US3427624A - Low profile antenna having horizontal tunable top loading member - Google Patents

Low profile antenna having horizontal tunable top loading member Download PDF

Info

Publication number
US3427624A
US3427624A US564959A US3427624DA US3427624A US 3427624 A US3427624 A US 3427624A US 564959 A US564959 A US 564959A US 3427624D A US3427624D A US 3427624DA US 3427624 A US3427624 A US 3427624A
Authority
US
United States
Prior art keywords
antenna
capacitors
post
tuning
series
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US564959A
Inventor
Robert D Wanselow
Dale W Milligan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northrop Grumman Corp
Original Assignee
Northrop Grumman Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northrop Grumman Corp filed Critical Northrop Grumman Corp
Application granted granted Critical
Publication of US3427624A publication Critical patent/US3427624A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/06Details
    • H01Q9/14Length of element or elements adjustable
    • H01Q9/145Length of element or elements adjustable by varying the electrical length
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/32Vertical arrangement of element
    • H01Q9/36Vertical arrangement of element with top loading

Definitions

  • a vertically polarized low profile antenna having a vertical radiator and a horizontal top loading member connected to the top of the radiator is provided with novel wide-band tuning means comprising a plurality of variable capacitors connected in series with the top loading member of optimum spacings.
  • novel wide-band tuning means comprising a plurality of variable capacitors connected in series with the top loading member of optimum spacings.
  • the present invention relates to antennas, and more particularly, to a low-profile, transmission line antenna tunable over a wide frequency range.
  • the antenna of this invention is of a class called a
  • Directly Driven Resonant Radiator or DDRR.
  • Examples of antennas incorporating DDRR principles are found in US. Patents 3,151,328 and 3,247,515 by Boyer, 3,384,896 by Kriz, and copending application Ser. No. 527,874, filed Feb. 16, 1966- by Milligan and Wanselow.
  • a further object of this invention is to provide a DDRR antenna and tuning means therefor which is admirably suited for airborne or mobile vehicle use, by virtue of its simultaneous low height and eflicient radiation, and its good performance under the associated environmental conditions.
  • Our invention comprises a short vertical post radiator top-loaded by a horizontal, unbalanced transmission line member having a plurality of tuning capacitors connected thereto, said capacitors being preferably connected directly in series with said horizontal top-load member and spaced apart a predetermined distance for greatest continuous tunable frequency range.
  • FIGURE 1 is a schematic elevational diagram of one preferred form of antenna, showing a tri-series capacitor tuned arrangement.
  • FIGURE 2 is a schematic elevational diagram of an alternate embodiment, showing a combination series-shunt tuned model.
  • FIGURE 3 is a top perspective diagrammatic view of a complete antenna assembly, showing a generally spiral form of the top loading member.
  • FIGURE 4 is an elevational view of the antenna in FIGURE 3, viewed approximately as indicated by the line 4-4 in FIGURE 3.
  • a conductive vertical post 1 is connected directly to a conductive ground plane member 2.
  • a conductive top load member 4 is mounted parallel to the ground plane 2 and has one end directly connected to the top of the post 1.
  • Variable capacitors 0,, C and C are attached in series with the top load member 4.
  • the resonant frequency of the antenna changes.
  • a feed wire 5 is connected to the post 1 or to the top member 4 near their junction, the exact point affecting the input impedance of the antenna.
  • Feed wire 5 is con nected to the inner conductor of a coaxial transmission line 6, for example, with the outer conductor of line 6 being connected to the ground plane 2.
  • FIGURE 2 is shown another plural-tuning capacitor means for a similar antenna.
  • one series tuning capacitor C is directly in series with the top member 4a, while in shunt tuning capacitor C is connected between the far end 7 of top member 4a and the ground plane 2.
  • a ground plane member 2a is made of aluminum honeycomb material, for example, and constitutes a base for the entire assembly.
  • the ground plane member 2a is preferably solid and continuous, but may be lattice-like or consist of a connected wire grid, for example.
  • Fiber glass brackets 9 erected from the base carry a fiber glass support panel 10 at their upper ends.
  • a generally rectangular spiral top load member 4b of metal tubing is mounted on the upper side of the support panel 10, with the inner end of the spiral bent downwardly through the panel 10 to form the radiating post 1:: of the antenna.
