US3406669A - Crankcase ventilation system - Google Patents

Crankcase ventilation system Download PDF

Info

Publication number
US3406669A
US3406669A US601775A US60177566A US3406669A US 3406669 A US3406669 A US 3406669A US 601775 A US601775 A US 601775A US 60177566 A US60177566 A US 60177566A US 3406669 A US3406669 A US 3406669A
Authority
US
United States
Prior art keywords
crankcase
air
engine
chamber
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US601775A
Inventor
William D Edwards
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US601775A priority Critical patent/US3406669A/en
Application granted granted Critical
Publication of US3406669A publication Critical patent/US3406669A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/017Combinations of electrostatic separation with other processes, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • B03C3/09Plant or installations having external electricity supply dry type characterised by presence of stationary flat electrodes arranged with their flat surfaces at right angles to the gas stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • B03C3/12Plant or installations having external electricity supply dry type characterised by separation of ionising and collecting stations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M13/00Crankcase ventilating or breathing
    • F01M13/04Crankcase ventilating or breathing having means for purifying air before leaving crankcase, e.g. removing oil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/30Details of magnetic or electrostatic separation for use in or with vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S55/00Gas separation
    • Y10S55/19Crankcase ventilation

Definitions

  • the present invention relates to a method for reducing the air pollution that results from fumes and vapors emanating from the crankcase of an internal combustion engine and more particularly to a means of cleaning the crankcase vapors so that they may be burned in the engine.
  • crankcase ventilation evaporates the moisture and carries it, as well as the combustion gases, out of the engine. It is customary to vent such gases from the crankcase directly into the atmosphere.
  • an electrical precipitator powered by the automobile storage battery acts to clean the gases emanating from the crankcase so that they may be recirculated to the engine.
  • FIGURE 1 is a vertical section through an electrical precipitator embodying the principles of the invention
  • FIGURE 2 is a fragmentary sectional view of charging plates.
  • FIGURE 3 is a diagrammatic view of an internal combustion engine and illustrates the flow of air through the crankcase
  • FIGURE 4 is a circuit diagram of a vibrator induction coil and associated rectifier.
  • an electrical precipitator 10 constructed of metal comprising an ionization chamber 12 and a precipitating chamber 14.
  • the ionization chamber contains discharging electrodes (charging plates) 16 and opposed complementary nondischarge electrodes 18 mounted on insulators 20.
  • the non-discharge electrodes are at negative potential being connected to the terminal 22 which passes through the wall of the ionization chamber and is connected to the negative lead of the power supply shown in FIGURE 4.
  • the terminal 22 is insulated from the wall of the ionization chamber by the rubber bushing 23.
  • the ionization chamber will contain about 5 to 8 plates.
  • the discharging electrodes (charging plates) are coated on both sides with a baked ceramic enamel 24, the conductance of which is sufiiciently high to permit the flow of corona current but sufliciently low to prevent arc-over.
  • the discharging electrodes are connected to a source of high electrical potential through the terminal 26 which is insulated from the wall of the chamber 12 by the rubber bushing 28.
  • the precipitating chamber contains from about 2 to about 4 non-discharge electrodes 30 that are at negative potential being connected to the terminal 32 from which a conductor 33 insulated from the wall of the precipitation chamber by the rubber bushing 34 leads to the power supply (see FIGURE 4).
  • dielectric plates 36 Separated from the negative electrodes 30 by dielectric plates 36 are opposed non-discharge electrodes 38 that are at positive potential being connected to the terminal 40 which passes through the wall of the precipitation chamber and is connected to the positive lead of the power supply.
  • the terminal 40 is insulated from the wall of the precipitation chamber by the rubber bushing 41.
  • the dielectric plates 36 may be constructed of mica or a plastic material having a high dielectric constant. The total number of plates pres ent in the discharge chamber will depend upon the size, and geometry of the plates and the distance between adjacent plates.
  • a vibrator induction coil 42 having a primary winding 43 in series with the automoble storage battery 44 may be used to generate the high voltage necessary for operation of the electrical precipitator.
