US3351947A - Shrouded parabolic antenna structure - Google Patents

Shrouded parabolic antenna structure Download PDF

Info

Publication number
US3351947A
US3351947A US433288A US43328865A US3351947A US 3351947 A US3351947 A US 3351947A US 433288 A US433288 A US 433288A US 43328865 A US43328865 A US 43328865A US 3351947 A US3351947 A US 3351947A
Authority
US
United States
Prior art keywords
dish
reflector
cover
flange
shroud
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US433288A
Inventor
James W Hart
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MARK PRODUCTS CO
Original Assignee
MARK PRODUCTS CO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MARK PRODUCTS CO filed Critical MARK PRODUCTS CO
Priority to US433288A priority Critical patent/US3351947A/en
Application granted granted Critical
Publication of US3351947A publication Critical patent/US3351947A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/42Housings not intimately mechanically associated with radiating elements, e.g. radome
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/02Details
    • H01Q19/021Means for reducing undesirable effects
    • H01Q19/022Means for reducing undesirable effects for reducing the edge scattering of reflectors

Definitions

  • This invention relates in general to high frequency antennas and more particularly to an improved parabolic antenna having a light weight, weather tight, self-supporting radome cover with associated internal reflecting shroud effective to enclose the face of the dish reflector and, improve the radiation directional pattern, and avoid leakage.
  • parabolic antennas in high frequency point-t0 point communication systems are well known. Such antennas, when properly constructed, exhibit an extremely high front-to-back ratio and consequently high gain. Relatively little radiant energy is transmitted in the minor lobes so that a sharply defined, narrow beam of energy is obtained.
  • Solid metal reflecting shrouds encircling the periphery of the reflector dish have heretofore been used to suppress radiation to the side and back.
  • the need to withstand wind, especially under conditions of rain, snow, sleet and ice, in addition to the need for an effective reflecting shroud had made it difficult or impossible to reduce weight and size of the overall structure.
  • support must be achieved outside the radiating beam such antennas have required heavy, expensive support struc ture.
  • these radome enclosures usually span the open end of the shroud with a flat disc of suitable material of low loss characteristics. Because of the flat-faced configurations, such discs develop maximum wind resistance to head-on winds.
  • discs are in the nature of diaphragms that contribute little, if any, structural strength and do not contribute the required rigidity of shroud and antenna structure. In some instances, substantial leakage radiation has been encountered between the reflector dish and the bottom edge of the reflecting shroud.
  • Another object is to provide a parabolic antenna with a weather tight, radome cover of low loss material totally enclosing the face of the reflector dish and constructed of a light weight, mechanically rigid material in a formed self-supporting unit and having a cylindrical shroud portion with an interior surface of a conductive material extending perpendicularly from the periphery of the reflector dish to at least the focal point thereof and in which spurious radiation is avoided.
  • Still another object is to provide a light weight, unitary radome cover for a parabolic antenna wherein a cylindrical portion is atfixed to the periphery of the reflector 335L947 Patented Nov. 7, I967 ICC dish defining a shroud and at its open end is spanned by an imperforate web of a generally convex outwardly conical conformation defining a weather tight enclosure with minimum weight and wind resistance.
  • Still another object of the present invention is to provide an improved shrouded parabolic dish antenna having features of construction, combination and arrangement making it simple, readily manufactured, capable of twopart arrangement for knocked-down shipment and storage, and in which the various parts coact to form an unusually strong, but light weight unit.
  • FIGURE 1 is a partially broken away top plan view of an antenna structure constructed in accordance with the present invention.
  • FIGURE 2 is a side cross-sectional view of FIGURE 1;
  • FIGURE 3 is a fragmental view shown in perspective of a portion of the radome cover
  • FIGURE 4- is a side cross-sectional view showing a mounting detail
  • FIGURE 5 is a fragmentary side view showing an additional mounting detail
  • FIGURE 6 depicts certain antenna radiation patterns useful in the explanation of the operation of the antenna of FIGURES 1 and 2;
  • FIGURE 7 is a graphical representation of the resulttant stresses on the cover from Wind loading.
  • a parabolic antenna having a reflector dish mounted on a cruciformshaped tubular support frame.
  • the reflector dish is preferably formed of spun aluminum and the support frame of aluminum piping.
  • the radiation injection of energizing mechanism comprises an inverted S-shaped waveguide section rigidly held in a fixed relation with respect to the reflector dish such that a radiation window or aperture is located approximately at the focal point thereof.
  • a weather-tight cover encloses the front of the reflector dish and energizing waveguide section and is of a construction which includes a cylindrical portion spanned by an imperforate web of a generally conical shape to substantially reduce Wind loading on the overall antenna structure.
  • the cover is preferably formed of low loss plastic, such as an epoxy resin, with embedded fiberglass to give light weight weight and high strength.
  • the cylindrical portion extends from the periphery of the reflector dish to at least the focal point thereof with the interior surface lined with a conductive material, such as aluminum sheeting to form a reflecting shroud.
  • a conductive material such as aluminum sheeting to form a reflecting shroud.