  • the lower end of post In is conductively connected directly to the ground plane member 2a.
  • the top member 4b is broken to accommodate metal hangers 11, between each pair of which is mounted a variable capacitor C1, C2, and C3, respectively.
  • a variable capacitor C1, C2, and C3, respectively Only one capacitor, C2, is shown in FIG- URE 4 for the sake of clarity.
  • the variable capacitors are thus just below the panel 10, and each carrier a rotatable toothed pulley 12 by which the capacity is varied. It should be noted that the capacitors are located as nearly as possible in the same plane as the top-load member 4b so that vertical current paths are avoided.
  • a horizontal drive shaft 14 is supported by end fittings 15 from the panel 10, and positive-drive belts 16 are operatively installed between the drive shaft 14 and the pulleys 12 of the variable capacitors C1, C2, and C3.
  • a servo drive motor unit 17 is mounted on the ground plane 20., with a motor belt 19 providing rotating power to the drive shaft 14. Thus all capacitors are adjusted simultaneously.
  • a terminal lug 20 is fastened to a bolt 21 installed through the tubing.
  • a feed wire 5a is connected to this lug 20 and extends down through the ground plane 2a a short distance from post In.
  • the feed wire 5a is insulated from the ground plane 2a by insulator 22 and connects to a coaxial transmission line connector 23.
  • the point of connection of feed wire 5a to the antenna is predetermined from an impedance standpoint to match the transmission line.
  • a plastic cover 24 may be installed over the entire antenna and attached to the edges of the ground member 2a. This assembly is especially well suited for use on aircraft or the like, the ground plane member 2a being preferably electrically bonded to the vehicles metal structure.
  • a tuning range of more than 3:1 is provided, e.g., from 30 mc. to 104 me. in one actual embodiment.
  • This tuning coverage exists in two modes; the lower mode frequency band is from 30 to 76 me. and the upper mode is from 74 to 104 mc.
  • Other higher modes exist, but not in a continuous coverage of the frequency spectrum.
  • the antenna is resonant at two or more frequencies for each combination of settings of the three tuning capacitors C1, C2, and C3.
  • the lower mode is where the total elec trical length of the antenna (post plus top-load) is onequarter wavelength.
  • capacitors Cl and C2 may be 5.3 to 102 micromicro farad components, and capacitor C3 may be a 6.0 to 145 micro-micro farad component.
  • the post 1a is 6 to 8 inches in height for example, and the total physical length of the antenna (post la plus top-load member 4b) is approximately 150 inches.
  • length L is about 23 inches, L about 42 inches, L about 29 inches, and L about 56 inches, for example.
  • the post and top-load member should be of relatively large diameter to have a minimum RF electrical resistance and thus reduce the antenna circuit loss.
  • the total antenna circuit loss resistance is less than M. ohm. A 50% or greater radiation efficiency is thereby achieved.
  • an antenna as illustrated herein having a six-inch post 1a is less than 0.05 wavelength in height, at the highest operating frequency of the second mode.
  • an 8 inch post may be employed.
  • Resonance over the required band can be accomplished either by tuning each of the series capacitors separately or by tuning all of them simultaneously.
  • the input voltage standing wave ratio of this antenna is well below 2:1, and is especially low if a larger ground plane is used 1 or 1a vertical, a vertically polarized wave is radiated.
  • the present antenna also functions as a receiving antenna, and can be used in various rotated positions, i.e., with the post 1 or 2a horizontal for horizontally polarized waves.
  • This antenna is most suitable for applications in the HF, VHF, and UHF frequency bands since its advantages includes optimization of the space or volume required, high efficiency, and good inherent circuit selectivity. The latter is reflected by the relatively high circuit Q, which is or more.
  • the present antenna is rugged and capable of practical, protected installations on aircraft or land craft of all types.
  • the ganged capacitors can be rapidly and automatically tuned to the desired frequency.
  • An antenna comprising a radiating post element, a top-load member having one end connected at a right angle to one end of said post element, the other end of said top-load member being free, and a plurality of variable capacitors connected in series within said top-load member, the spacing between said capacitors and the values thereof being chosen on the basis of the widest possible continuous tunable frequency range.
  • top-load member is formed in the general shape of a spiral having more than one complete turn.

