% of the reflected light to the photoresistance 7 while the remainder arrives at the photoresistance 6.
  • an analyzer 12 In front of the photoresistance 6 is an analyzer 12 having a transmission direction which corresponds to that of the polarizer 10.
  • the photoelectric transducer 6 which, in case of a defect 4", also receives that part of the radiation reflected polarized by the reflector 5.
  • the transducer 7 has an analyzer 11 positioned in front thereof which polarizes light in a direction perpendicular to that of analyzer 12 and receives about 50% only of the radiation diffusely reflected by the material 4 in the direction of the lens 3.
  • the light reflected by reflector 5 is polarized in a direction perpendicular to analyzer 11 and therefore this light is blocked by the analyzer and is unable to reach photoelectric transducer 7.
  • the analyzer 12 may be omitted if the reflectionztransmission ratio of the radiation divider 13 is selected to be approximately 0.67:0.33. In such case, the light intensity on the transducers 6 and 7 will be equal.
  • Apparatus for detecting defects in woven material strips comprising photoelectric scanning means for examing material for defects, and a back reflector disposed beneath the material to be examined, said back reflector reflecting the light directed thereon in the direction of incidence and with the same polarization direction as the incident light, said scanning means comprising a light source for irradiating the material to be examined, first and second light sensitive means positioned to receive light reflected from the irradiated material and coupled together in opposition to provide zero output under the influence of light reflected diffusely from said material, only one of said light sensitive means being responsive to light reflected from the back reflector due to the existence in the material of a light passing defect, said other light sensitive means being responsive to light diffused by the material, whereby the coupled first and second light sensitive means will produce an output signal when said defect is irradiated.
  • Apparatus as claimed in claim 1 wherein said one of the light sensitive means is arranged in autocollimation with respect to the light source to receive the ligt reflected by the back reflector.
  • Apparatus as claimed in claim 1 wherein said first and second light sensitive means are in autocollimation with the light source, said apparatus comprising means for polarizing the light emitted by said source before the light irradiates the material to be examined, and a polarizing device arranged in the path of the light beam to said other of the light sensitive means, said polarizing device having a polarizing direction perpendicular to the direction of polarization of said polarizing means whereby the reflected light from the back reflector will be prevented from reaching said other light sensitive means.
  • Apparatus as claimed in claim 5 comprising a second polarizing device, the latter being arranged in the path of light reflected to said one light sensitive means, said second polarizing device having the same polarizing direction as said polarizing means.
  • Apparatus as claimed in claim 5 comprising a radiation divider in the path of the reflected light for transmitting a portion of the light to the first light sensitive means and for reflecting a portion of the light to the second light sensitive means.
  • Apparatus as claimed in claim 1 comprising a bridge connecting said first and second light sensitive means and having a balanced state when the first and second light sensitive means receive only diffusely reflected light from the irradiated material.
  • each said light sensitive means is a photoelectronic transducer.

