US3364929A - Method for administering muscle relaxant drug - Google Patents

Method for administering muscle relaxant drug Download PDF

Info

Publication number
US3364929A
US3364929A US419949A US41994964A US3364929A US 3364929 A US3364929 A US 3364929A US 419949 A US419949 A US 419949A US 41994964 A US41994964 A US 41994964A US 3364929 A US3364929 A US 3364929A
Authority
US
United States
Prior art keywords
patient
muscle
drug
frequency
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US419949A
Inventor
Walter S Ide
William H Nickerson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SmithKline Beecham Corp
Original Assignee
Burroughs Wellcome Co USA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Burroughs Wellcome Co USA filed Critical Burroughs Wellcome Co USA
Priority to US419949A priority Critical patent/US3364929A/en
Priority to GB53427/65A priority patent/GB1123365A/en
Priority to BE674054A priority patent/BE674054A/xx
Priority to FR43163A priority patent/FR1466608A/en
Priority to CH1758965A priority patent/CH428965A/en
Priority to SE16515/65D priority patent/SE340324B/xx
Priority to IL24839A priority patent/IL24839A/en
Priority to DE19651539104 priority patent/DE1539104B2/en
Priority to NL6516659A priority patent/NL6516659A/xx
Priority to US662249A priority patent/US3565080A/en
Application granted granted Critical
Publication of US3364929A publication Critical patent/US3364929A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1104Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb induced by stimuli or drugs
    • A61B5/1106Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb induced by stimuli or drugs to assess neuromuscular blockade, e.g. to estimate depth of anaesthesia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36014External stimulators, e.g. with patch electrodes
    • A61N1/36021External stimulators, e.g. with patch electrodes for treatment of pain
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2505/00Evaluating, monitoring or diagnosing in the context of a particular type of medical care
    • A61B2505/05Surgical care
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6825Hand
    • A61B5/6826Finger

Definitions

  • ABSTRACT OF THE DISCLOSURE A method for administering a muscle relaxant antagonist drug to counteract muscle relaxant drugs which produce both non-depolarizing and depolarizing blocks in patients, comprising the steps of rst applying an electrical stimulus to the ulnar nerve and/ or the nerve motor point muscle junction of a patient at a twitching frequency rate, secondly applying electrical stimulus at a tetanus frequency rate to the same part of the patient, and thirdly reapplying the electrical stimulus at the frequency rate, differentiating between responsiveness of the patient to said stimuli to determine the types of neuromuscular block, and introducing an antagonist into the system of the patient only if the response of the patient is such that a non-depolarizing block exists.
  • a new and improved apparatus for determining the correct time to administer muscle ⁇ antagonist drugs was required. Additionally, a new and improved method was required in order to administer antagonists to produce a stimulation of the patient instead of prolonging the relaxation of the patient. Accordingly, it is an object of this invention to provide a new and improved apparatus for providing electrical stimuli4 to differentiate between depolarizing and nondepolarizing neuromuscular blocks due to the action of certain muscle relaxant drugs.
  • Another object of this ⁇ invention is to provide a new and improved method of administering antagonist drugs. It is a further object of this invention to provide a new and improved method of determining when to introduce muscle relaxant drugs and the administration of such drugs.
  • the invention accordingly comprises the several steps and the relation of one or more of such steps with respect to each of the others, and the apparatus embodying features of construction, combinations of elements and arrangements of parts which are adapted to eect such steps, all as exemplified in the following detailed disclosure, and the scope of the invention will be indicated in the claims.
  • FIG. 1 illustrates schematically a transistorized, neuromuscular block monitoring device
  • FIG. 2 is an isometric representation of a splint for mounting on a patient to detect response of a patient to electrical stimuli;
  • FIG. 3a is a graph illustrating the sequential electrical stimuli applied to the patient in accordance with this invention.
  • FIG. 3b is a graph showing the resultant response of a patient to the electrical stimuli as a result of a non-depolarizing block affecting the nerves of the patient.
  • FIG 3c is a graph illustrating a depolarizing block of a patient in response to electrical stimuli.
  • the pulse generator Z0 includes a relaxation oscillator circuit having an NPN transistor 21 with an emitter electrode 22, a base electrode 23 and a collector electrode 24 and a PNP transistor 25 with an emitter electrode 26, a base electrode 27 and a collector electrode 28.
  • the collector 24 of transistor 21 is coupled to the base 27 of transistor 25.
  • a capacitor 30 Connected between the base electrode 23 of transistor 21 and collector electrode of transistor 25 is a capacitor 30. Coupled intermediate the base 23 of transistor 21 and capacitor 30 is a variable resistance network for varying the frequency of the oscillator.
  • the resistance network includes a switch 31 and two resistors 33 and 34, Switch 31 can be connected to either of resistors 33 and 34 to control the frequency of the oscillator.
  • a source of direct current energy 34 such as a battery, is coupled at its positive terminal to emitter 26 of transistor 25 and to the other end of resistors 33 and 34.
  • a switch 36 is provided in the line to place the DC energy source 35 in the circuit, One end of the switch is coupled to the emitter 22 and the other end of the switch is coupled to the battery 35.
  • a voltage step-up transformer is generally shown at 37. Transformer has its primary winding 38 between the collector 28 of transistor 25 and emitter 22 of transistor 21.
  • a resistor 40 coupled in series with capacitor 30 and a capacitor 41 connected across winding 38 are preferably included to decrease extraneous voltages in the circuit.
  • the secondary winding 39 of transformer 37 is coupled across a resistor 4S and a gas tube 46.
  • The'resistor 45 and gas tube 46 are in parallel with a variable resistor 47.
  • the gas tube 46 indicates when the device 20 is providing a signal of a predetermined voltage level.
  • Coupled across variable resistor 47 is a first electrode 50 and a second electrode 51 connected through a resistor 49.
  • the electrodes may be surface-type electrodes which are suitable for applying an electrical stimuli to the arm 52 of a patient. But, preferably, needle-type electrodes are utilized which may be of the standard 25 gage metal needle type.
  • the electrodes are placed on the arm or the legs of a patient in a well -known manner such that the ulnar nerve and/or the nerve motor point muscle function is stimulated by the signal provided from the oscillator 20.
  • the oscillator operates as follows: upon closure of switch 36 and the connection of switch 31 to one of resistors 33 and 34, the circuit 20 will begin to oscillate. Assume, for example, that switch 31 is coupled to resistor 34.
  • the value of resistor 34 is selected such that the relaxation oscillator 2t)v will oscillate at a frequency somewhat above zero impulses per second rbut below 30 impulses per second.
  • transformer 37 After a period of time, transformer 37 becomes saturated and a voltage across secondary 39 rapidly reverses according to Lcnzes law. This causes a potential to be applied to base 23 of transistor 21 of such a polarity as to turn off transistor 21. This, in turn, turns off transistor 25. Capacitor which charged in the reverse direction to cut olf transistor 23 due to the saturation of inductor 37 then gradually discharges until the potential at the base electrode 23 of transistor 21 once again becomes of the proper polarity to turn on transistor 21 to restart the cycle.
  • the resultant output wave form of the oscillator is shown across electrodes 50 and 51. It is to be noted that the topmost portion of the turn on cycle is slightly clipped due to the presence of gas tube 46. This gas tube ckering indicates to the observer that the impulse generating device 20 is operating. Assume now that the switch 31 is coupled to resistor 33. Resistor 33 is selected such that the impulse frequency rate will be in the order of between -120 impulses per second. In the preferred embodiment, 50 impulses per second was chosen. This range of frequencies is generally referred to as the tetanus frequency rate. The tetanus frequency reaction is observed by noticing the involuntary closing of a linger or a toe of a patient. The exact values for the frequency rate for both tetanus and twitching is generally a function of the patient and it is, therefore, to be understood that the ranges described are only illustrative and are not limiting.
  • Capacitor 30 2O microfarads.
  • Resistor 33 5.1K ohms.
  • Resistor 34 330K ohms.
  • the device 20 is capable of providing approximately a 90 R.M.S. output signal across electrodes 50 and 51 when used with a 3-volt battery as the energy source for the circuit.
  • This circuit is particularly usable during the administration of an anesthesia and during operations because it is explosion-proof due to the low value of currents and voltages utilized.
  • a digital member such as a finger 53 of arm 52 may be observed. This may be accomplished without the use of any auxiliary detecting and monitoring devices shown in FIG. l.
  • a twitching frequency signal By applying a twitching frequency signal to the electrodes 50 and 51, the twitching signal will produce a periodic contraction of the finger 53.
  • the application of a tetanus signal will draw the finger closed.
  • the twitching and tetanus signals may be observed by watching the motion of the finger or the toes of a patient.
  • a splint By the use'of a splint, generally shown at 55, which is suitable for mounting on thumb 53, a device for indicating and displaying the response of the patient may be provided.
  • the splint 55 comprises resilient lat portions 55 and 57 having a bend 58 therebetween.
  • ring 61 Positioned at one end of resilient member 57 is ring 61 suitable for surrounding the tip portion of patients thumb 53.
  • clamps 62 and 63 Attached to the other member 56 of splint 55 are clamps 62 and 63. These clamps are shaped like rings, but have cut out portions for permitting the clamps to extend over the upper portion of patients thumb 53 above the joint.
  • a suitable strain gage 70 is mounted thereon in a position to record the pressure produced by the thumb against the splint.
  • a strain gage such as the type SR-4 available from Baldwin-Lima Hamilton Corp., Waltham, Massachusetts, may be used.
  • Other types of strain or stress transducers such as strain sensitive diodes and transistors may also be utilized as well as piezo electric devices.
  • Strain gage 70 is connected to a suitable circuit comprising resistor 72 and battery 73 for providing a current through the strain gage.
  • the variations of the current flow through the strain gage due to a change in resistance of the strain gage because of flexing of thumb 53, can then be monitored on a meter such as a voltage meter or an oscilloscope 75.
  • a meter such as a voltage meter or an oscilloscope 75.
  • other display devices may be utilized, for example, electrical type brush recorders.
  • muscle relaxant drugs such as succinylcholine, or dimethyl tubocurare.
  • an anesthesiologist deems it necessary to introduce a muscle antagonistic drug to counteract the effects of the muscle relaxant drug.
  • the neuromuscular block monitoring device 20 is turned on and set to provide electrical stimuli at a twitching frequency. The electrical stimuli is applied at the ulnar nerve at the wrist, elbow or at a motor junction point.
  • FIG. 3a shows the application of the electrical stimuli at a twitching frequency of about twenty impulses per second, although variations may exist due to the particular patient.
  • the response of the patient is shown in FIGS. 3b and 3c and may be observed on the oscilloscope 75.
  • the spikes in FIGS. 3b and 3c indicate that the patient has reacted to the stimuli such as to produce a twitching of the digital member. This can also be observe-d by watching the digital member itself.
  • monitor oscillating device 20 is then set to provide electrical stimuli at a tetanus frequency.
  • the monitor is set to provide 50 impulses per seconduwh'ich is shown in FIG. 3a.
  • the application of electrical im'- pulses at tetanus frequency produces a clamping response of the patients hand or toes such that the hand or toes tend to close during the application of the tetanus stimuli. This may be observed by noticing the square wave representation in FIGS. 3b and 3c or, again, by watching the digital member.
  • the tetanus is held for approximately two to three seconds although many variations may be possible depending on the response of the patient.
  • the monitor is switched to provide electrical stimuli at the twitching frequency once again.
  • FIG. 3b shows the response of the patients digit-al members to the re-application of the twitch frequency when there exists a non-depolarizing neuromuscular block within the patient. This figure further shows what is generally termed post-tetanic facilitation and which is represented by a sudden increase in the amplitude of the switch response.
  • FIG. 3c there is shown the response of the patient to the twitch electrical frequency stimuli when there exists a depolarizing neuromuscular block within the patient.
  • FIG. 3c it may be seen that there is no post-tetanic facilitation which is indicative of a depolarizing neuromuscular block.
  • a muscle antagonist drug should be introduced into the patient only when there exists a nondepolarizing block such as shown by the post-tetanic facilitation of FIG. 3b.
  • the introduction of an antagonist drug when there is a depolarizing block such as shown in FIG. 3c potentiates the depolarizing block rather than counteracting the muscle relaxant drug. If the drug is administered when there is a depolarizing block, the patient generally requires a longer period of time to overcome the relaxant drug then would normally -be required if the neuromuscular block were permitted ⁇ to switch from a depolarizing to the non-depolarizing neuromuscular block by itself.
  • a method for administering a muscle relaxant antagonist drug to counteract muscle relaxant drugs which produce both non-depolarizing and depolarizing blocks in patients comprising the steps of first applying an electrical stimulus to the ulnar nerve and/ or the nerve motor point muscle junction of a patient at a switching frequency rate, secondly applying electrical stimulus lat a tetanus frequency rate to the same part of the patient, point muscle junction of a patient at a twitching frequency rate, differentiating between responsiveness of the patient to said stimuli to determine the types of neuromuscular block, and introducing an antagonist into the system of the patient only if the response of the patient is such that a non-depolarizing block exists.
  • a method for the intravenous administration of antagonistic drugs to counteract the effects of drugs producing muscle relaxation comprising the steps of sequentially applying a low amperage electrical stimuli of two different frequencies to a muscle motor point and/or the ulnar nerve of a patient to produce -a muscle stimulus, and administering the antagonistic drugs only when the response of the patient to the electrical stimuli is such that a non-depolarizing neuromuscular block exists within the patient.
  • a method for Vthe intravenous administration of antagonistic drugs to counteract the effects of muscle relaxant drugs producing 'both depolarizing and nondepolarizing neuromuscular blocks in patients comprising the steps of sequentially applying an electrical stimulus at both twitching and tetanus frequencies to a muscle motor point and/ or the ulnar nerve of a patient to produce a muscle stimulus, Vand administering antagonistic drugs only when the response of the patient to the electrical stimuli is such that a non-depolarizing neuromuscular block exists.
  • a method for administering muscle relaxation antagonistic drugs to counteract the effects of muscle relaxant drugs which produce both non-depolarizing and depolarizing neuromuscular blocks in patients comprising the steps of first applying an electrical stimulus at a twitching frequency to the ulnar nerve and/ or the muscle motor point of a, patient, then applying an electrical stimulus at a tetanus frequency to the ulnar nerve and/or the muscle motor point of a patient and then reapplying an electrical stimulus at a twitching frequency to the ulnar nerve and/or the muscle motor point of a patient, and administering antagonistic drugs only when the response of the patient is such that a depol-arizing neuromuscular ⁇ block will not be potentiated.