Landscapes

  • Details Of Aerials (AREA)
  • Waveguide Aerials (AREA)
  • Support Of Aerials (AREA)

Description

Feb. 11, 1969 R D. WANSELOW ETAL LOW PROFILE ANTENNA HAVING HORIZONTAL TUNABLE TOP LOADING MEMBER Filed July l3, 1966 Sheet l g-i Y/N M Feb. N, 1989 R. D. WANSELOW ETAL 3,427,624 LOW PROFILE ANTENNA HAVINGHORIZONTAL TUNABLE TOP LOADING MEMBER Sheet Filed July 15, 1966 United States Patent Oflice 3,427,624 Patented Feb. 11, 1969 4 Claims ABSTRACT OF THE DISCLOSURE A vertically polarized low profile antenna having a vertical radiator and a horizontal top loading member connected to the top of the radiator is provided with novel wide-band tuning means comprising a plurality of variable capacitors connected in series with the top loading member of optimum spacings. A preferred embodiment using a multiple-turn spiral top load with three ganged series tuning capacitors is described.
The present invention relates to antennas, and more particularly, to a low-profile, transmission line antenna tunable over a wide frequency range.
The antenna of this invention is of a class called a,
Directly Driven Resonant Radiator, or DDRR. Examples of antennas incorporating DDRR principles are found in US. Patents 3,151,328 and 3,247,515 by Boyer, 3,384,896 by Kriz, and copending application Ser. No. 527,874, filed Feb. 16, 1966- by Milligan and Wanselow.
It is an object of the present invention to extend the DDRR concept to provide excellent selectivity and radiation characteristics while tuning over a wider frequency range than previously attainable.
A further object of this invention is to provide a DDRR antenna and tuning means therefor which is admirably suited for airborne or mobile vehicle use, by virtue of its simultaneous low height and eflicient radiation, and its good performance under the associated environmental conditions.
Our invention comprises a short vertical post radiator top-loaded by a horizontal, unbalanced transmission line member having a plurality of tuning capacitors connected thereto, said capacitors being preferably connected directly in series with said horizontal top-load member and spaced apart a predetermined distance for greatest continuous tunable frequency range.
This invention will be more fully understood by reference to the detailed description of specific apparatus to follow, and to the accompanying illustrative drawings, wherein:
FIGURE 1 is a schematic elevational diagram of one preferred form of antenna, showing a tri-series capacitor tuned arrangement.
FIGURE 2 is a schematic elevational diagram of an alternate embodiment, showing a combination series-shunt tuned model.
FIGURE 3 is a top perspective diagrammatic view of a complete antenna assembly, showing a generally spiral form of the top loading member.
FIGURE 4 is an elevational view of the antenna in FIGURE 3, viewed approximately as indicated by the line 4-4 in FIGURE 3.
Referring first to FIGURE 1 for the general form of the present antenna, a conductive vertical post 1 is connected directly to a conductive ground plane member 2. A conductive top load member 4 is mounted parallel to the ground plane 2 and has one end directly connected to the top of the post 1. Variable capacitors 0,, C and C are attached in series with the top load member 4.
As one or more of the three capacitors are varied, the resonant frequency of the antenna changes.
A feed wire 5 is connected to the post 1 or to the top member 4 near their junction, the exact point affecting the input impedance of the antenna. Feed wire 5 is con nected to the inner conductor of a coaxial transmission line 6, for example, with the outer conductor of line 6 being connected to the ground plane 2.
In FIGURE 2 is shown another plural-tuning capacitor means for a similar antenna. Here, one series tuning capacitor C is directly in series with the top member 4a, while in shunt tuning capacitor C is connected between the far end 7 of top member 4a and the ground plane 2.