Description

Oct. 21, 1969 w. PIEPENBRINK ETAL 3,474,254
PHOTOELECTRONIC APPARATUS FOR SCANNING TEXTILE MATERIAL Filed Feb. 26, 1968 United States Patent 3,474,254 PHOTOELECTRONIC APPARATUS FOR SCANNING TEXTILE MATERIAL Winfried Piepenbrink and Adolf Triller, Munich, Germany, assignors to Erwin Sick, Waldkirch im Breisgau,
Germany Filed Feb. 26, 1968, Ser. No. 708,209 Int. Cl. G01n 2.1/30, 21/16, 21/32 US. Cl. 250--219 Claims ABSTRACT OF THE DISCLOSURE BRIEF SUMMARY OF THE INVENTION This invention relates to a photoelectronic arrangement for scanning material strips, particularly strips of textile fabric, for the purpose of determining defects in the fabric caused, for example by the breaking of a thread or of a needle. For the purpose of such detection in plain woven material it is known to periodically move an optical head transversely above the material, said head comprising a lamp and a photoelectronic receiver. Upon occurrence of a defect caused, for instance, by the breaking of a thread or by a defective needle, a dark longitudinal line occurs at this point of the material which line is detected by the photoelectronic arrangement.
The afore-described method of detecting defects, however, is not operative when the fabric is made of threads of different colors, for example when it is constituted as a white material having dark longitudinal lines. In such cases, the contrast of the darker threads with respect to the brighter base material may then be a multiple of the defect contrast. It will then be impossible for the photoelectronic arrangement to distinguish the intended black lines from defect lines.
It has already been proposed to utilize for the purpose of detecting defects, an increased light transmitting quality of the material at the defective point. This may be effected by placing, at the scanning point, a highly refleeting material underneath the material to be examined and that that portion of the light reflected through the defect is utilized to trigger the defect signal. However, this method can only be applied successfully with large defects causing a broad gap in the fabric. With many kinds of textile fabric, a defective region allows only very little light to pass through it, so that here, too a reliable discrimination between defect and pattern is impossible.
The invention is based on the known utilization of socalled back reflectors constituted by reflecting material underneath the strip of textile fabric. It is known that back reflectors reflect the light directed onto them only in the direction of incidence. The surface of the material to be examined however, may be regarded as a diffuse reflector uniformly reflecting the light directed thereon in the solid angle 21r. With relatively compact material, the diffuse radiation reflected in the optical head is dominant and accordingly the signal is modulated by the dark or bright lines in the material.
According to the invention, this undesired modulation is eliminated by the use of two bridge connected photoelectronic transducers.
The invention contemplates a photoelectronic defect 3,474,254 Patented Oct. 21, 1969 monitoring apparatus, particularly for monitoring woven material strips including a light sensitive scanning device for scanning the material strip in a transverse direction and comprising a back reflector placed underneath the material strip to be monitored. The monitoring arrangement is characterized, according to the invention, by the provision of two light detectors the outputs of which are connected in a bridge or differential connection, one of said light detectors being responsive only to the diffuse light reflected by the material strip, the second light de tector being responsive, with the same sensitivity, as the first light detector to the light diffusely reflected by the material strip and further being arranged in autocollimation with respect to the light source, and thereby also responsive to the light reflected by the back reflector.
When the material is without defect, the same diffusely reflecting radiation is directed onto both light detectors which are photoelectronic transducers and no signal occurs at the output of the bridge connection. In case of a defect, the transducer in the autocollimation radiation path additionally receives the light passing through the defect and again reflected back, and the bridge is correspondingly tuned out and generates a defect signal.