  • the switch 46 is in parallel with the ignition switch of the automobile and closes the primary circuit when the ignition switch is on.
  • the iron core 48 of the induction coil is magnetized when the primary circuit is closed and moves the vibrator blade 50 against the tension of the spring 52 away from the vibrator screw 54, opening the primary circuit between platinum contact 55 on the vibrator blade and the vibrator screw. T hereupon the core loses its magnetism and vibrator blade is released; the spring returning the vibrator blade to its original position and again closing the primary circuit. Ths action takes place repeatedly and the blade vibrates back and forth as long as the ignition switch is on.
  • a condenser 56 across the interruptor points prevents the spark that would otherwise occur.
  • the condenser 60 smooths out the alternating component of the rectified direct current.
  • the voltage applied to the terminal 26 may be in the neighborhood of 11,000 to 13,000 volts: if the plates are spaced about /z-inch apart. Preferably a lower voltage, about 8,000 volts, is applied to the terminal 40 as appreci ably higher voltages may shorten the life of the dielectric.
  • FIGURE 3 The crankcase ventilation system of an internal combustion engine is shown in FIGURE 3. Air from a fan 62 is forced into the engine through an oil filler cap 64 located in the rocker arm cover. Filter elements in the oil filler cap insures the circulation of clean air through the engine. Air entering the inlets circulates along the top of the cylinder head inside the rocker arm cover. Cast openings 66 at the front and rear of each cylinder head allow air to be forced down into the area of the block below the push rod cover.
  • Air passing down into the block at the front circulates into the timing chain cover through a hole 68 near the front of the block.
  • the ventilating air then circulates down around the timing chain and sprockets and into the crankcase.
  • the flow of air through the crankcase is aided by the venturi effect of air that is forced by the fan into the throat 70 of the electrical precipitator 10. This air flow creates a low pressure area at the outlet of the conduit 72 which exhausts vapors and fumes from the crankcase.
  • the cleaned effluent gases from the electrical precipitator may be forced through the conduit 74 into the carburetor 76 as shown in FIGURES 1 and 3, or if desired, passed directly into the intake manifold (not shown) where it is mixed with fuel and air from the carburetor and burned in the engine.
  • the electrical precipitator also cleans the air that is drawn into the engine through the throat 70.
  • the precipitator therefore when connected to the carburetor as illustrated in FIGURE 1 replaces the conventional air cleaner which is not needed since dust and other abrasive particles that might normally be found in the air used for combustion are removed by the precipitator.
  • the electrical precipitator is to a large extent self cleaning as the vibration of the engine will knock the particles off the collecting plates into the hopper which may be removed for further cleaning.
  • the precipitator does not restrict the air flow into the combustion chamber to the same extent that a conventional filter would, particularly if the conventional filter has been in use for some time and is dirty. It is an additional advantage of the present invention therefore that the power of the engine is increased and frequent cleaning and replacement of the air filter is not required.
  • a method reducing the air polution that results from fumes and vapors emanating from the crankcase of an internal combustion engine which comprises; exhausting vapors from the crankcase into an ionization chamber wherein particles suspended in the efiluent vapors are ionized by electrical discharges in a high tension electrical field between opposed electrodes; collecting the ionized particles in a precipitating zone wherein the air is sub jected to a high tension electrical field between opposed substantially non-discharging electrodes; and, passing the effluent vapors, free of suspended particles, into the intake manifold of said internal combustion engine.
  • the improvernent comprising: an electrical precipitator for separating suspended materials from the crankcase vapors, including an ionization section and a precipitating section; said ionization section being in communication with said air outlet and said precipitating section being in communication with said intake manifold; whereby vapors from the crankcase are freed of suspended particles and burned in the engine.
  • the ionization section of the electrical precipitator comprises a set of discharge electrodes and a set of opposed complementary non-discharge electrodes and the precipitating section comprises opposed sets of non-discharge electrodes.