Abstract

A portable neuromuscular blockade monitor having application for (i) determining the type and degree of blockade present in a patient, (ii) determining the correct time for administration of muscle-relaxant drug or antagonistic drug, or (iii) determining the amount of muscle-relaxant or antagonist to be administered, comprises a dry battery of greater than zero but up to 12V output, a transistorized oscillator circuit to convert the D.C. energy from the battery into a series of electrical pulses which are of two fixed frequencies, the first being in the range of 1 pulse per second to 1 pulse per 10 seconds and the second being in the range p 25 to 250 pulses per second, a switch means for enabling either of these frequencies to be selected and maintained, a step-up transformer and potential divider on the stepped up voltage side of the transformer and a pair of terminals to take the pulse output from the device via the potential divider.

Description

Jan. 23, 1968 w. 5.105 ETAL 3,364,929
- METHOD FOR ADMINISTERING MUSCLE RELXANT DRUG Filed Dec. 2l, 1964 ,zo ,22 3 lll 5? 45 f2( 58 56X z3 40 Z8 2Q 25 E 5M@ 6&5 N
Z5 75 HM' METER 0R A OSCILLOSCOPE ELE CTR \CQL. SUMUU TwlTcH fTETANus TwITH gb Nowoepommzme BLOCK MH @Us TunTcH g" .36. DEPoLQmzmG BLOCK INVBNTORS HHH l I l I I wlham H .NwKevmm Y BY TwlTcH TETANUSl TwmzH 90M@ (mm Y ATTQRNEY` United States Patent Office 3,364,929 Patented Jan. 23, 1968 3,364,929 METHOD FOR ADMINISTERING MUSCLE RELAXANT DRUG Walter S. Ide, Eastchester, and William H. Nickerson,
Tuckahoe, N.Y., assignors to Burroughs Wellcome &
Co. (U.S.A.) Inc., Tucltahoe, N Y., a corporation of New York Filed Dec. 21, 1954, Ser. No. 419,949 4 Claims. (Cl. 128-172.1)
ABSTRACT OF THE DISCLOSURE A method for administering a muscle relaxant antagonist drug to counteract muscle relaxant drugs which produce both non-depolarizing and depolarizing blocks in patients, comprising the steps of rst applying an electrical stimulus to the ulnar nerve and/ or the nerve motor point muscle junction of a patient at a twitching frequency rate, secondly applying electrical stimulus at a tetanus frequency rate to the same part of the patient, and thirdly reapplying the electrical stimulus at the frequency rate, differentiating between responsiveness of the patient to said stimuli to determine the types of neuromuscular block, and introducing an antagonist into the system of the patient only if the response of the patient is such that a non-depolarizing block exists.
Athe completion of surgery, it is sometimes required that the patient who has been administered a muscle relaxant drug be stimulated by the administration of an antagonist drug to counteract the elfects of the muscle relaxant drug. Commonly used antagonist drugs are physostigmine, eserine and edrophonium.
In some instances instead of the antagonist stimulating the patient a continuation of the relaxation of the patient for prolonged periods has occurred. The prolonged period of relaxation has tended to be greater than that which would ordinarily occur without the administration of the antagonist, It is believed that this continuation of relaxation is related to the type of neuromuscular block existing in the patient.
In View of the foregoing, a new and improved apparatus for determining the correct time to administer muscle `antagonist drugs was required. Additionally, a new and improved method was required in order to administer antagonists to produce a stimulation of the patient instead of prolonging the relaxation of the patient. Accordingly, it is an object of this invention to provide a new and improved apparatus for providing electrical stimuli4 to differentiate between depolarizing and nondepolarizing neuromuscular blocks due to the action of certain muscle relaxant drugs.-
Another object of this `invention is to provide a new and improved method of administering antagonist drugs. It is a further object of this invention to provide a new and improved method of determining when to introduce muscle relaxant drugs and the administration of such drugs.
It is'an additional object of this invention to provide a new and improved and simplified monitoring apparatus for stimulating the patient and to determine the type of neuromuscular block exhibited by the patient.
Other objects of the invention will in part be obvious and will in part appear hereinafter.
The invention accordingly comprises the several steps and the relation of one or more of such steps with respect to each of the others, and the apparatus embodying features of construction, combinations of elements and arrangements of parts which are adapted to eect such steps, all as exemplified in the following detailed disclosure, and the scope of the invention will be indicated in the claims.
For a fuller understanding of the nature and objects of the invention, reference should be had to the following detailed description taken in conjunction with the accompanying drawings, in which FIG. 1 illustrates schematically a transistorized, neuromuscular block monitoring device;
FIG. 2 is an isometric representation of a splint for mounting on a patient to detect response of a patient to electrical stimuli;
FIG. 3a is a graph illustrating the sequential electrical stimuli applied to the patient in accordance with this invention;
FIG. 3b is a graph showing the resultant response of a patient to the electrical stimuli as a result of a non-depolarizing block affecting the nerves of the patient; and
FIG 3c is a graph illustrating a depolarizing block of a patient in response to electrical stimuli.
Referring now to FIGS. l and 2, a monitor oscillator or pulse generator is shown at 20 for generating an electrical stimuli in accordance with this invention. The pulse generator Z0 includes a relaxation oscillator circuit having an NPN transistor 21 with an emitter electrode 22, a base electrode 23 and a collector electrode 24 and a PNP transistor 25 with an emitter electrode 26, a base electrode 27 and a collector electrode 28. The collector 24 of transistor 21 is coupled to the base 27 of transistor 25. Connected between the base electrode 23 of transistor 21 and collector electrode of transistor 25 is a capacitor 30. Coupled intermediate the base 23 of transistor 21 and capacitor 30 is a variable resistance network for varying the frequency of the oscillator. The resistance network includes a switch 31 and two resistors 33 and 34, Switch 31 can be connected to either of resistors 33 and 34 to control the frequency of the oscillator. A source of direct current energy 34, such as a battery, is coupled at its positive terminal to emitter 26 of transistor 25 and to the other end of resistors 33 and 34. A switch 36 is provided in the line to place the DC energy source 35 in the circuit, One end of the switch is coupled to the emitter 22 and the other end of the switch is coupled to the battery 35. A voltage step-up transformer is generally shown at 37. Transformer has its primary winding 38 between the collector 28 of transistor 25 and emitter 22 of transistor 21.
A resistor 40 coupled in series with capacitor 30 and a capacitor 41 connected across winding 38 are preferably included to decrease extraneous voltages in the circuit. The secondary winding 39 of transformer 37 is coupled across a resistor 4S and a gas tube 46. The'resistor 45 and gas tube 46 are in parallel with a variable resistor 47. The gas tube 46 indicates when the device 20 is providing a signal of a predetermined voltage level. Coupled across variable resistor 47 is a first electrode 50 and a second electrode 51 connected through a resistor 49. The electrodes may be surface-type electrodes which are suitable for applying an electrical stimuli to the arm 52 of a patient. But, preferably, needle-type electrodes are utilized which may be of the standard 25 gage metal needle type.
The electrodes are placed on the arm or the legs of a patient in a well -known manner such that the ulnar nerve and/or the nerve motor point muscle function is stimulated by the signal provided from the oscillator 20. The oscillator operates as follows: upon closure of switch 36 and the connection of switch 31 to one of resistors 33 and 34, the circuit 20 will begin to oscillate. Assume, for example, that switch 31 is coupled to resistor 34. The value of resistor 34 is selected such that the relaxation oscillator 2t)v will oscillate at a frequency somewhat above zero impulses per second rbut below 30 impulses per second. This is commonly termed as the frequency which will produce twitching of a digital member of a limb of a patient, as for example, a finger or a toe. This will henceforth be defined as the twitching frequency. The exact impulse frequency range to produce twitching will vary with the patient, and therefore af requency of 20 impulses per second is preferred. With switch 31 coupled to the resistor 34, a voltage will be applied to transistor base 23 in such a direction as to cause transistor 21 to turn on. The turning on of transistor 21 causes transistor to turn on. This causes a current to ow within the primary 3S of the transformer 37. Transistors 21 and 25 will continue to conduct as long as the transformer 37 is unsaturated. After a period of time, transformer 37 becomes saturated and a voltage across secondary 39 rapidly reverses according to Lcnzes law. This causes a potential to be applied to base 23 of transistor 21 of such a polarity as to turn off transistor 21. This, in turn, turns off transistor 25. Capacitor which charged in the reverse direction to cut olf transistor 23 due to the saturation of inductor 37 then gradually discharges until the potential at the base electrode 23 of transistor 21 once again becomes of the proper polarity to turn on transistor 21 to restart the cycle.
The resultant output wave form of the oscillator is shown across electrodes 50 and 51. It is to be noted that the topmost portion of the turn on cycle is slightly clipped due to the presence of gas tube 46. This gas tube ckering indicates to the observer that the impulse generating device 20 is operating. Assume now that the switch 31 is coupled to resistor 33. Resistor 33 is selected such that the impulse frequency rate will be in the order of between -120 impulses per second. In the preferred embodiment, 50 impulses per second was chosen. This range of frequencies is generally referred to as the tetanus frequency rate. The tetanus frequency reaction is observed by noticing the involuntary closing of a linger or a toe of a patient. The exact values for the frequency rate for both tetanus and twitching is generally a function of the patient and it is, therefore, to be understood that the ranges described are only illustrative and are not limiting.
Although it is to be understood that many modifications may be made to the above circuit, the following circuit values may be utilized to provide an impulse generating device suitable for generating both tetanus and twitching frequency impulses.
Transistor 21 2N335.
Transistor 25 2Nl66.
Capacitor 30 2O microfarads.
Resistor 33 5.1K ohms.
Resistor 34 330K ohms.
Battery 35 3 volts. Transformer 37 Voltage step-up of approximately 30. Resistor 40 100 ohms.
Capacitor 41 l5 microfarads.
Gas tube 46 NESlH.
The device 20 is capable of providing approximately a 90 R.M.S. output signal across electrodes 50 and 51 when used with a 3-volt battery as the energy source for the circuit. This circuit is particularly usable during the administration of an anesthesia and during operations because it is explosion-proof due to the low value of currents and voltages utilized. To detect the response to the electrical stimuli provided across the electrodes 50 and 51, a digital member such as a finger 53 of arm 52 may be observed. This may be accomplished without the use of any auxiliary detecting and monitoring devices shown in FIG. l. By applying a twitching frequency signal to the electrodes 50 and 51, the twitching signal will produce a periodic contraction of the finger 53. The application of a tetanus signal will draw the finger closed. Thus, the twitching and tetanus signals may be observed by watching the motion of the finger or the toes of a patient.
The use of this information will be described at a later time in this specification in accordance with the method of this invention.
Although the reaction of the patient to the application of tetanus and Ytwitching muscle electrical stimuli mayl be obsterved without the use of electrical equipment, it is preferred that some type of electrical monitoring device be utilized to better assist in the recognition of the patients response.
By the use'of a splint, generally shown at 55, which is suitable for mounting on thumb 53, a device for indicating and displaying the response of the patient may be provided. The splint 55 comprises resilient lat portions 55 and 57 having a bend 58 therebetween. Positioned at one end of resilient member 57 is ring 61 suitable for surrounding the tip portion of patients thumb 53.
Attached to the other member 56 of splint 55 are clamps 62 and 63. These clamps are shaped like rings, but have cut out portions for permitting the clamps to extend over the upper portion of patients thumb 53 above the joint. To record the bending of the splint 55, a suitable strain gage 70 is mounted thereon in a position to record the pressure produced by the thumb against the splint. A strain gage, such as the type SR-4 available from Baldwin-Lima Hamilton Corp., Waltham, Massachusetts, may be used. Other types of strain or stress transducers such as strain sensitive diodes and transistors may also be utilized as well as piezo electric devices. Strain gage 70 is connected to a suitable circuit comprising resistor 72 and battery 73 for providing a current through the strain gage. The variations of the current flow through the strain gage due to a change in resistance of the strain gage because of flexing of thumb 53, can then be monitored on a meter such as a voltage meter or an oscilloscope 75. Further, other display devices may be utilized, for example, electrical type brush recorders.
Referring now to FIGS. 3a, 3b and 3c for a description of the method according to this invention, assume that the patient has been injected with a syringe carry,
ing muscle relaxant drugs such as succinylcholine, or dimethyl tubocurare. Further assume that an anesthesiologist deems it necessary to introduce a muscle antagonistic drug to counteract the effects of the muscle relaxant drug. To determine the proper time to inject the muscle relaxant antagonist is, for example, by the use of a syringe 80 as shown in FIG. l, the neuromuscular block monitoring device 20, is turned on and set to provide electrical stimuli at a twitching frequency. The electrical stimuli is applied at the ulnar nerve at the wrist, elbow or at a motor junction point. It is preferable to use needle electrodes which may be inserted into the arm of the patient, rather than surface electrodes which tend to cause slight damage tothe skin due to irritation of the electrodes after long periods of time as, for example, four hours. FIG. 3a shows the application of the electrical stimuli at a twitching frequency of about twenty impulses per second, although variations may exist due to the particular patient. The response of the patient is shown in FIGS. 3b and 3c and may be observed on the oscilloscope 75. The spikes in FIGS. 3b and 3c indicate that the patient has reacted to the stimuli such as to produce a twitching of the digital member. This can also be observe-d by watching the digital member itself. lAfter a period of time as, for example, 20 seconds monitor oscillating device 20 is then set to provide electrical stimuli at a tetanus frequency. In the preferred embodiment, the monitor is set to provide 50 impulses per seconduwh'ich is shown in FIG. 3a. The application of electrical im'- pulses at tetanus frequency produces a clamping response of the patients hand or toes such that the hand or toes tend to close during the application of the tetanus stimuli. This may be observed by noticing the square wave representation in FIGS. 3b and 3c or, again, by watching the digital member.
In the preferred method, the tetanus is held for approximately two to three seconds although many variations may be possible depending on the response of the patient. To determine the nature of the neuromuscular block, the monitor is switched to provide electrical stimuli at the twitching frequency once again. FIG. 3b shows the response of the patients digit-al members to the re-application of the twitch frequency when there exists a non-depolarizing neuromuscular block within the patient. This figure further shows what is generally termed post-tetanic facilitation and which is represented by a sudden increase in the amplitude of the switch response. This has been determined to vbe the response by the patient to a twitch frequency after ythe application of a tetanus frequency electrical stimuli when there exists a nondepolarizing block within the patient. In FIG. 3c there is shown the response of the patient to the twitch electrical frequency stimuli when there exists a depolarizing neuromuscular block within the patient. In this figure it may be seen that there is no post-tetanic facilitation which is indicative of a depolarizing neuromuscular block.
In accordance with this invention, it has been determined that a muscle antagonist drug should be introduced into the patient only when there exists a nondepolarizing block such as shown by the post-tetanic facilitation of FIG. 3b. The introduction of an antagonist drug when there is a depolarizing block such as shown in FIG. 3c potentiates the depolarizing block rather than counteracting the muscle relaxant drug. If the drug is administered when there is a depolarizing block, the patient generally requires a longer period of time to overcome the relaxant drug then would normally -be required if the neuromuscular block were permitted `to switch from a depolarizing to the non-depolarizing neuromuscular block by itself. This will generally occur after a predetermined time interval h-as elapsed to permit the muscle relaxant 4drum to lose at least some of its potency. It should be understood that a sensor strapped to an arm or leg of the patient could also be utilized although a sensor strapped to a digit-al member is preferred.
It will thus be seen that the objects set forth above, among those made 4apparent from the preceding description, are eiiciently attained and, since certain changes may be made in the above article without departing from the scope of the invention, it is intended that all matter contained in the above description or shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.
It is also to be understood that the following claims are intended to cover all of the generic and specific features of the invention hereindescribed, and all statements of the scope of the invention which, as a matter of language, might be said to fall therebetween.
What we claim is:
1. A method for administering a muscle relaxant antagonist drug to counteract muscle relaxant drugs which produce both non-depolarizing and depolarizing blocks in patients, comprising the steps of first applying an electrical stimulus to the ulnar nerve and/ or the nerve motor point muscle junction of a patient at a switching frequency rate, secondly applying electrical stimulus lat a tetanus frequency rate to the same part of the patient, point muscle junction of a patient at a twitching frequency rate, differentiating between responsiveness of the patient to said stimuli to determine the types of neuromuscular block, and introducing an antagonist into the system of the patient only if the response of the patient is such that a non-depolarizing block exists.
2. A method for the intravenous administration of antagonistic drugs to counteract the effects of drugs producing muscle relaxation, comprising the steps of sequentially applying a low amperage electrical stimuli of two different frequencies to a muscle motor point and/or the ulnar nerve of a patient to produce -a muscle stimulus, and administering the antagonistic drugs only when the response of the patient to the electrical stimuli is such that a non-depolarizing neuromuscular block exists within the patient.
3. A method for Vthe intravenous administration of antagonistic drugs to counteract the effects of muscle relaxant drugs producing 'both depolarizing and nondepolarizing neuromuscular blocks in patients, comprising the steps of sequentially applying an electrical stimulus at both twitching and tetanus frequencies to a muscle motor point and/ or the ulnar nerve of a patient to produce a muscle stimulus, Vand administering antagonistic drugs only when the response of the patient to the electrical stimuli is such that a non-depolarizing neuromuscular block exists.
4. A method for administering muscle relaxation antagonistic drugs to counteract the effects of muscle relaxant drugs which produce both non-depolarizing and depolarizing neuromuscular blocks in patients, comprising the steps of first applying an electrical stimulus at a twitching frequency to the ulnar nerve and/ or the muscle motor point of a, patient, then applying an electrical stimulus at a tetanus frequency to the ulnar nerve and/or the muscle motor point of a patient and then reapplying an electrical stimulus at a twitching frequency to the ulnar nerve and/or the muscle motor point of a patient, and administering antagonistic drugs only when the response of the patient is such that a depol-arizing neuromuscular `block will not be potentiated.
References Cited UNITED STATES PATENTS 2,493,155 1/1950 McMillan 128-172.1 2,808,826 10/1957 Reiner et al 12S-2.1 2,830,578 4/1958 De Groff 12S- 24.5 2,840,069 6/ 1958 Squire et al. 12S-2 3,200,814 8/1965 Taylor et al. 12S-2 3,207,151 9/ 1965 Takagi 12S-2.1 3,258,007 6/1966 Karpovich et a1. 12S-2 3,292,620 12/ 1966 Mahler 12S-172.1 2,979,055 4/ 1961 De Beer et al 12S-214 RICHARD A. GAUDET, Primary Examiner. SIMON BRODER, Examiner,
Disclaimer 3,364,929. Walter S. lele, Eastchesber, and William H. Nickerson, Tuckahoe, N.Y. METHOD FOR ADMIN ISTERING MUSCLE RELAXANT DRUG. Patent dated J an. 23, 1968. Disclaimer filed Apr. 20, 197 8, by the assignee, Burroughs Wellcome 00. Hereby enters this disclaimer to all claims of said patent.
[Oficial Gazette June 13, 1.978.]
US419949A 1964-12-21 1964-12-21 Method for administering muscle relaxant drug Expired - Lifetime US3364929A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
US419949A US3364929A (en) 1964-12-21 1964-12-21 Method for administering muscle relaxant drug
GB53427/65A GB1123365A (en) 1964-12-21 1965-12-16 Portable neuromuscular blockade monitor
BE674054A BE674054A (en) 1964-12-21 1965-12-20
CH1758965A CH428965A (en) 1964-12-21 1965-12-21 Portable device for displaying and monitoring a neuromuscular blockage
FR43163A FR1466608A (en) 1964-12-21 1965-12-21 Portable indicator of neuromuscular blockade status
SE16515/65D SE340324B (en) 1964-12-21 1965-12-21
IL24839A IL24839A (en) 1964-12-21 1965-12-21 Portable neuromuscular blockade monitor
DE19651539104 DE1539104B2 (en) 1964-12-21 1965-12-21 STIMULAR PULSE GENERATOR FOR PHYSIOLOGICAL PURPOSES
NL6516659A NL6516659A (en) 1964-12-21 1965-12-21
US662249A US3565080A (en) 1964-12-21 1967-07-19 Neuromuscular block monitoring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US419949A US3364929A (en) 1964-12-21 1964-12-21 Method for administering muscle relaxant drug

Publications (1)

Publication Number Publication Date
US3364929A true US3364929A (en) 1968-01-23

Family

ID=23664430

Family Applications (1)

Application Number Title Priority Date Filing Date
US419949A Expired - Lifetime US3364929A (en) 1964-12-21 1964-12-21 Method for administering muscle relaxant drug

Country Status (9)

Country Link
US (1) US3364929A (en)
BE (1) BE674054A (en)
CH (1) CH428965A (en)
DE (1) DE1539104B2 (en)
FR (1) FR1466608A (en)
GB (1) GB1123365A (en)
IL (1) IL24839A (en)
NL (1) NL6516659A (en)
SE (1) SE340324B (en)