With glossy material consisting of threads of different thickness and possibly different cross-section, it is possible that because of the different angles of observation of the two receivers, a difference in signal occurs even with faultless material because of a radiation directionally reflected by the material. This may be prevented by an arrangement in which both receivers observe the material at the same angle and wherein the separation of material reflection and reflector radiation is effected in a non geometrical manner. According to a further aspect of the invention, this is effected by the use of polarization filters. The vibration direction of the light reflected by the back reflector, arranged underneath the material strip to be monitored is not changed thereby, whereas the radiation reflected by the material is dispersed and the polarization nullified.
Preferably, the arrangement is designed such that both light detectors are arranged in autocollimation with respect to the light source and the light source emits polarized light, and at least before one light detector there is arranged a polarizing device which polarizes perpendicularly to the polarization device of the light source.
However, it is also possible to provide a polarization device before each light detector, the polarization devices polarizing perpendicularly with respect to each other.
If a polarization device is arranged only before one light detector, a means is employed through which the output signal of that light detector before which no polarization device is arranged, upon admittance with stray light, occurs with the same intensity as the signal supplied by the other light detector before which there is arranged the polarization device. Polarization devices polarizing perpendicularly to one another may also be provided before both light detectors, whereby it is insured that both light detectors respond with the same intensity to the diffusely reflected light.
The light reflected by the back reflector may be accordingly received by one transducer only, whereas the light reflected by the material being examined is received by both transducers. Thus a tuning-out of the bridge is effected only by the light passing through a defect in the material being examined.
The polarization filter oriented parallel to the polarizer and placed in front of the light transducer for the polarized reflected light may be omitted. In this case a light divider is used having a reflectionztransmission ratio of approx. 0.67:0.33 so as to obtain on both receivers equal intensity of the non-polarized radiation.
3 BRIEF DESCRIPTION OF THE DRAWING FIGURE 1 is a diagrammatic illustration of an arrangement according to the invention with geometrically separated transducers;
FIGURE 2 shows the material to be examined; and
FIGURE 3 shows a modified arrangement with polarization filters.
DETAILED DESCRIPTION A beam emitted by a lamp 1 is deflected by a semi-reflecting mirror 2 and is focused by a lens 3 onto a material strip 4 which is to be examined for defects. A back reflector 5 composed of reflecting material is placed underneath the material strip 4. The back reflector reflects light directed thereon in the direction of incidence and with the same vibration direction, i.e. polarization direction. Such material is well known and per se forms no part of the invention, other than its novel incorporation in the overall arrangement. The back reflector may be a foil known as Scotchlite which is a reflective foil consisting of glass pellets partially embedded in a synthetic resin material and backed with a mirror.
The light reflected by the reflector 5 is reflected in the direction of transmission and thus, after passing through the mirror 2, arrives at a photoresistance 6. The photoresistance 6 also receives a part of the light diffusely strayed in all directions by the material via lens 3. The light diffusely strayed in all directions by the material 4 also passes through the lens 3 to the photoresistancc 7. A diaphragm 9 serves for controlling the transmitted beam. The photoresistances 6 and 7 are connected in opposition in a balanced bridge and a signal will occur at output terminals of the bridge only when the photoresistances 6 and 7 are irradiated differently, i.e. when light passes through the material 4 due to the presence therein of a light passing defect 4". Thus when no defect is present in material 4 the values of photoresistances 6 and 7 will be equal and thereby the bridge will be balanced and the output equal to zero. When a defect is present in the material, the light reflected by reflector 5 will pass only to photoresistance 6 together with the dilfusely strayed light from the material 4. Thereby the values of photoresistances 6 and 7 will be unequal and the bridge will be unbalanced whereby an output signal will be produced at terminals 8.
In FIG. 2 a material 4 with dark lines 4' and a defect 4" is shown.