As is known, space may be saved by forming the top load member 4 into a loop, ring, spiral, or other shape. Such a design is shown in FIGURE 3 for a tri-series capacitor tuned antenna, including driving means for the capacitors. In FIGURES 3 and 4, a ground plane member 2a is made of aluminum honeycomb material, for example, and constitutes a base for the entire assembly. The ground plane member 2a is preferably solid and continuous, but may be lattice-like or consist of a connected wire grid, for example. Fiber glass brackets 9 erected from the base carry a fiber glass support panel 10 at their upper ends. A generally rectangular spiral top load member 4b of metal tubing is mounted on the upper side of the support panel 10, with the inner end of the spiral bent downwardly through the panel 10 to form the radiating post 1:: of the antenna. The lower end of post In is conductively connected directly to the ground plane member 2a.
At three selected positions, the top member 4b is broken to accommodate metal hangers 11, between each pair of which is mounted a variable capacitor C1, C2, and C3, respectively. (Only one capacitor, C2, is shown in FIG- URE 4 for the sake of clarity.) The variable capacitors are thus just below the panel 10, and each carrier a rotatable toothed pulley 12 by which the capacity is varied. It should be noted that the capacitors are located as nearly as possible in the same plane as the top-load member 4b so that vertical current paths are avoided.
A horizontal drive shaft 14 is supported by end fittings 15 from the panel 10, and positive-drive belts 16 are operatively installed between the drive shaft 14 and the pulleys 12 of the variable capacitors C1, C2, and C3. A servo drive motor unit 17 is mounted on the ground plane 20., with a motor belt 19 providing rotating power to the drive shaft 14. Thus all capacitors are adjusted simultaneously.
Approximately at the upper end of post 1a, a terminal lug 20 is fastened to a bolt 21 installed through the tubing. A feed wire 5a is connected to this lug 20 and extends down through the ground plane 2a a short distance from post In. The feed wire 5a is insulated from the ground plane 2a by insulator 22 and connects to a coaxial transmission line connector 23. As mentioned previously, the point of connection of feed wire 5a to the antenna is predetermined from an impedance standpoint to match the transmission line.
A plastic cover 24 may be installed over the entire antenna and attached to the edges of the ground member 2a. This assembly is especially well suited for use on aircraft or the like, the ground plane member 2a being preferably electrically bonded to the vehicles metal structure.
In the antenna configuration with the series and shunt tuning capacitors as in FIGURE 2, approximately a 2.5 :1 frequency tuning range is obtained. Resonance is accomplished by tuning the series capacitor C in conjunction with the end shunt capacitor C However, as the resonant frequency is lowered, the radiation efliciency is reduced, due to a higher current through shunt capacitor than shown herein in FIGURES 3 and 4. With the post C which is in opposition to the current in the radiating post 1, and hence tends to cancel the radiation-producing current.
We have found that the above disadvantage can be eliminated by replacing the shunt capacitor C with a series capacitor (or capacitors) and a short additional length of top member. Therefore, no current cancellation occurs and efficiency is good throughout the tuning range. The upper limit on the tuning range with series tuning is determined by the maximum amount of variable capacitance that can be obtained with available capacitors.
In the case of the preferred tri-series tuned model as illustrated in FIGURES 1, 3 and 4, a tuning range of more than 3:1 is provided, e.g., from 30 mc. to 104 me. in one actual embodiment. This tuning coverage exists in two modes; the lower mode frequency band is from 30 to 76 me. and the upper mode is from 74 to 104 mc. Other higher modes exist, but not in a continuous coverage of the frequency spectrum. In other words, the antenna is resonant at two or more frequencies for each combination of settings of the three tuning capacitors C1, C2, and C3. The lower mode is where the total elec trical length of the antenna (post plus top-load) is onequarter wavelength.
In the same example as used in the preceding paragraph, capacitors Cl and C2 may be 5.3 to 102 micromicro farad components, and capacitor C3 may be a 6.0 to 145 micro-micro farad component. The post 1a is 6 to 8 inches in height for example, and the total physical length of the antenna (post la plus top-load member 4b) is approximately 150 inches. Regarding the spacing of capacitors and referring to FIGURE 1, length L is about 23 inches, L about 42 inches, L about 29 inches, and L about 56 inches, for example. For high efficiency, the post and top-load member should be of relatively large diameter to have a minimum RF electrical resistance and thus reduce the antenna circuit loss. Using inch diameter tubing for the post 1a and top-load member 4b, for example, and low loss capacitors, the total antenna circuit loss resistance is less than M. ohm. A 50% or greater radiation efficiency is thereby achieved.