Cited By (110)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3468302A (en) * 1966-05-20 1969-09-23 Godfrey Brooke Skin resistance reaction time testing apparatus
US3513834A (en) * 1966-11-21 1970-05-26 Hitachi Ltd Anesthetic depth measuring system
US3570473A (en) * 1966-02-28 1971-03-16 Cargille Scient Inc Manually controllable medical aid oscillator instrument
US3618601A (en) * 1969-10-16 1971-11-09 Thatcher W Richardson Iontophoresis unit
US3898983A (en) * 1973-10-03 1975-08-12 James O Elam Device and method for detecting the degree of muscle relaxation of a medical patient
US3908669A (en) * 1973-12-17 1975-09-30 American Acupuncture Medical I Apparatus for use by physicians in acupuncture research
EP0025222A2 (en) * 1979-09-10 1981-03-18 The Regents Of The University Of California Apparatus for monitoring neuromuscular transmission
US4387723A (en) * 1980-12-09 1983-06-14 Wisconsin Alumni Research Foundation Method and apparatus for determining the level of neuromuscular block in a patient
US4399821A (en) * 1981-02-19 1983-08-23 Bowers David L Free moving animal physiological monitoring and identification system and method
US4411268A (en) * 1982-02-10 1983-10-25 Medtronic, Inc. Muscle stimulator
US4558704A (en) * 1983-12-15 1985-12-17 Wright State University Hand control system
US4595018A (en) * 1983-06-10 1986-06-17 Instrumentarium Corp. Method of further developing the measuring of a neuro-muscular junction
WO1986006965A1 (en) * 1985-05-20 1986-12-04 Survival Technology, Inc. Injection method and apparatus with electrical blood absorbing stimulation
US4644959A (en) * 1984-04-12 1987-02-24 Sergiu Calmanovici Method of functional assessment of cancer humoral factors
US4748987A (en) * 1984-02-21 1988-06-07 The University Of Michigan Acoustic myography
US4795433A (en) * 1985-05-20 1989-01-03 Survival Technology, Inc. Automatic injector for emergency treatment
US4807643A (en) * 1982-08-16 1989-02-28 University Of Iowa Research Foundation Digital electroneurometer
US4817628A (en) * 1985-10-18 1989-04-04 David L. Zealear System and method for evaluating neurological function controlling muscular movements
US4832682A (en) * 1984-08-08 1989-05-23 Survival Technology, Inc. Injection method and apparatus with electrical blood absorbing stimulation
US4962766A (en) * 1989-07-19 1990-10-16 Herzon Garrett D Nerve locator and stimulator
US4986280A (en) * 1988-07-20 1991-01-22 Arthur D. Little, Inc. Hand position/measurement control system
US5020542A (en) * 1990-04-16 1991-06-04 Charles Rossmann Method of measuring skin sensitivity to electrical stimulation
US5085226A (en) * 1990-05-30 1992-02-04 Trustees Of Boston University Force monitoring apparatus for back muscles
US5284153A (en) * 1992-04-14 1994-02-08 Brigham And Women's Hospital Method for locating a nerve and for protecting nerves from injury during surgery
US5775331A (en) * 1995-06-07 1998-07-07 Uromed Corporation Apparatus and method for locating a nerve
WO1999053996A1 (en) * 1998-04-17 1999-10-28 Stryker Instruments Neuromuscular electrical stimulation for preventing deep vein thrombosis
US6312392B1 (en) 2000-04-06 2001-11-06 Garrett D. Herzon Bipolar handheld nerve locator and evaluator
US6466817B1 (en) 1999-11-24 2002-10-15 Nuvasive, Inc. Nerve proximity and status detection system and method
US6500128B2 (en) 2000-06-08 2002-12-31 Nuvasive, Inc. Nerve movement and status detection system and method
US6564078B1 (en) 1998-12-23 2003-05-13 Nuvasive, Inc. Nerve surveillance cannula systems
US20030105503A1 (en) * 2001-06-08 2003-06-05 Nuvasive, Inc. Relative nerve movement and status detection system and method
US20030195405A1 (en) * 1998-12-23 2003-10-16 Nuvasive, Inc. Nerve surveillance cannulae systems
US20040024299A1 (en) * 2000-11-02 2004-02-05 Grace Lawrence J. Method and apparatus for self-diagnostic evaluation of nerve sensory latency
US20040199084A1 (en) * 1999-11-24 2004-10-07 Nuvasive, Inc. Electromyography system
US20040225228A1 (en) * 2003-05-08 2004-11-11 Ferree Bret A. Neurophysiological apparatus and procedures
US20050075578A1 (en) * 2001-09-25 2005-04-07 James Gharib System and methods for performing surgical procedures and assessments
US20050149035A1 (en) * 2003-10-17 2005-07-07 Nuvasive, Inc. Surgical access system and related methods
US20050182454A1 (en) * 2001-07-11 2005-08-18 Nuvasive, Inc. System and methods for determining nerve proximity, direction, and pathology during surgery
US20060025703A1 (en) * 2003-08-05 2006-02-02 Nuvasive, Inc. System and methods for performing dynamic pedicle integrity assessments
US20060069315A1 (en) * 2003-09-25 2006-03-30 Patrick Miles Surgical access system and related methods
US20060173521A1 (en) * 2005-01-31 2006-08-03 Pond John D Jr Electrically insulated surgical needle assembly
US20060173374A1 (en) * 2005-01-31 2006-08-03 Neubardt Seth L Electrically insulated surgical probing tool
US20060178593A1 (en) * 2005-02-07 2006-08-10 Neubardt Seth L Device and method for operating a tool relative to bone tissue and detecting neural elements
US20060178594A1 (en) * 2005-02-07 2006-08-10 Neubardt Seth L Apparatus and method for locating defects in bone tissue
US20060200023A1 (en) * 2005-03-04 2006-09-07 Sdgi Holdings, Inc. Instruments and methods for nerve monitoring in spinal surgical procedures
US20060211912A1 (en) * 2005-02-24 2006-09-21 Dlugos Daniel F External pressure-based gastric band adjustment system and method
US20060224078A1 (en) * 2000-05-18 2006-10-05 Nuvasive, Inc. Tissue discrimination and applications in medical procedures
US20070016097A1 (en) * 2003-01-15 2007-01-18 Nuvasive, Inc. System and methods for determining nerve direction to a surgical instrument
US20070021682A1 (en) * 2005-07-20 2007-01-25 Nuvasive Inc. System and methods for performing neurophysiologic assessments with pressure monitoring
US20080015406A1 (en) * 2005-02-24 2008-01-17 Dlugos Daniel F External Mechanical Pressure Sensor for Gastric Band Pressure Measurements
US20080058837A1 (en) * 1999-03-07 2008-03-06 Active Implants Corporation Method and apparatus for computerized surgery
US20080058606A1 (en) * 2002-10-08 2008-03-06 Nuvasive, Inc. Surgical access system and related methods
US20080097164A1 (en) * 2003-01-16 2008-04-24 Nuvasive, Inc. Surgical access system and related methods
US20080167574A1 (en) * 2005-09-22 2008-07-10 Allen Farquhar Multi-Channel Stimulation Threshold Detection Algorithm For Use In Neurophysiology Monitoring
US20080249806A1 (en) * 2006-04-06 2008-10-09 Ethicon Endo-Surgery, Inc Data Analysis for an Implantable Restriction Device and a Data Logger
US20080250341A1 (en) * 2006-04-06 2008-10-09 Ethicon Endo-Surgery, Inc. Gui With Trend Analysis for an Implantable Restriction Device and a Data Logger
US20080250340A1 (en) * 2006-04-06 2008-10-09 Ethicon Endo-Surgery, Inc. GUI for an Implantable Restriction Device and a Data Logger
US20090054804A1 (en) * 2007-04-03 2009-02-26 Nuvasive Inc. Neurophysiologic monitoring system
US20090105604A1 (en) * 2005-02-02 2009-04-23 Nuvasive, Inc. System and Methods for Monitoring During Anterior Surgery
US20090124860A1 (en) * 2003-02-27 2009-05-14 Nuvasive, Inc. Surgical access system and related methods
US20090149874A1 (en) * 2007-12-10 2009-06-11 Ethicon Endo-Surgery. Inc. Methods for implanting a gastric restriction device
US20090171375A1 (en) * 2007-12-27 2009-07-02 Ethicon Endo-Surgery, Inc. Controlling pressure in adjustable restriction devices
US20090171379A1 (en) * 2007-12-27 2009-07-02 Ethicon Endo-Surgery, Inc. Fluid logic for regulating restriction devices
US20090192534A1 (en) * 2008-01-29 2009-07-30 Ethicon Endo-Surgery, Inc. Sensor trigger
US20090204179A1 (en) * 2008-02-07 2009-08-13 Ethicon Endo-Surgery, Inc. Powering implantable restriction systems using temperature
US20090204141A1 (en) * 2008-02-07 2009-08-13 Ethicon Endo-Surgery, Inc. Powering implantable restriction systems using kinetic motion
US20090202387A1 (en) * 2008-02-08 2009-08-13 Ethicon Endo-Surgery, Inc. System and method of sterilizing an implantable medical device
US20090204131A1 (en) * 2008-02-12 2009-08-13 Ethicon Endo-Surgery, Inc. Automatically adjusting band system with mems pump
US20090216255A1 (en) * 2008-02-26 2009-08-27 Ethicon Endo-Surgery, Inc. Controlling pressure in adjustable restriction devices
US7582058B1 (en) 2002-06-26 2009-09-01 Nuvasive, Inc. Surgical access system and related methods
US20090222065A1 (en) * 2006-04-06 2009-09-03 Ethicon Endo-Surgery, Inc. Physiological Parameter Analysis for an Implantable Restriction Device and a Data Logger
US20090228063A1 (en) * 2008-03-06 2009-09-10 Ethicon Endo-Surgery, Inc. System and method of communicating with an implantable antenna
US20090228072A1 (en) * 2008-03-06 2009-09-10 Ethicon Endo-Surgery, Inc. System and method of aligning an implantable antenna
US20090228028A1 (en) * 2008-03-06 2009-09-10 Ethicon Endo-Surgery, Inc. Reorientation port
US20090299439A1 (en) * 2008-06-02 2009-12-03 Warsaw Orthopedic, Inc. Method, system and tool for surgical procedures
US7658196B2 (en) 2005-02-24 2010-02-09 Ethicon Endo-Surgery, Inc. System and method for determining implanted device orientation
US7664544B2 (en) 2002-10-30 2010-02-16 Nuvasive, Inc. System and methods for performing percutaneous pedicle integrity assessments
US7775966B2 (en) 2005-02-24 2010-08-17 Ethicon Endo-Surgery, Inc. Non-invasive pressure measurement in a fluid adjustable restrictive device
US7775215B2 (en) 2005-02-24 2010-08-17 Ethicon Endo-Surgery, Inc. System and method for determining implanted device positioning and obtaining pressure data
US7785253B1 (en) 2005-01-31 2010-08-31 Nuvasive, Inc. Surgical access system and related methods
US20100286784A1 (en) * 2005-07-28 2010-11-11 Matthew Curran Total disc replacement system and related methods
US7844342B2 (en) 2008-02-07 2010-11-30 Ethicon Endo-Surgery, Inc. Powering implantable restriction systems using light
US8016745B2 (en) 2005-02-24 2011-09-13 Ethicon Endo-Surgery, Inc. Monitoring of a food intake restriction device
US8066629B2 (en) 2005-02-24 2011-11-29 Ethicon Endo-Surgery, Inc. Apparatus for adjustment and sensing of gastric band pressure
US8100870B2 (en) 2007-12-14 2012-01-24 Ethicon Endo-Surgery, Inc. Adjustable height gastric restriction devices and methods
US8192350B2 (en) 2008-01-28 2012-06-05 Ethicon Endo-Surgery, Inc. Methods and devices for measuring impedance in a gastric restriction system
US8287597B1 (en) 2009-04-16 2012-10-16 Nuvasive, Inc. Method and apparatus for performing spine surgery
US8313430B1 (en) 2006-01-11 2012-11-20 Nuvasive, Inc. Surgical access system and related methods
US8337389B2 (en) 2008-01-28 2012-12-25 Ethicon Endo-Surgery, Inc. Methods and devices for diagnosing performance of a gastric restriction system
US8377079B2 (en) 2007-12-27 2013-02-19 Ethicon Endo-Surgery, Inc. Constant force mechanisms for regulating restriction devices
US8568317B1 (en) 2005-09-27 2013-10-29 Nuvasive, Inc. System and methods for nerve monitoring
US8591532B2 (en) 2008-02-12 2013-11-26 Ethicon Endo-Sugery, Inc. Automatically adjusting band system
US8591395B2 (en) 2008-01-28 2013-11-26 Ethicon Endo-Surgery, Inc. Gastric restriction device data handling devices and methods
US8790406B1 (en) 2011-04-01 2014-07-29 William D. Smith Systems and methods for performing spine surgery
US9198765B1 (en) 2011-10-31 2015-12-01 Nuvasive, Inc. Expandable spinal fusion implants and related methods
US9351845B1 (en) 2009-04-16 2016-05-31 Nuvasive, Inc. Method and apparatus for performing spine surgery
US9392953B1 (en) 2010-09-17 2016-07-19 Nuvasive, Inc. Neurophysiologic monitoring
US9622732B2 (en) 2004-10-08 2017-04-18 Nuvasive, Inc. Surgical access system and related methods
US9757067B1 (en) 2012-11-09 2017-09-12 Nuvasive, Inc. Systems and methods for performing neurophysiologic monitoring during spine surgery
US9757072B1 (en) 2013-02-11 2017-09-12 Nuvasive, Inc. Waveform marker placement algorithm for use in neurophysiologic monitoring
US9814402B2 (en) 2013-02-15 2017-11-14 Acacia Designs Bv Electrode systems for use with medical monitoring systems
US10420480B1 (en) 2014-09-16 2019-09-24 Nuvasive, Inc. Systems and methods for performing neurophysiologic monitoring
US10869609B2 (en) 2014-11-26 2020-12-22 Safeop Surgical, Inc. Device and means of assessing neuromuscular junction status with higher fidelity
US11026627B2 (en) 2013-03-15 2021-06-08 Cadwell Laboratories, Inc. Surgical instruments for determining a location of a nerve during a procedure
US11177610B2 (en) 2017-01-23 2021-11-16 Cadwell Laboratories, ino. Neuromonitoring connection system
US11253182B2 (en) 2018-05-04 2022-02-22 Cadwell Laboratories, Inc. Apparatus and method for polyphasic multi-output constant-current and constant-voltage neurophysiological stimulation
US11259737B2 (en) 2012-11-06 2022-03-01 Nuvasive, Inc. Systems and methods for performing neurophysiologic monitoring during spine surgery
US11443649B2 (en) 2018-06-29 2022-09-13 Cadwell Laboratories, Inc. Neurophysiological monitoring training simulator
US11793504B2 (en) 2011-08-19 2023-10-24 Nuvasive, Inc. Surgical retractor system and methods of use
US11877860B2 (en) 2012-11-06 2024-01-23 Nuvasive, Inc. Systems and methods for performing neurophysiologic monitoring during spine surgery