Description

Oct. 22, 1968 w. D. EDWARDS 3,406,669
CRANKCASE VENTILATION SYSTEM Filed Dec. 14, 1966 2 SheetsSheet 2 INVENTOR. WiZZz'mflElrard's,
Maw e 7 AflarweysN 4 United States Patent 3,406,669 CRANKCASE VENTILATION SYSTEM William D. Edwards, Academy Ave., Box 80, Chester, N.Y. 10918 Filed Dec. 14, 1966, Ser. No. 601,775 7 Claims. (Cl. 123119) ABSTRACT OF THE DISCLOSURE An internal combustion engine provided with a closed circuit crankcase ventilation system. Gases emanating from the crankcase are cleaned in an electrical precipitator deriving power from a storage battery. The cleaned gases from the precipitator are passed into the carburetor, or directly into the intake manifold of the engine and burned.
Background of the invention The present invention relates to a method for reducing the air pollution that results from fumes and vapors emanating from the crankcase of an internal combustion engine and more particularly to a means of cleaning the crankcase vapors so that they may be burned in the engine.
As more and more automobiles have crowded the highways, the fumes and vapors from their engines have increased to such an extent that some of the more populous areas have been troubled with smog and an increase in respiratory diseases. This has led to legislation requiring automobile engines to be provided with devices that reduce air pollution.
While it is well known that the exhaust gases of internal combustion engines contribute to air pollution the extent to which fumes escaping from the crankcase contribute to fouling the atmosphere is less generally recognized. When gasoline is burned in the cylinders of any internal combustion engine, one of the by-products is water vapor.
Actually, more than one gallon of water is produced for every gallon of gasoline burned. Most of this water vapor is blown out through the exhaust system. Some of it, however, leaks down into the crankcase where it can have very destructive eiTects through the formation of sludge and acid. The acid is formed when the water combines with sulphur dioxide, which is another byproduct of combustion. Adequate crankcase ventilation evaporates the moisture and carries it, as well as the combustion gases, out of the engine. It is customary to vent such gases from the crankcase directly into the atmosphere.
Summary of the invention It is an object of the present invention to provide means for removing from the crankcase gases suspended particles and materials that would damage the engine so that the crankcase gases can be recirculated to the engine and burned.
In accordance with the present invention, an electrical precipitator powered by the automobile storage battery is provided and acts to clean the gases emanating from the crankcase so that they may be recirculated to the engine.
The invention will appear more clearly from the following detailed description when taken in connection with the accompanying drawings, which show, by way of example, a preferred embodiment of the inventive idea.
Brief description of the drawings Referring now to the drawings:
FIGURE 1 is a vertical section through an electrical precipitator embodying the principles of the invention;
"ice
FIGURE 2 is a fragmentary sectional view of charging plates.
FIGURE 3 is a diagrammatic view of an internal combustion engine and illustrates the flow of air through the crankcase; and,
FIGURE 4 is a circuit diagram of a vibrator induction coil and associated rectifier.
Description 0 the preferred embodiment Referring now to FIGURE 1, there is shown an electrical precipitator 10 constructed of metal comprising an ionization chamber 12 and a precipitating chamber 14. The ionization chamber contains discharging electrodes (charging plates) 16 and opposed complementary nondischarge electrodes 18 mounted on insulators 20. The non-discharge electrodes are at negative potential being connected to the terminal 22 which passes through the wall of the ionization chamber and is connected to the negative lead of the power supply shown in FIGURE 4. The terminal 22 is insulated from the wall of the ionization chamber by the rubber bushing 23. Preferably the ionization chamber will contain about 5 to 8 plates.
The discharging electrodes (charging plates) are coated on both sides with a baked ceramic enamel 24, the conductance of which is sufiiciently high to permit the flow of corona current but sufliciently low to prevent arc-over. The discharging electrodes are connected to a source of high electrical potential through the terminal 26 which is insulated from the wall of the chamber 12 by the rubber bushing 28.