In the arrangement according to FIG. 3 the need for angular olfset of photoresistance 7 is avoided and the photoresistances 6 and 7 are both arranged in autocollimation with the light source and thereby scan the same region of the material 4 at the same angle. In FIG. 3 a polarization filter 10 is arranged in front of the lamp 1. In the receiving radiation path there is further provided a semi-reflecting mirror 13 which directs approximately 50% of the reflected light to the photoresistance 7 while the remainder arrives at the photoresistance 6. In front of the photoresistance 6 is an analyzer 12 having a transmission direction which corresponds to that of the polarizer 10. Accordingly, approximately half of the radiation diffusely reflected by the material 4 to the lens 3 is received by the photoelectric transducer 6 which, in case of a defect 4", also receives that part of the radiation reflected polarized by the reflector 5. The transducer 7 has an analyzer 11 positioned in front thereof which polarizes light in a direction perpendicular to that of analyzer 12 and receives about 50% only of the radiation diffusely reflected by the material 4 in the direction of the lens 3. The light reflected by reflector 5 is polarized in a direction perpendicular to analyzer 11 and therefore this light is blocked by the analyzer and is unable to reach photoelectric transducer 7.
The analyzer 12 may be omitted if the reflectionztransmission ratio of the radiation divider 13 is selected to be approximately 0.67:0.33. In such case, the light intensity on the transducers 6 and 7 will be equal.
What is claimed is:
1. Apparatus for detecting defects in woven material strips comprising photoelectric scanning means for examing material for defects, and a back reflector disposed beneath the material to be examined, said back reflector reflecting the light directed thereon in the direction of incidence and with the same polarization direction as the incident light, said scanning means comprising a light source for irradiating the material to be examined, first and second light sensitive means positioned to receive light reflected from the irradiated material and coupled together in opposition to provide zero output under the influence of light reflected diffusely from said material, only one of said light sensitive means being responsive to light reflected from the back reflector due to the existence in the material of a light passing defect, said other light sensitive means being responsive to light diffused by the material, whereby the coupled first and second light sensitive means will produce an output signal when said defect is irradiated.
2. Apparatus as claimed in claim 1 wherein said first and second light sensitive means respond with equal sensitivity to the light reflected from the material.
3. Apparatus as claimed in claim 1 wherein said one of the light sensitive means is arranged in autocollimation with respect to the light source to receive the ligt reflected by the back reflector.
4. Apparatus as claimed in claim 3 wherein said other of said light sensitive means is angularly offset from said one light sensitive means to be out of the path of the light reflected by the back reflector.
5. Apparatus as claimed in claim 1 wherein said first and second light sensitive means are in autocollimation with the light source, said apparatus comprising means for polarizing the light emitted by said source before the light irradiates the material to be examined, and a polarizing device arranged in the path of the light beam to said other of the light sensitive means, said polarizing device having a polarizing direction perpendicular to the direction of polarization of said polarizing means whereby the reflected light from the back reflector will be prevented from reaching said other light sensitive means.
6. Apparatus as claimed in claim 5 comprising a second polarizing device, the latter being arranged in the path of light reflected to said one light sensitive means, said second polarizing device having the same polarizing direction as said polarizing means.
7. Apparatus as claimed in claim 5 comprising a radiation divider in the path of the reflected light for transmitting a portion of the light to the first light sensitive means and for reflecting a portion of the light to the second light sensitive means.
8. Apparatus as claimed in claim 7 wherein said second light sensitive means is said other of the sensitive means and the radiation divider has a reflectionztransmission ratio of approximately 9. Apparatus as claimed in claim 1 comprising a bridge connecting said first and second light sensitive means and having a balanced state when the first and second light sensitive means receive only diffusely reflected light from the irradiated material.
10. Apparatus as claimed in claim 9 wherein each said light sensitive means is a photoelectronic transducer.
References Cited WALTER STOLWEIN, Primary Examiner Us. 01. X.R. 356-200, 23
US708209A 1968-02-26 1968-02-26 Photoelectronic apparatus for scanning textile material Expired - Lifetime US3474254A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US70820968A 1968-02-26 1968-02-26
FR141666 1968-02-28