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2493155A (en) * 1947-01-09 1950-01-03 Mine Safety Appliances Co Apparatus for treating skin diseases
US2808826A (en) * 1956-01-19 1957-10-08 Teca Corp Electro-diagnostic apparatus and a circuit therefor
US2830578A (en) * 1957-01-31 1958-04-15 Mark E Degroff Electro-sonic apparatus
US2840069A (en) * 1954-09-25 1958-06-24 Nat Res Dev Penetrating instruments such as hypodermic needles and their use in an imbibition pressure meter
US2979055A (en) * 1954-06-18 1961-04-11 Burroughs Wellcome Co Method for the administration of muscle relaxant drugs
US3200814A (en) * 1963-03-12 1965-08-17 Ellis R Taylor Apparatus for measuring reflexes, tremors and the like
US3207151A (en) * 1961-09-27 1965-09-21 Tateisi Denki Kabushikikaisha Instrument for locating particular cutaneous points caused by viscerovascular reflex
US3258007A (en) * 1963-07-19 1966-06-28 Peter V Karpovich Rotary electrogoniometer for measuring degree of rotation of the forearm
US3292620A (en) * 1963-07-30 1966-12-20 Instro Dynamics Corp Electric desensitizer

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2493155A (en) * 1947-01-09 1950-01-03 Mine Safety Appliances Co Apparatus for treating skin diseases
US2979055A (en) * 1954-06-18 1961-04-11 Burroughs Wellcome Co Method for the administration of muscle relaxant drugs
US2840069A (en) * 1954-09-25 1958-06-24 Nat Res Dev Penetrating instruments such as hypodermic needles and their use in an imbibition pressure meter
US2808826A (en) * 1956-01-19 1957-10-08 Teca Corp Electro-diagnostic apparatus and a circuit therefor
US2830578A (en) * 1957-01-31 1958-04-15 Mark E Degroff Electro-sonic apparatus
US3207151A (en) * 1961-09-27 1965-09-21 Tateisi Denki Kabushikikaisha Instrument for locating particular cutaneous points caused by viscerovascular reflex
US3200814A (en) * 1963-03-12 1965-08-17 Ellis R Taylor Apparatus for measuring reflexes, tremors and the like
US3258007A (en) * 1963-07-19 1966-06-28 Peter V Karpovich Rotary electrogoniometer for measuring degree of rotation of the forearm
US3292620A (en) * 1963-07-30 1966-12-20 Instro Dynamics Corp Electric desensitizer