  • Such shroud acts to suppress side and back radiations that might otherwise occur due to variations in the energization of the reflector dish from other than at the precise focal point and also from any imperfections or distortions that might be present in the reflector dish itself.
  • the cover is supported in part directly by the support frame and also in part by the reflector dish.
  • a flange extends radially from the base of the cover for fastening to the periphery of the dish reflector by a plurality of clamps.
  • the underside of the cover flange is lined with a resilient supported, multi-layer of conductive mesh. This resiliently supported conductive mesh insures positive and continuous electrical continuity 3 between the shroud and the reflector dish at all points around the periphery to prevent leakage radiation.
  • the antenna structure embodying the present invention comprises a dish reflector 11 formed of spun aluminum in the shape of a paraboloid of revolution.
  • the dish reflector 11 includes a downwardly turned lip portion 11a formed about the periphery thereof, which lip portion is supported at spaced intermediate points by a plurality of perpendicular support posts 120 of generally tubular construction and forming an integral part of a cruciform-shaped support frame indicated generally at 12.
  • the frame 12 also includes a plurality of laterally extending tubular support members 1212.
  • the members 12a and 1211 are preferably formed of aluminum piping and may be provided in integral unitary construction or as separate members suitably joined together by welding or otherwise.
  • the injection of energizing means for the parabolic reflector dish 11 Comprises a waveguide section 15 of an essentially inverted S-shape configuration having a radiation window or aperture 15a at one end and terminating in a flange 151) at the other end.
  • the radiation windown 15a may be formed of any material suitably pervious to electromagnetic energy.
  • the waveguide section 15 is maintained in a fixed relation with respect to the reflector dish 11 such that the radiation window 15a is located at substantially the focal point of the dish 11. Such position is rigidly maintained by a vertical support member 16 connected between the bottom-most support member 12a and the waveguide section 15 is shown in FIG- URE 2.
  • the member 15 is formed by separate sections 16a and 1612 which terminate in respective flange couplings 16c and 16d and mated by suitable bolts (not shown). I
  • a radome cover 20 is provided to enclose the front of the reflector dish 11 and a major portion of the energizing waveguide section 15 and thereby provide the desired all-weather protection for the antenna structure 10 from severe environmental extremes.
  • the radome cover 20 is preferably constructed of a plastic material, such as epoxy resin with a re-inforced base of fiberglass so as to provide a light-weight yet mechanically rugged structure which is completely impervious to severe environmental extremes.
  • such construction provides a relatively low loss material which will not significantly attenuate the electromagnetic energy reflected from the dish 11.
  • a typical attenuation figure is 0.1 db.
  • the radome cover 20 includes a cylindrical portion 20a spanned at its forward end by an imperforate web portion 2012 so as to define a completely weather-tight enclosure of unitary construction.
  • the web portion 29b protrudes slightly forward at the center to present a generally conical or convex outwardly shaped conformation.
  • the wall of the cylindrical portion 2% is of sufficient length to extend outwardly to a distance beyond the focal point of the dish 11 when the cover 20 is mounted to the face of the dish 11 in the manner to be hereinafter described.
  • the cover 20 further includes a flange portion 260 extending radially from the rear or base thereof.
  • a rim 20d depends perpendicularly from the outermost edge of the flange portion 200.
  • a hollow, triangular-shaped housing extension 202 depends downwardly from the bottom of the cover 20 to act as a feed clearancechute for the Waveguide section 15.
  • the housing extension 202 has an open side from the rear as viewed in FIGURE 2 through which the waveguide section 15 extends.
  • a cross sectional view of the housing extension is 20@ shown in FIGURE 3.
  • a plurality of support flanges 22 are formed in the outer wall of the cylindrical portion 20a at the respective sides and top of the cover 20 at approximately 90 degree spacings to permit the cover 20 to be supported, at least in part, directly by the support frame 12.
  • each of the support flanges 22 include a mounting plate 23 secured to the respective sides thereof by a pair of bolts 24 and associated mating nuts (not shown).
  • a portion of the mounting plates 23 extend outboard of the associated support flange 22 to permit :51 rotatably adjustable turn-buckle 25 to be secured between such outboard portion of the mounting plates 23 and a pipe clamp 26 securely fastened to the support member 12a by bolts 27 in the manner shown.
  • each of the mounting clamps 30 includes a bottom U-shaped member 31 underlying the dish lip portion 11a and a top L-shaped member 32 overlying the top of the cover flange portion 200 and extending downward beyond the depending rim 29:1 to abut against the bottom member 31.
  • a bolt 33 passes through suitable clearance holes provided in the members 31 and 32 to mate with an associated nut 34, which when drawn up tightly, securely fastens the flange portion 200 of the radome cover 20 to the lip portion 11a of the reflector dish 11.
  • the radome cover 20 provides a weather-tight enclosure for the front of the reflector dish 11 and the energizing waveguide section 15 to protect the same from severe environmental conditions such as hi h winds, rain, sleet, snow and ice which might otherwise etfect undesired variations in the energizing of the antenna and thereby seriously impair the performance characteristics thereof.