The precipitating chamber contains from about 2 to about 4 non-discharge electrodes 30 that are at negative potential being connected to the terminal 32 from which a conductor 33 insulated from the wall of the precipitation chamber by the rubber bushing 34 leads to the power supply (see FIGURE 4). Separated from the negative electrodes 30 by dielectric plates 36 are opposed non-discharge electrodes 38 that are at positive potential being connected to the terminal 40 which passes through the wall of the precipitation chamber and is connected to the positive lead of the power supply. The terminal 40 is insulated from the wall of the precipitation chamber by the rubber bushing 41. The dielectric plates 36 may be constructed of mica or a plastic material having a high dielectric constant. The total number of plates pres ent in the discharge chamber will depend upon the size, and geometry of the plates and the distance between adjacent plates.
The operation of the power supply for the electrical precipitator is conventional and will be readily understood from the circuit diagram of FIGURE 4. A vibrator induction coil 42 having a primary winding 43 in series with the automoble storage battery 44 may be used to generate the high voltage necessary for operation of the electrical precipitator. The switch 46 is in parallel with the ignition switch of the automobile and closes the primary circuit when the ignition switch is on. The iron core 48 of the induction coil is magnetized when the primary circuit is closed and moves the vibrator blade 50 against the tension of the spring 52 away from the vibrator screw 54, opening the primary circuit between platinum contact 55 on the vibrator blade and the vibrator screw. T hereupon the core loses its magnetism and vibrator blade is released; the spring returning the vibrator blade to its original position and again closing the primary circuit. Ths action takes place repeatedly and the blade vibrates back and forth as long as the ignition switch is on. A condenser 56 across the interruptor points prevents the spark that would otherwise occur.
When the primary circuit is opened and closed by the magnetism of the core, produced by current flowing through the primary winding, a very high electromotive [force is induced into the secondary winding 58, which is Wrapped around the primary winding. This induced electromotive force in the secondary winding causes an alternating current of very high voltage to flow in the secondary winding, which current is rectified and applied to the electrical precipitator 10. The condenser 60 smooths out the alternating component of the rectified direct current. The voltage applied to the terminal 26 may be in the neighborhood of 11,000 to 13,000 volts: if the plates are spaced about /z-inch apart. Preferably a lower voltage, about 8,000 volts, is applied to the terminal 40 as appreci ably higher voltages may shorten the life of the dielectric.
The crankcase ventilation system of an internal combustion engine is shown in FIGURE 3. Air from a fan 62 is forced into the engine through an oil filler cap 64 located in the rocker arm cover. Filter elements in the oil filler cap insures the circulation of clean air through the engine. Air entering the inlets circulates along the top of the cylinder head inside the rocker arm cover. Cast openings 66 at the front and rear of each cylinder head allow air to be forced down into the area of the block below the push rod cover.
Air passing down into the block at the front circulates into the timing chain cover through a hole 68 near the front of the block. The ventilating air then circulates down around the timing chain and sprockets and into the crankcase. The flow of air through the crankcase is aided by the venturi effect of air that is forced by the fan into the throat 70 of the electrical precipitator 10. This air flow creates a low pressure area at the outlet of the conduit 72 which exhausts vapors and fumes from the crankcase.
The cleaned effluent gases from the electrical precipitator may be forced through the conduit 74 into the carburetor 76 as shown in FIGURES 1 and 3, or if desired, passed directly into the intake manifold (not shown) where it is mixed with fuel and air from the carburetor and burned in the engine.