Cited By (298)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3570473A (en) * 1966-02-28 1971-03-16 Cargille Scient Inc Manually controllable medical aid oscillator instrument
US3468302A (en) * 1966-05-20 1969-09-23 Godfrey Brooke Skin resistance reaction time testing apparatus
US3513834A (en) * 1966-11-21 1970-05-26 Hitachi Ltd Anesthetic depth measuring system
US3618601A (en) * 1969-10-16 1971-11-09 Thatcher W Richardson Iontophoresis unit
US3898983A (en) * 1973-10-03 1975-08-12 James O Elam Device and method for detecting the degree of muscle relaxation of a medical patient
US3908669A (en) * 1973-12-17 1975-09-30 American Acupuncture Medical I Apparatus for use by physicians in acupuncture research
EP0025222A2 (en) * 1979-09-10 1981-03-18 The Regents Of The University Of California Apparatus for monitoring neuromuscular transmission
EP0025222A3 (en) * 1979-09-10 1981-05-06 The Regents Of The University Of California Apparatus for monitoring neuromuscular transmission and method of monitoring neuromuscular blockage
US4291705A (en) * 1979-09-10 1981-09-29 The Regents Of The University Of California Neuromuscular block monitor
US4387723A (en) * 1980-12-09 1983-06-14 Wisconsin Alumni Research Foundation Method and apparatus for determining the level of neuromuscular block in a patient
US4399821A (en) * 1981-02-19 1983-08-23 Bowers David L Free moving animal physiological monitoring and identification system and method
US4411268A (en) * 1982-02-10 1983-10-25 Medtronic, Inc. Muscle stimulator
US4807643A (en) * 1982-08-16 1989-02-28 University Of Iowa Research Foundation Digital electroneurometer
US4595018A (en) * 1983-06-10 1986-06-17 Instrumentarium Corp. Method of further developing the measuring of a neuro-muscular junction
US4558704A (en) * 1983-12-15 1985-12-17 Wright State University Hand control system
US4748987A (en) * 1984-02-21 1988-06-07 The University Of Michigan Acoustic myography
US4644959A (en) * 1984-04-12 1987-02-24 Sergiu Calmanovici Method of functional assessment of cancer humoral factors
US4832682A (en) * 1984-08-08 1989-05-23 Survival Technology, Inc. Injection method and apparatus with electrical blood absorbing stimulation
WO1986006965A1 (en) * 1985-05-20 1986-12-04 Survival Technology, Inc. Injection method and apparatus with electrical blood absorbing stimulation
US4795433A (en) * 1985-05-20 1989-01-03 Survival Technology, Inc. Automatic injector for emergency treatment
US4817628A (en) * 1985-10-18 1989-04-04 David L. Zealear System and method for evaluating neurological function controlling muscular movements
US4986280A (en) * 1988-07-20 1991-01-22 Arthur D. Little, Inc. Hand position/measurement control system
US4962766A (en) * 1989-07-19 1990-10-16 Herzon Garrett D Nerve locator and stimulator
US5020542A (en) * 1990-04-16 1991-06-04 Charles Rossmann Method of measuring skin sensitivity to electrical stimulation
US5085226A (en) * 1990-05-30 1992-02-04 Trustees Of Boston University Force monitoring apparatus for back muscles
US5284154A (en) * 1992-04-14 1994-02-08 Brigham And Women's Hospital Apparatus for locating a nerve and for protecting nerves from injury during surgery
US5284153A (en) * 1992-04-14 1994-02-08 Brigham And Women's Hospital Method for locating a nerve and for protecting nerves from injury during surgery
US5775331A (en) * 1995-06-07 1998-07-07 Uromed Corporation Apparatus and method for locating a nerve
US6226552B1 (en) * 1998-04-17 2001-05-01 Stryker Instruments Neuromuscular electrical stimulation for preventing deep vein thrombosis
WO1999053996A1 (en) * 1998-04-17 1999-10-28 Stryker Instruments Neuromuscular electrical stimulation for preventing deep vein thrombosis
US20080065144A1 (en) * 1998-12-23 2008-03-13 Marino James F Nerve surveillance cannulae systems
US7693562B2 (en) 1998-12-23 2010-04-06 Nuvasive, Inc. Nerve surveillance cannulae systems
US8165653B2 (en) 1998-12-23 2012-04-24 Nuvasive, Inc. Surgical access and nerve surveillance
US9014776B2 (en) 1998-12-23 2015-04-21 Nuvasive, Inc. Surgical access and nerve surveillance
US6564078B1 (en) 1998-12-23 2003-05-13 Nuvasive, Inc. Nerve surveillance cannula systems
US20030195405A1 (en) * 1998-12-23 2003-10-16 Nuvasive, Inc. Nerve surveillance cannulae systems
US7079883B2 (en) 1998-12-23 2006-07-18 Nuvaslve, Inc. Nerve surveillance cannulae systems
US7962191B2 (en) 1998-12-23 2011-06-14 Nuvasive, Inc. Nerve surveillance cannulae systems
US9827109B2 (en) 1999-03-07 2017-11-28 Nuvasive, Inc. Methods and apparatus for performing spine surgery
US20080058837A1 (en) * 1999-03-07 2008-03-06 Active Implants Corporation Method and apparatus for computerized surgery
US7470236B1 (en) 1999-11-24 2008-12-30 Nuvasive, Inc. Electromyography system
US7963927B2 (en) 1999-11-24 2011-06-21 Nuvasive, Inc. Electromyography system
US20080065178A1 (en) * 1999-11-24 2008-03-13 Nuvasive, Inc. Electromyography system
US8562539B2 (en) 1999-11-24 2013-10-22 Nuvasive, Inc. Electromyography system
US20040199084A1 (en) * 1999-11-24 2004-10-07 Nuvasive, Inc. Electromyography system
US20070293782A1 (en) * 1999-11-24 2007-12-20 Nu Vasive, Inc. Electromyography system
US20080071191A1 (en) * 1999-11-24 2008-03-20 Nuvasive, Inc. Electromyography system
US9743853B2 (en) 1999-11-24 2017-08-29 Nuvasive, Inc. Electromyography system
US7177677B2 (en) 1999-11-24 2007-02-13 Nuvasive, Inc. Nerve proximity and status detection system and method
US20030045808A1 (en) * 1999-11-24 2003-03-06 Nuvasive, Inc. Nerve proximity and status detection system and method
US6466817B1 (en) 1999-11-24 2002-10-15 Nuvasive, Inc. Nerve proximity and status detection system and method
USRE44049E1 (en) * 2000-04-06 2013-03-05 Garrett D. Herzon Bipolar handheld nerve locator and evaluator
US6312392B1 (en) 2000-04-06 2001-11-06 Garrett D. Herzon Bipolar handheld nerve locator and evaluator
US20060224078A1 (en) * 2000-05-18 2006-10-05 Nuvasive, Inc. Tissue discrimination and applications in medical procedures
US20100049081A1 (en) * 2000-05-18 2010-02-25 Nuvasive, Inc. Tissue Discrimination and Applications in Medical Procedures
US8090436B2 (en) 2000-05-18 2012-01-03 Nuvasive, Inc. Tissue discrimination and applications in medical procedures
US6500128B2 (en) 2000-06-08 2002-12-31 Nuvasive, Inc. Nerve movement and status detection system and method
US20040024299A1 (en) * 2000-11-02 2004-02-05 Grace Lawrence J. Method and apparatus for self-diagnostic evaluation of nerve sensory latency
US7058438B2 (en) * 2000-11-02 2006-06-06 Grace Lawrence J Method and apparatus for self-diagnostic evaluation of nerve sensory latency
US20030105503A1 (en) * 2001-06-08 2003-06-05 Nuvasive, Inc. Relative nerve movement and status detection system and method
US8068912B2 (en) 2001-07-11 2011-11-29 Nuvasive, Inc. System and methods for determining nerve proximity, direction, and pathology during surgery
US10716509B2 (en) 2001-07-11 2020-07-21 Nuvasive, Inc. System and methods for determining nerve proximity, direction and pathology during surgery
US20050182454A1 (en) * 2001-07-11 2005-08-18 Nuvasive, Inc. System and methods for determining nerve proximity, direction, and pathology during surgery
US8050769B2 (en) 2001-07-11 2011-11-01 Nuvasive, Inc. System and methods for determining nerve proximity, direction, and pathology during surgery
US7920922B2 (en) 2001-07-11 2011-04-05 Nuvasive, Inc. System and methods for determining nerve proximity, direction, and pathology during surgery
US8634904B2 (en) 2001-07-11 2014-01-21 Nuvasive, Inc. System and methods for determining nerve proximity, direction, and pathology during surgery
US20100152604A1 (en) * 2001-07-11 2010-06-17 Nuvasive, Inc. System and methods for determining nerve proximity, direction, and pathology during surgery
US20090209879A1 (en) * 2001-07-11 2009-08-20 Nuvasive, Inc. System and Methods for Determining Nerve Proximity, Direction, and Pathology During Surgery
US9456783B2 (en) 2001-07-11 2016-10-04 Nuvasive, Inc. System and methods for determining nerve proximity, direction and pathology during surgery
US8812116B2 (en) 2001-07-11 2014-08-19 Nuvasive, Inc. System and methods for determining nerve proximity, direction, and pathology during surgery
US9931077B2 (en) 2001-07-11 2018-04-03 Nuvasive, Inc. System and methods for determining nerve proximity, direction and pathology during surgery
US9037250B2 (en) 2001-07-11 2015-05-19 Nuvasive, Inc. System and methods for determining nerve proximity, direction and pathology during surgery
US8548579B2 (en) 2001-09-25 2013-10-01 Nuvasive, Inc. System and methods for performing surgical procedures and assessments
US8027716B2 (en) 2001-09-25 2011-09-27 Nuvasive, Inc. System and methods for performing surgical procedures and assessments
US8977352B2 (en) 2001-09-25 2015-03-10 Nuvasive, Inc. Systems and methods for performing surgical procedures and assessments
US20100076335A1 (en) * 2001-09-25 2010-03-25 James Gharib System and Methods for Performing Surgical Procedures and Assessments
US8244343B2 (en) 2001-09-25 2012-08-14 Nuvasive, Inc. System and methods for performing surgical procedures and assessments
US20050075578A1 (en) * 2001-09-25 2005-04-07 James Gharib System and methods for performing surgical procedures and assessments
US20090192403A1 (en) * 2001-09-25 2009-07-30 Nuvasive, Inc. System And Methods For Performing Surgical Procedures and Assessments
US8768450B2 (en) 2001-09-25 2014-07-01 Nuvasive, Inc. System and methods for performing surgical procedures and assessments
US8738123B2 (en) 2001-09-25 2014-05-27 Nuvasive, Inc. System and methods for performing surgical procedures and assessments
US8265744B2 (en) 2001-09-25 2012-09-11 Nuvasive, Inc. Systems and methods for performing surgical procedures and assessments
US8000782B2 (en) 2001-09-25 2011-08-16 Nuvasive, Inc. System and methods for performing surgical procedures and assessments
US20090204016A1 (en) * 2001-09-25 2009-08-13 Nuvasive, Inc. System And Methods For Performing Surgical Procedures and Assessments
US10507120B2 (en) 2001-09-25 2019-12-17 Nuvasive, Inc. Systems and methods for performing surgical procedures and assessments
US7522953B2 (en) 2001-09-25 2009-04-21 Nuvasive, Inc. System and methods for performing surgical procedures and assessments
US8005535B2 (en) 2001-09-25 2011-08-23 Nuvasive, Inc. System and methods for performing surgical procedures and assessments
US10470707B2 (en) 2001-10-30 2019-11-12 Nuvasive, Inc. System and methods for performing percutaneous pedicle integrity assessments
US8192356B2 (en) 2002-06-26 2012-06-05 Nuvasive, Inc. Surgical access system and related methods
US10980524B2 (en) 2002-06-26 2021-04-20 Nuvasive, Inc. Surgical access system and related methods
US20100113884A1 (en) * 2002-06-26 2010-05-06 Patrick Miles Surgical Access System and Related Methods
US10251633B2 (en) 2002-06-26 2019-04-09 Nuvasive, Inc. Surgical access system and related methods
US20090259108A1 (en) * 2002-06-26 2009-10-15 Nuvasive, Inc. Surgical Access System and Related Methods
US9826968B2 (en) 2002-06-26 2017-11-28 Nuvasive, Inc. Surgical access system and related methods
US8708899B2 (en) 2002-06-26 2014-04-29 Nuvasive, Inc. Surgical access system and related methods
US8915846B2 (en) 2002-06-26 2014-12-23 Nuvasive, Inc. Surgical access system and related methods
US8182423B2 (en) 2002-06-26 2012-05-22 Nuvasive, Inc. Surgical access system and related methods