The selection of capacitor spacing and value is made with the object of obtaining the largest tunable frequency range in the quarter wave mode. In the case of the triseries tuned model, the calculations become quite cumbersome, but consist of satisfying the basic relation L,,=90L, at quarter-wave resonance, where L is the equivalent replaced electrical length encompassed by the capacitor values chosen for C C and C and the physical line lengths L L and L Other resonances are formulated such that the sum of L and L is equal to odd multiples of quarter wave resonance, i.e., 270, 450, etc.
It will be appreciated that an antenna as illustrated herein having a six-inch post 1a is less than 0.05 wavelength in height, at the highest operating frequency of the second mode. For increased efficiency, an 8 inch post may be employed.
Resonance over the required band can be accomplished either by tuning each of the series capacitors separately or by tuning all of them simultaneously. The input voltage standing wave ratio of this antenna is well below 2:1, and is especially low if a larger ground plane is used 1 or 1a vertical, a vertically polarized wave is radiated. Of course, the present antenna also functions as a receiving antenna, and can be used in various rotated positions, i.e., with the post 1 or 2a horizontal for horizontally polarized waves.
This antenna is most suitable for applications in the HF, VHF, and UHF frequency bands since its advantages includes optimization of the space or volume required, high efficiency, and good inherent circuit selectivity. The latter is reflected by the relatively high circuit Q, which is or more.
Mechanically, the present antenna is rugged and capable of practical, protected installations on aircraft or land craft of all types. By employing a reflectorneter or error detection phase discriminator circuit and a servo system, the ganged capacitors can be rapidly and automatically tuned to the desired frequency.
While in order to comply with the statute, the invention has been described in language more or less specific as to strucural features, it is to be understood that the invention is not limited to the specific features shown, but that the means and construction herein disclosed comprise the preferred form of several variations of putting the invention into effect, and the invention is therefore claimed in any of its forms or modifications within the legitimate and valid scope of the appended claims.
What is claimed is:
1. An antenna comprising a radiating post element, a top-load member having one end connected at a right angle to one end of said post element, the other end of said top-load member being free, and a plurality of variable capacitors connected in series within said top-load member, the spacing between said capacitors and the values thereof being chosen on the basis of the widest possible continuous tunable frequency range.
2. Apparatus in accordance with claim 1 wherein said top-load member is formed in the general shape of a spiral having more than one complete turn.
3. Apparatus in accordance with claim 1 wherein the total effective electrical length of said post element and said top-load member is one-quarter wavelength at the lowest resonant operating frequency.
4. Apparatus in accordance with claim 1 wherein said capacitors are ganged together, with driving means for simultaneously and continuously adjusting said capacitors between minimum and maximum capacities thereof.
References Cited UNITED STATES PATENTS 2,166,750 1/1939 Carter 343--744 2,283,897 5/ 1942 Alford 343744 2,417,793 3/1947 Wehner 343-830 2,431,124 11/1947 Kees et al 343-845 2,578,154 12/ 1951 Shanklin 343-845 2,850,732 9/1958 Kandoian et a1 343752 3,151,289 9/ 1964 Boyer 343744 3,358,286 12/ 1967 Heins 343750 ELI LIEBERMAN, Primary Examiner.
US. Cl. X.R.
US564959A 1966-07-13 1966-07-13 Low profile antenna having horizontal tunable top loading member Expired - Lifetime US3427624A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US56495966A 1966-07-13 1966-07-13