It will be understood from the preceding description of the various component parts of the present invention that suspended particles in the gases emanating from the crankcase pass through the conduit 72 and into the ionization chamber 12. In this chamber the suspended particles are charged by the corona current passing between the discharging electrodes 16 and the electrodes 18. Such charged particles are carried in the gas stream into the precipitating section and are attracted to the electrodes of opposite potential in the precipitating chamber losing their charge, and dropping into the detachable hopper 75 below the plates. The cleaned efiluent gases from the precipitating chamber pass through the conduit 74 into the carburetor 76 and are mixed with gasoline and air. As will be noted from FIGURE 3, the crankcase ventilation system described herein is a closed system in that all efiluent gases therefrom are directed to the intake manifold and burned in the engine.
It will be noted that the electrical precipitator also cleans the air that is drawn into the engine through the throat 70. The precipitator therefore when connected to the carburetor as illustrated in FIGURE 1 replaces the conventional air cleaner which is not needed since dust and other abrasive particles that might normally be found in the air used for combustion are removed by the precipitator. The electrical precipitator is to a large extent self cleaning as the vibration of the engine will knock the particles off the collecting plates into the hopper which may be removed for further cleaning. The precipitator does not restrict the air flow into the combustion chamber to the same extent that a conventional filter would, particularly if the conventional filter has been in use for some time and is dirty. It is an additional advantage of the present invention therefore that the power of the engine is increased and frequent cleaning and replacement of the air filter is not required.
Although the invention has been described in detail in connection with specific embodiments thereof shown in the drawings, these embodiments are merely illustrative of others that will be apparent to those skilled in the art, and are not to be construed as limiting the scope of the invention which is defined in the accompanying claims.
What is claimed is:
1. A method reducing the air polution that results from fumes and vapors emanating from the crankcase of an internal combustion engine, which comprises; exhausting vapors from the crankcase into an ionization chamber wherein particles suspended in the efiluent vapors are ionized by electrical discharges in a high tension electrical field between opposed electrodes; collecting the ionized particles in a precipitating zone wherein the air is sub jected to a high tension electrical field between opposed substantially non-discharging electrodes; and, passing the effluent vapors, free of suspended particles, into the intake manifold of said internal combustion engine.
2. The method of claim 1 wherein the effluent vapors from the precipitating zone are passed through the carburetor of the internal combustion engine prior to entering the intake manifold.
3. In an internal combustion engine having an intake manifold, a crankcase and an air outlet through which vapors from the crankcase are eliminated, the improvernent comprising: an electrical precipitator for separating suspended materials from the crankcase vapors, including an ionization section and a precipitating section; said ionization section being in communication with said air outlet and said precipitating section being in communication with said intake manifold; whereby vapors from the crankcase are freed of suspended particles and burned in the engine.
4. The improvement defined by claim 3 wherein the precipitating section is in communication with the carburetor of the internal combustion engine.
5. The improvement defined by claim 3 wherein the ionization section of the electrical precipitator comprises a set of discharge electrodes and a set of opposed complementary non-discharge electrodes and the precipitating section comprises opposed sets of non-discharge electrodes.
6. The improvement defined by claim 5 wherein a vibrator induction coil is provided to induce a high tension electrical field between opposed sets of electrodes in the ionization section and in the precipitation section.
7. The improvement defined by claim 5 wherein said discharge electrodes are metal plates coated with a ceramic material of low conductance.
References Cited UNITED STATES PATENTS 2,789,658 4/1957 Wintermute 55l38 X 2,800,193 7/1957 Beaver 55138 X 3,184,901 5/1965 Main 55-138 X 3,271,932 9/1966 Newell 55-438 X AL LAWRENCE SMITH, Primary Examiner.
US601775A 1966-12-14 1966-12-14 Crankcase ventilation system Expired - Lifetime US3406669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US601775A US3406669A (en) 1966-12-14 1966-12-14 Crankcase ventilation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US601775A US3406669A (en) 1966-12-14 1966-12-14 Crankcase ventilation system