US7582058B1 (en) 2002-06-26 2009-09-01 Nuvasive, Inc. Surgical access system and related methods
US8672840B2 (en) 2002-06-26 2014-03-18 Nuvasive, Inc. Surgical access system and related methods
US9848861B2 (en) 2002-06-26 2017-12-26 Nuvasive, Inc. Surgical access system and related methods
US7935051B2 (en) 2002-06-26 2011-05-03 Nuvasive, Inc. Surgical access system and related methods
US9833227B2 (en) 2002-06-26 2017-12-05 Nuvasive, Inc. Surgical access system and related methods
US8187179B2 (en) 2002-06-26 2012-05-29 Nuvasive, Inc. Surgical access system and related methods
US20100094093A1 (en) * 2002-06-26 2010-04-15 Nuvasive, Inc. Surgical Access System and Related Methods
US20100105986A1 (en) * 2002-06-26 2010-04-29 Nuvasive, Inc. Surgical Access System and Related Methods
US9750490B2 (en) 2002-06-26 2017-09-05 Nuvasive, Inc. Surgical access system and related methods
US9572562B2 (en) 2002-10-08 2017-02-21 Nuvasive, Inc. Surgical access system and related methods
US8512235B2 (en) 2002-10-08 2013-08-20 Nuvasive, Inc. Surgical access system and related methods
US8956283B2 (en) 2002-10-08 2015-02-17 Nuvasive, Inc. Surgical access system and related methods
US9204871B2 (en) 2002-10-08 2015-12-08 Nuvasive, Inc. Surgical access system and related methods
US8137284B2 (en) 2002-10-08 2012-03-20 Nuvasive, Inc. Surgical access system and related methods
US20100174146A1 (en) * 2002-10-08 2010-07-08 Patrick Miles Surgical access system and related methods
US8679006B2 (en) 2002-10-08 2014-03-25 Nuvasive, Inc. Surgical access system and related methods
US8192357B2 (en) 2002-10-08 2012-06-05 Nuvasive, Inc. Surgical access system and related methods
US10695044B2 (en) 2002-10-08 2020-06-30 Nuvasive, Inc. Surgical access system and related methods
US9820729B2 (en) 2002-10-08 2017-11-21 Nuvasive, Inc. Surgical access system and related methods
US20080058606A1 (en) * 2002-10-08 2008-03-06 Nuvasive, Inc. Surgical access system and related methods
US8663100B2 (en) 2002-10-08 2014-03-04 Nuvasive, Inc. Surgical access system and related methods
US7664544B2 (en) 2002-10-30 2010-02-16 Nuvasive, Inc. System and methods for performing percutaneous pedicle integrity assessments
US20070016097A1 (en) * 2003-01-15 2007-01-18 Nuvasive, Inc. System and methods for determining nerve direction to a surgical instrument
US10993650B2 (en) 2003-01-15 2021-05-04 Nuvasive, Inc. System for determining nerve direction to a surgical instrument
US8147421B2 (en) 2003-01-15 2012-04-03 Nuvasive, Inc. System and methods for determining nerve direction to a surgical instrument
US8133173B2 (en) 2003-01-16 2012-03-13 Nuvasive, Inc. Surgical access system and related methods
US9795371B2 (en) 2003-01-16 2017-10-24 Nuvasive, Inc. Surgical access system and related methods
US7691057B2 (en) 2003-01-16 2010-04-06 Nuvasive, Inc. Surgical access system and related methods
US8562521B2 (en) 2003-01-16 2013-10-22 Nuvasive, Inc. Surgical access system and related methods
US20100137690A1 (en) * 2003-01-16 2010-06-03 Nuvasive, Inc. Surgical access system and related methods
US11219440B2 (en) 2003-01-16 2022-01-11 Nuvasive, Inc. Surgical access system and related methods
US9301743B2 (en) 2003-01-16 2016-04-05 Nuvasive, Inc. Surgical access system and related methods
US8523768B2 (en) 2003-01-16 2013-09-03 Nuvasive, Inc. Surgical access system and related methods
US20110196210A1 (en) * 2003-01-16 2011-08-11 Nuvasive, Inc. Surgical access system and related methods
US20100160738A1 (en) * 2003-01-16 2010-06-24 Nuvasive, Inc. Surgical access system and related methods
US20080097164A1 (en) * 2003-01-16 2008-04-24 Nuvasive, Inc. Surgical access system and related methods
US8602982B2 (en) 2003-01-16 2013-12-10 Nuvasive, Inc. Surgical access system and related methods
US8439832B2 (en) 2003-01-16 2013-05-14 Nuvasive, Inc. Surgical access system and related methods
US8403841B2 (en) 2003-01-16 2013-03-26 Nuvasive, Inc. Surgical access system and related methods
US8114019B2 (en) 2003-01-16 2012-02-14 Nuvasive, Inc. Surgical access system and related methods
US8172750B2 (en) 2003-01-16 2012-05-08 Nuvasive, Inc. Surgical access system and related methods
US8747307B2 (en) 2003-01-16 2014-06-10 Nuvasive, Inc. Surgical access system and related methods
US8343046B2 (en) 2003-01-16 2013-01-01 Nuvasive, Inc. Surgical access system and related methods
US10357238B2 (en) 2003-01-16 2019-07-23 Nuvasive, Inc. Surgical access system and related methods
US8753270B2 (en) 2003-01-16 2014-06-17 Nuvasive, Inc. Surgical access system and related methods
US8303498B2 (en) 2003-02-27 2012-11-06 Nuvasive, Inc. Surgical access system and related methods
US20090124860A1 (en) * 2003-02-27 2009-05-14 Nuvasive, Inc. Surgical access system and related methods
US8696559B2 (en) 2003-02-27 2014-04-15 Nuvasive, Inc. Surgical access system and related methods
US7819801B2 (en) 2003-02-27 2010-10-26 Nuvasive, Inc. Surgical access system and related methods
US20110144439A1 (en) * 2003-02-27 2011-06-16 Nuvasive, Inc. Surgical access system and related methods
US7892173B2 (en) 2003-02-27 2011-02-22 Nuvasive, Inc. Surgical access system and related methods
US8550994B2 (en) 2003-02-27 2013-10-08 Nuvasive, Inc. Surgical access system and related methods
US9468405B2 (en) 2003-02-27 2016-10-18 Nuvasive, Inc. Surgical access system and related methods
US9131947B2 (en) 2003-05-08 2015-09-15 Nuvasive, Inc. Neurophysiological apparatus and procedures
US10695108B1 (en) 2003-05-08 2020-06-30 Nuvasive, Inc. Neurophysiological apparatus and procedures
US20040225228A1 (en) * 2003-05-08 2004-11-11 Ferree Bret A. Neurophysiological apparatus and procedures
US20100249644A1 (en) * 2003-08-05 2010-09-30 Patrick Miles System and Methods for Performing Dynamic Pedicle Integrity Assessements
US7657308B2 (en) 2003-08-05 2010-02-02 Nuvasive, Inc. System and methods for performing dynamic pedicle integrity assessments
US20060025703A1 (en) * 2003-08-05 2006-02-02 Nuvasive, Inc. System and methods for performing dynamic pedicle integrity assessments
US8255044B2 (en) 2003-08-05 2012-08-28 Nuvasive, Inc. System and methods for performing dynamic pedicle integrity assessments
US8303515B2 (en) 2003-09-25 2012-11-06 Nuvasive, Inc. Surgical access system and related methods
US8016767B2 (en) 2003-09-25 2011-09-13 Nuvasive, Inc. Surgical access system and related methods
US8764649B2 (en) 2003-09-25 2014-07-01 Nuvasive, Inc. Surgical access system and related methods
US9265493B2 (en) 2003-09-25 2016-02-23 Nuvasive, Inc. Surgical access system and related methods
US9788822B2 (en) 2003-09-25 2017-10-17 Nuvasive, Inc. Surgical access system and related methods
US7207949B2 (en) 2003-09-25 2007-04-24 Nuvasive, Inc. Surgical access system and related methods
US8945004B2 (en) 2003-09-25 2015-02-03 Nuvasive, Inc. Surgical access system and related methods
US9314152B2 (en) 2003-09-25 2016-04-19 Nuvasive, Inc. Surgical access system and related methods
US9610071B2 (en) 2003-09-25 2017-04-04 Nuvasive, Inc. Surgical access system and related methods
US8942801B2 (en) 2003-09-25 2015-01-27 Nuvasive, Inc. Surgical access system and related methods
US8753271B1 (en) 2003-09-25 2014-06-17 Nuvasive, Inc. Surgical access system and related methods
US8821396B1 (en) 2003-09-25 2014-09-02 Nuvasive, Inc. Surgical access system and related methods
US9974531B2 (en) 2003-09-25 2018-05-22 Nuvasive, Inc. Surgical access system and related methods
US20100105987A1 (en) * 2003-09-25 2010-04-29 Nuvasive, Inc. Surgical access system and related method
US20110098535A1 (en) * 2003-09-25 2011-04-28 Nuvasive, Inc. Surgical access system and related methods
US11064934B2 (en) 2003-09-25 2021-07-20 Nuvasive, Inc. Surgical access system and related methods
US20100069783A1 (en) * 2003-09-25 2010-03-18 Nuvasive, Inc. Surgical access system and related methods
US8591432B2 (en) 2003-09-25 2013-11-26 Nuvasive, Inc. Surgical access system and related methods
US8355780B2 (en) 2003-09-25 2013-01-15 Nuvasive, Inc. Surgical access system and related methods
US8556808B2 (en) 2003-09-25 2013-10-15 Nuvasive, Inc. Surgical access system and related methods
US20060069315A1 (en) * 2003-09-25 2006-03-30 Patrick Miles Surgical access system and related methods
US8388527B2 (en) 2003-09-25 2013-03-05 Nuvasive, Inc. Surgical access system and related method
US10357233B2 (en) 2003-09-25 2019-07-23 Nuvasive, Inc. Surgical access system and related methods
US8628469B2 (en) 2003-09-25 2014-01-14 Nuvasive, Inc. Surgical access system and related methods
US20100130827A1 (en) * 2003-09-25 2010-05-27 Nuvasive, Inc. Surgical access system and related methods
US8500634B2 (en) 2003-09-25 2013-08-06 Nuvasive, Inc. Surgical access system and related methods
US20050149035A1 (en) * 2003-10-17 2005-07-07 Nuvasive, Inc. Surgical access system and related methods
US10653308B2 (en) 2003-10-17 2020-05-19 Nuvasive, Inc. Surgical access system and related methods
US7905840B2 (en) 2003-10-17 2011-03-15 Nuvasive, Inc. Surgical access system and related methods
US11723644B2 (en) 2004-10-08 2023-08-15 Nuvasive, Inc. Surgical access system and related methods
US9622732B2 (en) 2004-10-08 2017-04-18 Nuvasive, Inc. Surgical access system and related methods
US7643884B2 (en) 2005-01-31 2010-01-05 Warsaw Orthopedic, Inc. Electrically insulated surgical needle assembly
US20100256517A1 (en) * 2005-01-31 2010-10-07 Neubardt Seth L Electrically insulated surgical probing tool
US7785253B1 (en) 2005-01-31 2010-08-31 Nuvasive, Inc. Surgical access system and related methods
US8425430B2 (en) 2005-01-31 2013-04-23 Warsaw Orthopedic, Inc. Electrically insulated surgical needle assembly
US20060173374A1 (en) * 2005-01-31 2006-08-03 Neubardt Seth L Electrically insulated surgical probing tool
US20060173521A1 (en) * 2005-01-31 2006-08-03 Pond John D Jr Electrically insulated surgical needle assembly
US20090105604A1 (en) * 2005-02-02 2009-04-23 Nuvasive, Inc. System and Methods for Monitoring During Anterior Surgery
US8568331B2 (en) 2005-02-02 2013-10-29 Nuvasive, Inc. System and methods for monitoring during anterior surgery
US9681880B2 (en) 2005-02-07 2017-06-20 Warsaw Orthopedic, Inc. Device and method for operating a tool relative to bone tissue and detecting neural elements
US8092455B2 (en) 2005-02-07 2012-01-10 Warsaw Orthopedic, Inc. Device and method for operating a tool relative to bone tissue and detecting neural elements
US20060178594A1 (en) * 2005-02-07 2006-08-10 Neubardt Seth L Apparatus and method for locating defects in bone tissue
US20060178593A1 (en) * 2005-02-07 2006-08-10 Neubardt Seth L Device and method for operating a tool relative to bone tissue and detecting neural elements
US8652140B2 (en) 2005-02-07 2014-02-18 Warsaw Orthopedic, Inc. Device and method for operating a tool relative to bone tissue and detecting neural elements
US20060211912A1 (en) * 2005-02-24 2006-09-21 Dlugos Daniel F External pressure-based gastric band adjustment system and method
US7775215B2 (en) 2005-02-24 2010-08-17 Ethicon Endo-Surgery, Inc. System and method for determining implanted device positioning and obtaining pressure data
US8016745B2 (en) 2005-02-24 2011-09-13 Ethicon Endo-Surgery, Inc. Monitoring of a food intake restriction device
US8016744B2 (en) 2005-02-24 2011-09-13 Ethicon Endo-Surgery, Inc. External pressure-based gastric band adjustment system and method