Publications (1)

Publication Number Publication Date
US3427624A true US3427624A (en) 1969-02-11

Family

ID=24256617

Family Applications (1)

Application Number Title Priority Date Filing Date
US564959A Expired - Lifetime US3427624A (en) 1966-07-13 1966-07-13 Low profile antenna having horizontal tunable top loading member

Country Status (3)

Country Link
US (1) US3427624A (en)
DE (1) DE1541521A1 (en)
GB (1) GB1182952A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3568206A (en) * 1968-02-15 1971-03-02 Northrop Corp Transmission line loaded annular slot antenna
US3623161A (en) * 1967-09-26 1971-11-23 Matsushita Electric Ind Co Ltd Fractional wavelength folded antenna mounted on portable radio
US3838429A (en) * 1973-08-03 1974-09-24 Us Army Miniaturized transmission line top loaded monopole antenna
US3946397A (en) * 1974-12-16 1976-03-23 Motorola, Inc. Inductor or antenna arrangement with integral series resonating capacitors
EP0285743A2 (en) * 1987-03-12 1988-10-12 Npp "Mirta" Linear array of half wave dipoles with quarter wave dipoles at the ends
US4862181A (en) * 1986-10-31 1989-08-29 Motorola, Inc. Miniature integral antenna-radio apparatus
US5181044A (en) * 1989-11-15 1993-01-19 Matsushita Electric Works, Ltd. Top loaded antenna
US5721557A (en) * 1994-08-26 1998-02-24 Westinghouse Electric Corporation Non-squinting end-fed quadrifilar helical antenna
EP1239543A1 (en) * 2001-02-23 2002-09-11 FUBA Automotive GmbH & Co. KG Flat antenna for the mobil satellite communication
US6642902B2 (en) 2002-04-08 2003-11-04 Kenneth A. Hirschberg Low loss loading, compact antenna and antenna loading method
EP1557902A1 (en) * 2004-01-26 2005-07-27 Alps Electric Co., Ltd. Wideband tunable antenna
US20060139226A1 (en) * 2004-11-09 2006-06-29 Alps Electric Co., Ltd. Antenna device having enhanced reception sensitivity in wide bands
EP1826874A1 (en) * 2006-02-27 2007-08-29 Alps Electric Co., Ltd. Antenna device having enhanced reception sensitivity in wide bands

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2112579A (en) * 1981-09-10 1983-07-20 Nat Res Dev Multiband dipoles and ground plane antennas
GB8316510D0 (en) * 1983-06-17 1983-07-20 Hately M C Antenna
GB9410557D0 (en) * 1994-05-26 1994-07-13 Schlumberger Ind Ltd Radio antennae

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2166750A (en) * 1936-02-15 1939-07-18 Rca Corp Antenna
US2283897A (en) * 1939-04-26 1942-05-26 Internat Telephone & Radio Mfg Antenna system
US2417793A (en) * 1944-08-01 1947-03-18 Rca Corp Antenna
US2431124A (en) * 1946-02-20 1947-11-18 Electronics Res Inc Antenna
US2578154A (en) * 1949-09-03 1951-12-11 Collins Radio Co Radiant energy antenna
US2850732A (en) * 1955-10-03 1958-09-02 Itt Antenna for mobile communications
US3151289A (en) * 1962-05-02 1964-09-29 Gen Electric Switching control for maintaining the current within predetermined levels
US3358286A (en) * 1964-08-13 1967-12-12 Eggud Electronics Inc Small cylindrical stub antenna with loading capacitance

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2166750A (en) * 1936-02-15 1939-07-18 Rca Corp Antenna
US2283897A (en) * 1939-04-26 1942-05-26 Internat Telephone & Radio Mfg Antenna system
US2417793A (en) * 1944-08-01 1947-03-18 Rca Corp Antenna
US2431124A (en) * 1946-02-20 1947-11-18 Electronics Res Inc Antenna
US2578154A (en) * 1949-09-03 1951-12-11 Collins Radio Co Radiant energy antenna
US2850732A (en) * 1955-10-03 1958-09-02 Itt Antenna for mobile communications
US3151289A (en) * 1962-05-02 1964-09-29 Gen Electric Switching control for maintaining the current within predetermined levels
US3358286A (en) * 1964-08-13 1967-12-12 Eggud Electronics Inc Small cylindrical stub antenna with loading capacitance