Publications (1)

Publication Number Publication Date
US3406669A true US3406669A (en) 1968-10-22

Family

ID=24408714

Family Applications (1)

Application Number Title Priority Date Filing Date
US601775A Expired - Lifetime US3406669A (en) 1966-12-14 1966-12-14 Crankcase ventilation system

Country Status (1)

Country Link
US (1) US3406669A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3581462A (en) * 1968-12-23 1971-06-01 William W Stump Method and apparatus for inductively charging a filter of combined metal and dielectric material for collecting normally charged air borne particles
US3738088A (en) * 1971-06-04 1973-06-12 L Colosimo Mobile air cleaning apparatus for pollution removal
US3805492A (en) * 1972-04-28 1974-04-23 A King Method and apparatus for treating carbureted mixtures
US3976448A (en) * 1972-04-20 1976-08-24 Lin Eng Corporation Electrostatic and sonic gas processing apparatus
US3979189A (en) * 1974-02-13 1976-09-07 Aktiebolaget Lectrostatic Electrostatic filter
US3989017A (en) * 1974-07-15 1976-11-02 Reece Oscar G Internal combustion engine fuel charge treatment
US4098591A (en) * 1975-05-07 1978-07-04 Bronswerk Heat Transfer B.V. Apparatus and method for removing non-conductive particles from a gas stream
US4326862A (en) * 1980-06-10 1982-04-27 Nagatoshi Suzuki Air cleaner for engines, having back flow gas shut-off function
US4569684A (en) * 1981-07-31 1986-02-11 Ibbott Jack Kenneth Electrostatic air cleaner
US4588423A (en) * 1982-06-30 1986-05-13 Donaldson Company, Inc. Electrostatic separator
EP0601683A1 (en) * 1992-12-07 1994-06-15 Gekko International, L.C. Apparatus for the treatment of gases in a positive crankcase ventilation system
DE4415407A1 (en) * 1994-05-02 1995-11-09 Hengst Walter Gmbh & Co Kg Crankcase ventilation for an internal combustion engine
US5502255A (en) * 1986-07-10 1996-03-26 State Of Oregon Acting By And Through The Oregon State Board Of Higher Education, Acting For And On Behalf Of The Oregon Health Sciences University And The University Of Oregon Substituted guanidines having high binding to the sigma receptor and the use thereof
DE19529769A1 (en) * 1995-08-12 1997-02-13 Hengst Walter Gmbh & Co Kg Method for operating an electrostatic filter or a crankcase ventilation
FR2754470A1 (en) * 1996-10-12 1998-04-17 Bosch Gmbh Robert OIL SEPARATOR DEVICE, PARTICULARLY FOR MOTOR VEHICLES
WO1998026163A1 (en) * 1996-12-09 1998-06-18 Hideaki Watase An oil separator filter apparatus for use with an apparatus for combustion enhancer
WO1999025972A1 (en) 1997-11-13 1999-05-27 Gekko International L.C. Apparatus for the treatment of crankcase emissions materials in a positive crankcase ventilation system
US6186128B1 (en) 1999-05-12 2001-02-13 Gekko International, L.C. Apparatus for treatment of crankcase emissions materials in a positive crankcase ventilation system
CN1312384C (en) * 2004-07-08 2007-04-25 上海交通大学 Carbon smoke micro particle filter for diesel engine exhaust gas
US20080072755A1 (en) * 2006-09-22 2008-03-27 Pratt & Whitney Canada Corp. Electrostatic air/oil separator for aircraft engine
US20080078291A1 (en) * 2006-09-28 2008-04-03 Pratt & Whitney Canada Corp. Self-contained electrostatic air/oil separator for aircraft engine
US20080178737A1 (en) * 2007-01-31 2008-07-31 Pratt & Whitney Canada Corp. Woven electrostatic oil precipitator element
WO2010054082A1 (en) * 2008-11-05 2010-05-14 Fmc Technologies, Inc. Electrostatic coalescer with intermediate insulating member
FR3026661A1 (en) * 2014-10-01 2016-04-08 Coutier Moulage Gen Ind PROCESS FOR SEPARATING OIL DROPS FROM A MIXTURE OF GAS AND OIL
US10190456B2 (en) * 2014-10-02 2019-01-29 Toyota Jidosha Kabushiki Kaisha Oil removal apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2789658A (en) * 1955-06-22 1957-04-23 Research Corp Apparatus for collecting suspended particles
US2800193A (en) * 1955-11-09 1957-07-23 Cottrell Res Inc Combination electrostatic precipitator and heat conserving device
US3184901A (en) * 1959-12-08 1965-05-25 Lab For Electronics Inc Gaseous concentration and separation apparatus
US3271932A (en) * 1965-07-21 1966-09-13 Gen Electric Electrostatic precipitator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2789658A (en) * 1955-06-22 1957-04-23 Research Corp Apparatus for collecting suspended particles
US2800193A (en) * 1955-11-09 1957-07-23 Cottrell Res Inc Combination electrostatic precipitator and heat conserving device
US3184901A (en) * 1959-12-08 1965-05-25 Lab For Electronics Inc Gaseous concentration and separation apparatus
US3271932A (en) * 1965-07-21 1966-09-13 Gen Electric Electrostatic precipitator