US7927270B2 (en) 2005-02-24 2011-04-19 Ethicon Endo-Surgery, Inc. External mechanical pressure sensor for gastric band pressure measurements
US7775966B2 (en) 2005-02-24 2010-08-17 Ethicon Endo-Surgery, Inc. Non-invasive pressure measurement in a fluid adjustable restrictive device
US20080015406A1 (en) * 2005-02-24 2008-01-17 Dlugos Daniel F External Mechanical Pressure Sensor for Gastric Band Pressure Measurements
US7658196B2 (en) 2005-02-24 2010-02-09 Ethicon Endo-Surgery, Inc. System and method for determining implanted device orientation
US8066629B2 (en) 2005-02-24 2011-11-29 Ethicon Endo-Surgery, Inc. Apparatus for adjustment and sensing of gastric band pressure
US20060200023A1 (en) * 2005-03-04 2006-09-07 Sdgi Holdings, Inc. Instruments and methods for nerve monitoring in spinal surgical procedures
US20100317989A1 (en) * 2005-07-20 2010-12-16 Nuvasive Inc. Systems and Methods for Performing Neurophysiologic Assesments With Pressure Monitoring
US8740783B2 (en) 2005-07-20 2014-06-03 Nuvasive, Inc. System and methods for performing neurophysiologic assessments with pressure monitoring
US20070021682A1 (en) * 2005-07-20 2007-01-25 Nuvasive Inc. System and methods for performing neurophysiologic assessments with pressure monitoring
US8328851B2 (en) 2005-07-28 2012-12-11 Nuvasive, Inc. Total disc replacement system and related methods
US9610171B2 (en) 2005-07-28 2017-04-04 Nuvasive, Inc. Total disc replacement system and related methods
US8870960B2 (en) 2005-07-28 2014-10-28 Nuvasive, Inc. Total disc replacement system and related methods
US9168149B2 (en) 2005-07-28 2015-10-27 NaVasive, Inc. Total disc replacement system and related methods
US20100286784A1 (en) * 2005-07-28 2010-11-11 Matthew Curran Total disc replacement system and related methods
US20080167574A1 (en) * 2005-09-22 2008-07-10 Allen Farquhar Multi-Channel Stimulation Threshold Detection Algorithm For Use In Neurophysiology Monitoring
US11457857B2 (en) 2005-09-22 2022-10-04 Nuvasive, Inc. Multi-channel stimulation threshold detection algorithm for use with neurophysiology monitoring systems
US8500653B2 (en) 2005-09-22 2013-08-06 Nuvasive, Inc. Neurophysiology monitoring system configured for rapid stimulation threshold acquisition
US10441183B2 (en) 2005-09-22 2019-10-15 Nuvasive, Inc. Multi-channel stimulation threshold detection algorithm for use with neurophysiology monitoring systems
US8206312B2 (en) 2005-09-22 2012-06-26 Nuvasive, Inc. Multi-channel stimulation threshold detection algorithm for use in neurophysiology monitoring
US11712218B2 (en) 2005-09-27 2023-08-01 Nuvasive, Inc. System and methods for nerve monitoring
US8568317B1 (en) 2005-09-27 2013-10-29 Nuvasive, Inc. System and methods for nerve monitoring
US11540804B2 (en) 2005-09-27 2023-01-03 Nuvasive, Inc. System and methods for nerve monitoring
US11617562B2 (en) 2005-09-27 2023-04-04 Nuvasive, Inc. System and methods for nerve monitoring
US10299756B1 (en) 2005-09-27 2019-05-28 Nuvasive, Inc. System and methods for nerve monitoring
US11653894B2 (en) 2005-09-27 2023-05-23 Nuvasive, Inc. System and methods for nerve monitoring
US8827900B1 (en) 2006-01-11 2014-09-09 Nuvasive, Inc. Surgical access system and related methods
US8313430B1 (en) 2006-01-11 2012-11-20 Nuvasive, Inc. Surgical access system and related methods
US20080249806A1 (en) * 2006-04-06 2008-10-09 Ethicon Endo-Surgery, Inc Data Analysis for an Implantable Restriction Device and a Data Logger
US8152710B2 (en) 2006-04-06 2012-04-10 Ethicon Endo-Surgery, Inc. Physiological parameter analysis for an implantable restriction device and a data logger
US8870742B2 (en) 2006-04-06 2014-10-28 Ethicon Endo-Surgery, Inc. GUI for an implantable restriction device and a data logger
US20080250341A1 (en) * 2006-04-06 2008-10-09 Ethicon Endo-Surgery, Inc. Gui With Trend Analysis for an Implantable Restriction Device and a Data Logger
US20080250340A1 (en) * 2006-04-06 2008-10-09 Ethicon Endo-Surgery, Inc. GUI for an Implantable Restriction Device and a Data Logger
US20090222065A1 (en) * 2006-04-06 2009-09-03 Ethicon Endo-Surgery, Inc. Physiological Parameter Analysis for an Implantable Restriction Device and a Data Logger
US8255045B2 (en) * 2007-04-03 2012-08-28 Nuvasive, Inc. Neurophysiologic monitoring system
US9295396B2 (en) 2007-04-03 2016-03-29 Nuvasive, Inc. Neurophysiologic monitoring system
US20090054804A1 (en) * 2007-04-03 2009-02-26 Nuvasive Inc. Neurophysiologic monitoring system
US8187163B2 (en) 2007-12-10 2012-05-29 Ethicon Endo-Surgery, Inc. Methods for implanting a gastric restriction device
US20090149874A1 (en) * 2007-12-10 2009-06-11 Ethicon Endo-Surgery. Inc. Methods for implanting a gastric restriction device
US8100870B2 (en) 2007-12-14 2012-01-24 Ethicon Endo-Surgery, Inc. Adjustable height gastric restriction devices and methods
US8142452B2 (en) 2007-12-27 2012-03-27 Ethicon Endo-Surgery, Inc. Controlling pressure in adjustable restriction devices
US20090171375A1 (en) * 2007-12-27 2009-07-02 Ethicon Endo-Surgery, Inc. Controlling pressure in adjustable restriction devices
US20090171379A1 (en) * 2007-12-27 2009-07-02 Ethicon Endo-Surgery, Inc. Fluid logic for regulating restriction devices
US8377079B2 (en) 2007-12-27 2013-02-19 Ethicon Endo-Surgery, Inc. Constant force mechanisms for regulating restriction devices
US8591395B2 (en) 2008-01-28 2013-11-26 Ethicon Endo-Surgery, Inc. Gastric restriction device data handling devices and methods
US8192350B2 (en) 2008-01-28 2012-06-05 Ethicon Endo-Surgery, Inc. Methods and devices for measuring impedance in a gastric restriction system
US8337389B2 (en) 2008-01-28 2012-12-25 Ethicon Endo-Surgery, Inc. Methods and devices for diagnosing performance of a gastric restriction system
US20090192534A1 (en) * 2008-01-29 2009-07-30 Ethicon Endo-Surgery, Inc. Sensor trigger
US20090204179A1 (en) * 2008-02-07 2009-08-13 Ethicon Endo-Surgery, Inc. Powering implantable restriction systems using temperature
US8221439B2 (en) 2008-02-07 2012-07-17 Ethicon Endo-Surgery, Inc. Powering implantable restriction systems using kinetic motion
US7844342B2 (en) 2008-02-07 2010-11-30 Ethicon Endo-Surgery, Inc. Powering implantable restriction systems using light
US20090204141A1 (en) * 2008-02-07 2009-08-13 Ethicon Endo-Surgery, Inc. Powering implantable restriction systems using kinetic motion
US8114345B2 (en) 2008-02-08 2012-02-14 Ethicon Endo-Surgery, Inc. System and method of sterilizing an implantable medical device
US20090202387A1 (en) * 2008-02-08 2009-08-13 Ethicon Endo-Surgery, Inc. System and method of sterilizing an implantable medical device
US20090204131A1 (en) * 2008-02-12 2009-08-13 Ethicon Endo-Surgery, Inc. Automatically adjusting band system with mems pump
US8057492B2 (en) 2008-02-12 2011-11-15 Ethicon Endo-Surgery, Inc. Automatically adjusting band system with MEMS pump
US8591532B2 (en) 2008-02-12 2013-11-26 Ethicon Endo-Sugery, Inc. Automatically adjusting band system
US8034065B2 (en) 2008-02-26 2011-10-11 Ethicon Endo-Surgery, Inc. Controlling pressure in adjustable restriction devices
US20090216255A1 (en) * 2008-02-26 2009-08-27 Ethicon Endo-Surgery, Inc. Controlling pressure in adjustable restriction devices
US20090228072A1 (en) * 2008-03-06 2009-09-10 Ethicon Endo-Surgery, Inc. System and method of aligning an implantable antenna
US20090228028A1 (en) * 2008-03-06 2009-09-10 Ethicon Endo-Surgery, Inc. Reorientation port
US20090228063A1 (en) * 2008-03-06 2009-09-10 Ethicon Endo-Surgery, Inc. System and method of communicating with an implantable antenna
US8233995B2 (en) 2008-03-06 2012-07-31 Ethicon Endo-Surgery, Inc. System and method of aligning an implantable antenna
US8187162B2 (en) 2008-03-06 2012-05-29 Ethicon Endo-Surgery, Inc. Reorientation port
US20090299439A1 (en) * 2008-06-02 2009-12-03 Warsaw Orthopedic, Inc. Method, system and tool for surgical procedures
US10327750B1 (en) 2009-04-16 2019-06-25 Nuvasive, Inc. Method and apparatus for performing spine surgery
US8920500B1 (en) 2009-04-16 2014-12-30 Nuvasive, Inc. Methods and apparatus for performing spine surgery
US9757246B1 (en) 2009-04-16 2017-09-12 Nuvasive, Inc. Methods and apparatus for performing spine surgery
US11246713B2 (en) 2009-04-16 2022-02-15 Nuvasive, Inc. Methods and apparatus for performing spine surgery
US8287597B1 (en) 2009-04-16 2012-10-16 Nuvasive, Inc. Method and apparatus for performing spine surgery
US9192482B1 (en) 2009-04-16 2015-11-24 Nuvasive, Inc. Methods and apparatus for performing spine surgery
US9351845B1 (en) 2009-04-16 2016-05-31 Nuvasive, Inc. Method and apparatus for performing spine surgery
US10426627B2 (en) 2009-04-16 2019-10-01 Nuvasive, Inc. Methods and apparatus for performing spine surgery
US11647999B1 (en) 2009-04-16 2023-05-16 Nuvasive, Inc. Method and apparatus for performing spine surgery
US9392953B1 (en) 2010-09-17 2016-07-19 Nuvasive, Inc. Neurophysiologic monitoring
US9949840B1 (en) 2011-04-01 2018-04-24 William D. Smith Systems and methods for performing spine surgery
US8790406B1 (en) 2011-04-01 2014-07-29 William D. Smith Systems and methods for performing spine surgery
US11793504B2 (en) 2011-08-19 2023-10-24 Nuvasive, Inc. Surgical retractor system and methods of use
US9198765B1 (en) 2011-10-31 2015-12-01 Nuvasive, Inc. Expandable spinal fusion implants and related methods
US9655744B1 (en) 2011-10-31 2017-05-23 Nuvasive, Inc. Expandable spinal fusion implants and related methods
US11259737B2 (en) 2012-11-06 2022-03-01 Nuvasive, Inc. Systems and methods for performing neurophysiologic monitoring during spine surgery
US11877860B2 (en) 2012-11-06 2024-01-23 Nuvasive, Inc. Systems and methods for performing neurophysiologic monitoring during spine surgery
US9757067B1 (en) 2012-11-09 2017-09-12 Nuvasive, Inc. Systems and methods for performing neurophysiologic monitoring during spine surgery
US9757072B1 (en) 2013-02-11 2017-09-12 Nuvasive, Inc. Waveform marker placement algorithm for use in neurophysiologic monitoring
US9814402B2 (en) 2013-02-15 2017-11-14 Acacia Designs Bv Electrode systems for use with medical monitoring systems
US11026627B2 (en) 2013-03-15 2021-06-08 Cadwell Laboratories, Inc. Surgical instruments for determining a location of a nerve during a procedure
US11471086B2 (en) 2014-09-16 2022-10-18 Nuvasive, Inc. Systems and methods for performing neurophysiologic monitoring
US10420480B1 (en) 2014-09-16 2019-09-24 Nuvasive, Inc. Systems and methods for performing neurophysiologic monitoring
US11510603B2 (en) 2014-11-26 2022-11-29 Safeop Surgical, Inc. Device and means of assessing neuromuscular junction status with higher fidelity
EP4005481A1 (en) 2014-11-26 2022-06-01 SafeOp Surgical, Inc. A device and means of assessing neuromuscular junction status with higher fidelity
US10869609B2 (en) 2014-11-26 2020-12-22 Safeop Surgical, Inc. Device and means of assessing neuromuscular junction status with higher fidelity
US11177610B2 (en) 2017-01-23 2021-11-16 Cadwell Laboratories, ino. Neuromonitoring connection system
US11253182B2 (en) 2018-05-04 2022-02-22 Cadwell Laboratories, Inc. Apparatus and method for polyphasic multi-output constant-current and constant-voltage neurophysiological stimulation
US11443649B2 (en) 2018-06-29 2022-09-13 Cadwell Laboratories, Inc. Neurophysiological monitoring training simulator