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3623161A (en) * 1967-09-26 1971-11-23 Matsushita Electric Ind Co Ltd Fractional wavelength folded antenna mounted on portable radio
US3568206A (en) * 1968-02-15 1971-03-02 Northrop Corp Transmission line loaded annular slot antenna
US3838429A (en) * 1973-08-03 1974-09-24 Us Army Miniaturized transmission line top loaded monopole antenna
US3946397A (en) * 1974-12-16 1976-03-23 Motorola, Inc. Inductor or antenna arrangement with integral series resonating capacitors
US4862181A (en) * 1986-10-31 1989-08-29 Motorola, Inc. Miniature integral antenna-radio apparatus
EP0285743A2 (en) * 1987-03-12 1988-10-12 Npp "Mirta" Linear array of half wave dipoles with quarter wave dipoles at the ends
EP0285743A3 (en) * 1987-03-12 1990-03-28 Npp "Mirta" Linear array of half wave dipoles with quarter wave dipoles at the ends
US5181044A (en) * 1989-11-15 1993-01-19 Matsushita Electric Works, Ltd. Top loaded antenna
US5721557A (en) * 1994-08-26 1998-02-24 Westinghouse Electric Corporation Non-squinting end-fed quadrifilar helical antenna
EP1239543A1 (en) * 2001-02-23 2002-09-11 FUBA Automotive GmbH & Co. KG Flat antenna for the mobil satellite communication
US6653982B2 (en) 2001-02-23 2003-11-25 Fuba Automotive Gmbh & Co. Kg Flat antenna for mobile satellite communication
US6642902B2 (en) 2002-04-08 2003-11-04 Kenneth A. Hirschberg Low loss loading, compact antenna and antenna loading method
EP1557902A1 (en) * 2004-01-26 2005-07-27 Alps Electric Co., Ltd. Wideband tunable antenna
US20050162323A1 (en) * 2004-01-26 2005-07-28 Makoto Shigihara Antenna device capable of being tuned in wide band
US7071887B2 (en) 2004-01-26 2006-07-04 Alps Electric Co., Ltd. Antenna device capable of being tuned in wide band
KR100709770B1 (en) 2004-01-26 2007-04-19 알프스 덴키 가부시키가이샤 Antenna apparatus capable of tunning to broadband
US20060139226A1 (en) * 2004-11-09 2006-06-29 Alps Electric Co., Ltd. Antenna device having enhanced reception sensitivity in wide bands
US7307598B2 (en) 2004-11-09 2007-12-11 Alps Electric Co., Ltd. Antenna device having enhanced reception sensitivity in wide bands
EP1826874A1 (en) * 2006-02-27 2007-08-29 Alps Electric Co., Ltd. Antenna device having enhanced reception sensitivity in wide bands

Also Published As

Publication number Publication date
GB1182952A (en) 1970-03-04
DE1541521A1 (en) 1969-08-07

Similar Documents

Publication Publication Date Title
US3427624A (en) Low profile antenna having horizontal tunable top loading member
US5592183A (en) Gap raidated antenna
EP1118138B1 (en) Circularly polarized dielectric resonator antenna
KR920002895B1 (en) Mobile communications antenna
US3434145A (en) Double loop antenna array with loops perpendicularly and symmetrically arranged with respect to feed lines
US4080603A (en) Transmitting and receiving loop antenna with reactive loading
US20130284485A1 (en) Ultra-Wideband Miniaturized Omnidirectional Antennas Via Multi-Mode Three-Dimensional (3-D) Traveling-Wave (TW)
US3568206A (en) Transmission line loaded annular slot antenna
EP1636874A2 (en) System and method for providing a distributed loaded monopole antenna
USRE26196E (en) Open ring antenna
US3401387A (en) Slotted cone antenna
US4209790A (en) Vertical antenna with stub cancellation means
US20200006856A1 (en) One-piece dual-band antenna and ground plane
US3573839A (en) Foreshortened log-periodic antenna employing inductively loaded and folded dipoles
US4342037A (en) Decoupling means for monopole antennas and the like
US4635068A (en) Double-tuned disc loaded monopole
US4131895A (en) Apparatus for isolating from ground and exciting a conductive tower for use as a vertical antenna
US5065164A (en) Frequency range enchanced monopole antenna
US3299428A (en) Horizontal semienclosed loop with conductive ground plane, having vertical whip extening from within loop enclosure
US3483563A (en) Combination vertically-horizontally polarized paracylinder antennas
US3247515A (en) Low profile antenna
US3440658A (en) Dual band coplanar dipole array with disc type director
US4141014A (en) Multiband high frequency communication antenna with adjustable slot aperture
US3946392A (en) Electrically short transmission line antenna
US2983919A (en) Tuning means for slot radiator