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3581462A (en) * 1968-12-23 1971-06-01 William W Stump Method and apparatus for inductively charging a filter of combined metal and dielectric material for collecting normally charged air borne particles
US3738088A (en) * 1971-06-04 1973-06-12 L Colosimo Mobile air cleaning apparatus for pollution removal
US3976448A (en) * 1972-04-20 1976-08-24 Lin Eng Corporation Electrostatic and sonic gas processing apparatus
US3805492A (en) * 1972-04-28 1974-04-23 A King Method and apparatus for treating carbureted mixtures
US3979189A (en) * 1974-02-13 1976-09-07 Aktiebolaget Lectrostatic Electrostatic filter
US3989017A (en) * 1974-07-15 1976-11-02 Reece Oscar G Internal combustion engine fuel charge treatment
US4098591A (en) * 1975-05-07 1978-07-04 Bronswerk Heat Transfer B.V. Apparatus and method for removing non-conductive particles from a gas stream
US4326862A (en) * 1980-06-10 1982-04-27 Nagatoshi Suzuki Air cleaner for engines, having back flow gas shut-off function
US4569684A (en) * 1981-07-31 1986-02-11 Ibbott Jack Kenneth Electrostatic air cleaner
US4588423A (en) * 1982-06-30 1986-05-13 Donaldson Company, Inc. Electrostatic separator
US5502255A (en) * 1986-07-10 1996-03-26 State Of Oregon Acting By And Through The Oregon State Board Of Higher Education, Acting For And On Behalf Of The Oregon Health Sciences University And The University Of Oregon Substituted guanidines having high binding to the sigma receptor and the use thereof
EP0601683A1 (en) * 1992-12-07 1994-06-15 Gekko International, L.C. Apparatus for the treatment of gases in a positive crankcase ventilation system
EP0685635A1 (en) * 1994-05-02 1995-12-06 Ing. Walter Hengst GmbH & Co. KG Crankcase ventilation for an internal combustion engine
DE4415407A1 (en) * 1994-05-02 1995-11-09 Hengst Walter Gmbh & Co Kg Crankcase ventilation for an internal combustion engine
DE19529769A1 (en) * 1995-08-12 1997-02-13 Hengst Walter Gmbh & Co Kg Method for operating an electrostatic filter or a crankcase ventilation
WO1997006891A1 (en) * 1995-08-12 1997-02-27 Ing. Walter Hengst Gmbh & Co. Kg Process for operating an electric filter for a crankcase ventilator
US5911213A (en) * 1995-08-12 1999-06-15 Firma Ing. Walter Hengst Gmbh & Co. Kg Process for operating an electric filter for a crankcase ventilator
DE19680694C1 (en) * 1995-08-12 1999-03-25 Hengst Walter Gmbh & Co Kg Electrofilter operation in IC engine
FR2754470A1 (en) * 1996-10-12 1998-04-17 Bosch Gmbh Robert OIL SEPARATOR DEVICE, PARTICULARLY FOR MOTOR VEHICLES
DE19642218A1 (en) * 1996-10-12 1998-04-23 Bosch Gmbh Robert Oil separator for engine breather
DE19642218C2 (en) * 1996-10-12 1999-04-15 Bosch Gmbh Robert Oil separator
WO1998026163A1 (en) * 1996-12-09 1998-06-18 Hideaki Watase An oil separator filter apparatus for use with an apparatus for combustion enhancer
US6000383A (en) * 1997-11-13 1999-12-14 Gekko International L.C. Apparatus for the treatment of crankcase emissions materials in a positive crankcase ventilation system
WO1999025972A1 (en) 1997-11-13 1999-05-27 Gekko International L.C. Apparatus for the treatment of crankcase emissions materials in a positive crankcase ventilation system
US6186128B1 (en) 1999-05-12 2001-02-13 Gekko International, L.C. Apparatus for treatment of crankcase emissions materials in a positive crankcase ventilation system
CN1312384C (en) * 2004-07-08 2007-04-25 上海交通大学 Carbon smoke micro particle filter for diesel engine exhaust gas
US7625435B2 (en) 2006-09-22 2009-12-01 Pratt & Whitney Canada Corp. Electrostatic air/oil separator for aircraft engine
US20080072755A1 (en) * 2006-09-22 2008-03-27 Pratt & Whitney Canada Corp. Electrostatic air/oil separator for aircraft engine
US20080078291A1 (en) * 2006-09-28 2008-04-03 Pratt & Whitney Canada Corp. Self-contained electrostatic air/oil separator for aircraft engine
US7524357B2 (en) 2006-09-28 2009-04-28 Pratt & Whitney Canada Corp. Self-contained electrostatic air/oil separator for aircraft engine
US20080178737A1 (en) * 2007-01-31 2008-07-31 Pratt & Whitney Canada Corp. Woven electrostatic oil precipitator element
US20100107882A1 (en) * 2007-01-31 2010-05-06 Pratt & Whitney Canada Corp. Woven electrostatic oil precipitator element
US7862650B2 (en) 2007-01-31 2011-01-04 Pratt & Whitney Canada Corp. Woven electrostatic oil precipitator element
WO2010054082A1 (en) * 2008-11-05 2010-05-14 Fmc Technologies, Inc. Electrostatic coalescer with intermediate insulating member
FR3026661A1 (en) * 2014-10-01 2016-04-08 Coutier Moulage Gen Ind PROCESS FOR SEPARATING OIL DROPS FROM A MIXTURE OF GAS AND OIL
US10190456B2 (en) * 2014-10-02 2019-01-29 Toyota Jidosha Kabushiki Kaisha Oil removal apparatus