Publications (1)

Publication Number Publication Date
US3474254A true US3474254A (en) 1969-10-21

Family

ID=26181841

Family Applications (1)

Application Number Title Priority Date Filing Date
US708209A Expired - Lifetime US3474254A (en) 1968-02-26 1968-02-26 Photoelectronic apparatus for scanning textile material

Country Status (2)

Country Link
US (1) US3474254A (en)
FR (1) FR1567215A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3575515A (en) * 1969-06-25 1971-04-20 Appalachian Electronic Instr Beam of yarn sheet monitoring apparatus
US3685912A (en) * 1970-04-01 1972-08-22 Ingenuics Inc Large area retro-transmitting light meter
US3768912A (en) * 1970-06-26 1973-10-30 Sauer A Ag Optical method and device for monitoring moving bodies
US3834822A (en) * 1973-03-29 1974-09-10 Gen Motors Corp Method and apparatus for surface defect detection using detection of non-symmetrical patterns of non-specularly reflected light
US3841761A (en) * 1973-10-24 1974-10-15 Neotec Corp Method and apparatus for detecting faults in fabric
JPS5196377A (en) * 1975-02-21 1976-08-24
US4065213A (en) * 1969-10-22 1977-12-27 Curt Lennart Nyman Apparatus for and method of inspecting tubular textile goods
DE2903072A1 (en) * 1978-01-27 1979-08-09 Hitachi Ltd DEVICE AND METHOD FOR SURFACE INSPECTION
US4170419A (en) * 1977-02-23 1979-10-09 Camsco, Inc. Optical web inspection system
US4184175A (en) * 1977-02-09 1980-01-15 The Procter & Gamble Company Method of and apparatus for optically detecting anomalous subsurface structure in translucent articles
US4189335A (en) * 1978-09-28 1980-02-19 The Dow Chemical Company Method for determining distribution of a coating composition on a carpet structure
EP0018505A2 (en) * 1979-05-03 1980-11-12 Erwin Sick GmbH Optik-Elektronik Banknote condition monitoring apparatus
EP0020880A1 (en) * 1979-06-26 1981-01-07 Erwin Sick GmbH Optik-Elektronik Optical fault seeking apparatus for material webs
EP0051899A1 (en) * 1980-11-07 1982-05-19 De Nederlandsche Bank N.V. Apparatus for automatically detecting and evaluating the characteristics of prints
US4632546A (en) * 1983-04-22 1986-12-30 Erwin Sick Gmbh Optik-Elektronik Grooved surface defect detection apparatus
US4864150A (en) * 1988-02-09 1989-09-05 Russell Corporation Method for inspecting, detecting and distinguishing sides of fabrics
US4984896A (en) * 1987-10-06 1991-01-15 Protechna Herbst Gmbh & Co. K.G. Method and apparatus for optically monitoring a knitted article
US5444265A (en) * 1993-02-23 1995-08-22 Lsi Logic Corporation Method and apparatus for detecting defective semiconductor wafers during fabrication thereof
US5648850A (en) * 1994-09-27 1997-07-15 Basler Gmbh Method and device for quality control of objects with polarized light

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI63835C (en) * 1981-02-10 1983-08-10 Altim Control Ky FOERFARANDE FOER IDENTIFIERING AV ETT VIRKES YTEGENSKAPER

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2961548A (en) * 1959-08-17 1960-11-22 Gpe Controls Inc Control system
US3046767A (en) * 1960-05-31 1962-07-31 Appalachian Electronic Instr Scanning heads for stop-motion devices for knitting machines
US3053137A (en) * 1955-03-24 1962-09-11 Loepfe Ag Geb Electro-optical apparatus for sensing in counting, regulating, and control systems
US3385971A (en) * 1965-08-06 1968-05-28 Appalachian Electric Instr Inc Radiation sensitive fabric flaw detecting systems

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3053137A (en) * 1955-03-24 1962-09-11 Loepfe Ag Geb Electro-optical apparatus for sensing in counting, regulating, and control systems
US2961548A (en) * 1959-08-17 1960-11-22 Gpe Controls Inc Control system
US3046767A (en) * 1960-05-31 1962-07-31 Appalachian Electronic Instr Scanning heads for stop-motion devices for knitting machines
US3385971A (en) * 1965-08-06 1968-05-28 Appalachian Electric Instr Inc Radiation sensitive fabric flaw detecting systems