Also Published As

Publication number Publication date
NL6516659A (en) 1966-06-22
BE674054A (en) 1966-06-20
IL24839A (en) 1969-07-30
DE1539104A1 (en) 1970-03-12
FR1466608A (en) 1967-01-20
SE340324B (en) 1971-11-15
DE1539104B2 (en) 1971-02-25
GB1123365A (en) 1968-08-14
CH428965A (en) 1967-01-31

Similar Documents

Publication Publication Date Title
US3364929A (en) Method for administering muscle relaxant drug
US3565080A (en) Neuromuscular block monitoring apparatus
US4387723A (en) Method and apparatus for determining the level of neuromuscular block in a patient
Alles Information transmission by phantom sensations
EP0039206B1 (en) Magnetic treatment device
Matthews The reflex excitation of the soleus muscle of the decerebrate cat caused by vibration applied to its tendon
Sherrick et al. Apparent haptic movement
Hirsh et al. Perceived order in different sense modalities.
US7326181B2 (en) Nervous tissue stimulation device and method
EP0160753A1 (en) Electrotherapy acupuncture apparatus and method
EP0369414A1 (en) Dental anesthesia apparatus
McLellan The electromyographic silent period produced by supramaximal electrical stimulation in normal man
Catton Some properties of frog skin mechanoreceptors
IL33484A (en) Oscillator circuit output configuration
Gardner et al. Properties of kinesthetic neurons in somatosensory cortex of awake monkeys
Hahn Low-frequency vibrotactile adaptation.
Hubbard et al. Stimulation of motor nerve terminals
Dumitru et al. Practical instrumentation and common sources of error
McLeod Digital nerve conduction in the carpal tunnel syndrome after mechanical stimulation of the finger.
US4412546A (en) Cardiac monitoring apparatus
US4446870A (en) Electrical treatment method
US4289136A (en) Percutaneous pain alleviator methods
CA2090286C (en) Device for generating an electrical voltage of predetermined waveform, iontophoresis apparatus for transdermally administering medicinal products and electrical stimulation apparatus, which apparatuses are equipped with such a device
Weitz Vibratory sensitivity as affected by local anesthesia.
Blogg et al. A digital technique for stimulus artifact reduction