Similar Documents

Publication Publication Date Title
US3406669A (en) Crankcase ventilation system
US3157479A (en) Electrostatic precipitating device
US4309199A (en) Air cleaner for engines
US4587807A (en) Apparatus for totally recycling engine exhaust gas
US4345572A (en) Engine exhaust gas reflux apparatus
JPH11512651A (en) Method and apparatus for exhaust gas purification and noise reduction using high voltage electric field
KR100358017B1 (en) Exhaust Gas Purification System and Purification Method
JPS6097062A (en) High voltage generator for electric dust collector or similar equipment
EP0083845A1 (en) Process and apparatus for reducing the environment pollution effect of exhaust and other gases
PL328241A1 (en) Apparatus for purifying combustion engine exhaust gas
JP3512251B2 (en) Electric dust collector
RU2008501C1 (en) Air cleaner for internal combustion engine
SU1714169A1 (en) Electric filter for purifying exhaust of internal-combustion engine
JPS57127458A (en) Dust colletctor for waste gas
RU2008502C1 (en) Air cleaner of internal combustion engine
JPS56118515A (en) Device for decreasing soot
RU56964U1 (en) DEVICE FOR CLEANING EXHAUST GASES AND REDUCING THE NOISE LEVEL OF INTERNAL COMBUSTION ENGINES
SU1071796A1 (en) Air cleaner for ic engine
JP3027924U (en) Air filter with electric dust collection function
RU56965U1 (en) DEVICE FOR CLEANING EXHAUST GASES AND REDUCING THE NOISE LEVEL OF INTERNAL COMBUSTION ENGINES
CN2243601Y (en) Electrostatic smoke eliminator
JPH04121411A (en) Exhaust gas purifying device of diesel engine for car
SU1315024A1 (en) Electric precipitator for catching high resistance dust
GB1033085A (en) Improvements in or relating to apparatus for cleaning the exhaust gases of internal combustion engines and the like
SU1679045A1 (en) Air cleaner for internal combustion engines