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3575515A (en) * 1969-06-25 1971-04-20 Appalachian Electronic Instr Beam of yarn sheet monitoring apparatus
US4065213A (en) * 1969-10-22 1977-12-27 Curt Lennart Nyman Apparatus for and method of inspecting tubular textile goods
US3685912A (en) * 1970-04-01 1972-08-22 Ingenuics Inc Large area retro-transmitting light meter
US3768912A (en) * 1970-06-26 1973-10-30 Sauer A Ag Optical method and device for monitoring moving bodies
US3834822A (en) * 1973-03-29 1974-09-10 Gen Motors Corp Method and apparatus for surface defect detection using detection of non-symmetrical patterns of non-specularly reflected light
US3841761A (en) * 1973-10-24 1974-10-15 Neotec Corp Method and apparatus for detecting faults in fabric
JPS5196377A (en) * 1975-02-21 1976-08-24
US4184175A (en) * 1977-02-09 1980-01-15 The Procter & Gamble Company Method of and apparatus for optically detecting anomalous subsurface structure in translucent articles
US4170419A (en) * 1977-02-23 1979-10-09 Camsco, Inc. Optical web inspection system
DE2903072A1 (en) * 1978-01-27 1979-08-09 Hitachi Ltd DEVICE AND METHOD FOR SURFACE INSPECTION
US4189335A (en) * 1978-09-28 1980-02-19 The Dow Chemical Company Method for determining distribution of a coating composition on a carpet structure
EP0018505A2 (en) * 1979-05-03 1980-11-12 Erwin Sick GmbH Optik-Elektronik Banknote condition monitoring apparatus
EP0018505A3 (en) * 1979-05-03 1981-10-14 Erwin Sick Gmbh Optik-Elektronik Banknote condition monitoring apparatus
EP0020880A1 (en) * 1979-06-26 1981-01-07 Erwin Sick GmbH Optik-Elektronik Optical fault seeking apparatus for material webs
EP0051899A1 (en) * 1980-11-07 1982-05-19 De Nederlandsche Bank N.V. Apparatus for automatically detecting and evaluating the characteristics of prints
US4555181A (en) * 1980-11-07 1985-11-26 De Nederlandsche Bank N.V. Apparatus for automatically detecting and evaluating the characteristics of prints
US4632546A (en) * 1983-04-22 1986-12-30 Erwin Sick Gmbh Optik-Elektronik Grooved surface defect detection apparatus
US4984896A (en) * 1987-10-06 1991-01-15 Protechna Herbst Gmbh & Co. K.G. Method and apparatus for optically monitoring a knitted article
US4864150A (en) * 1988-02-09 1989-09-05 Russell Corporation Method for inspecting, detecting and distinguishing sides of fabrics
US5444265A (en) * 1993-02-23 1995-08-22 Lsi Logic Corporation Method and apparatus for detecting defective semiconductor wafers during fabrication thereof
US5648850A (en) * 1994-09-27 1997-07-15 Basler Gmbh Method and device for quality control of objects with polarized light

Also Published As

Publication number Publication date
FR1567215A (en) 1969-05-16

Similar Documents

Publication Publication Date Title
US3474254A (en) Photoelectronic apparatus for scanning textile material
US4945253A (en) Means of enhancing the sensitivity of a gloss sensor
US3814946A (en) Method of detecting defects in transparent and semitransparent bodies
US4803470A (en) Substance detector device
US4004152A (en) Apparatus for monitoring a moving web of material for faults
SU1170978A3 (en) Method of determining quality of wood
US4737650A (en) Inspection apparatus
US4904877A (en) Optical scanning apparatus for detecting faults in transparent material wherein the plane of incident light is arranged at the breuster angle to the normal to the surface
RU95117090A (en) DETECTION OF FALSE OBJECTS
US4522497A (en) Web scanning apparatus
US6771365B1 (en) Method and device for detecting foreign matter in a fibre assembly which is moved lengthwise
GB1065752A (en) Fault detecting
US20170336316A1 (en) Device for characterizing a sample
US4536654A (en) Device for detecting flaws on a piece
US4120591A (en) Color detection device
US5084628A (en) Sheet inspection method and apparatus having retroreflecting means
JPH11304724A (en) Device and method for inspecting hole of light-transmission sheet
GB1284442A (en) Method and electro-optical system for inspecting bodies such as tiles
US3734624A (en) Apparatus using reflected polarized light to inspect a moving web
CA1168467A (en) Apparatus for automatically detecting and evaluating the characteristics of prints
JPH0627716B2 (en) Non-woven fabric defect detector
JPH0541407Y2 (en)
GB2183332A (en) Cinefilm fault detector
JPH0330814B2 (en)
US3564265A (en) Apparatus for detecting and locating streaks on moving webs in the production of photographic papers and films