  • the cover 20 presents a light weight, self-supporting and mechanically rigid structure which requires little, if any, additional superstructure or bracing on the antenna support frame to adequately support the weight of the cover. Such characteristics stem not only from the epoxy resin construction with re-inforced fiberglass base, but also from the physical conformation of the cover 20 itself.
  • the force exerted on the forward face of the cover 20 from wind loading is represented by the plurality of solid arrows. Due to the outward conical conformation of this face, such force is vectored diagonally, as represented by the arrows shown in dotted lines, toward the rim or top peripheral edge of the cylindrical portion 20a, indicated generally by the symbol A.
  • rim portion A is effectively placed in hoop expansion, and the entire structure is seen to possess a high degree of mechanical rigidity superior to that provided if the face of the cover 20 was merely of a flat configuration. In the latter case, it will be seen that the forces acting on the peripheral edge would tend to collapse such edge or rim inwardly.
  • the cover 20 thus provides protection from the deteriorating effects of adverse weather conditions, it cannot, without more, effect any improvement in the radiation performance characteristics inherent in the antenna 10. Due to practical considerations, there are always a certain amount of variations in the energizing of the reflector dish 11 from other than the precise focal point as well as some imperfections which will occur in the reflector dish 11 itself. For illustrative purposes, typical side and back radiational patterns due to such imperfections and feed variations are depicted in FIGURE 6a.
  • a conductive facing is provided for the entire interior surface of the cylindrical portion 200 to act as a reflecting shroud.
  • conductive facing may be provided in a number of ways, such as using a metalized paint to coat the interior surface or by employing a tape having an adherent on one side and a metallic coating on the other.
  • the preferred embodiment cmploys aluminum sheeting of relatively thin-gauge, viz. on the order of .016", for the shroud 40 so as to insure an optimum reflecting surface for the desired degree of efliciency and yet be relatively light in weight.
  • the shroud 40 is preferably secured to the interior surface of the cylindrical portion 20a by riveting the same at intermediate spacings along the respective edges.
  • the shroud 40 is operative to reduce side and back radiations by refleeting any electromagnetic energy incident on its surface.
  • a multilayer conductive mesh 45 is provided on the upperside of the flange portion 200.
  • such conductive mesh includes at least four layers.
  • An underlay of rubber stripping 46 is included to provide a resilient support for the conductive mesh 45 whereby positive and continuous electrical continuity is established at all points around the periphery of the dish 11 despite any dimensional variations or the like which might be encountered in the various component parts.
  • the mesh 45 is secured to the shroud 40 by inserting a portion thereof between the wall of the cylindrical portion 202: and a top portion of the shroud 40 before riveting a strap 47 on the upper edge in the manner shown in FIGURE 3.
  • the mesh 45 is held in place on the surface of the flange portion 200 by an additional strap riveted along the inner surface of the rim 20d.
  • the interior surface of the housing extension 20c is also lined with a like conductive mesh 49 which is suitably secured to the shroud by overlying corner brackets 50 suitably riveted to the cover 20 and shroud 40.
  • the conductive mesh 45 and 49 is preferably formed from aluminum screening which, being the same material as the dish 11 and the shroud 40, prevents any galvanic currents, and the attendant corrosion, which would otherwise occur if dissimilar metals were to be used.
  • the cover means 20 may be of two-part construction so that it can be knocked down for shipment. It is assembled in unitary form, however, before use and acts as a unitary structure in the product as used.
  • unitary is used in the appended claims to designate the structure whether in one piece or two, so long as it is assembled in one unit and so acts in the completed structure.
  • a high frequency antenna of paraboloid configuration comprising; a parabolic dish reflector having a concave reflecting surface and a marginal flange, energizing means to radiate electromagnetic energy onto said surface from a point forwardly thereof for reflection as a sharply defined beam, unitary cover means constructed of low loss, light weight, non-metallic material having a marginal conformation to seat on said dish flange, said cover means having a cylindrical portion extending from the periphery of said dish reflector to a point beyond the confines of said energizing means, said cover means further having an imperforate web portion integral with the cylindrical portion spanning the forward end thereof to define a weather-tight enclosure for the reflector surface, said web portion protruding outwardly towards the center to present a generally conical conformation so as to substantially reduce wind loading and form a mechani cally rigid structure, and a conducting facing on the interior surface of said cylindrical portion operative to function as a reflecting shroud and improve the radiation directional pattern of said antenna.
  • a high frequency antenna of paraboloid configuration com-prising; a circular dish reflector having a concave reflecting surface with an outturned lip portion around the periphery thereof, energizing means to radiate electromagnetic energy onto said surface from a point forwardly thereof for reflection as a sharply defined beam, unitary cover means constructed of a light weight, low loss non-metallic material for enclosing the face of said dish reflector and having a marginal flange extending radially therefrom for seating on said dish lip portion, said cover means having a cylindrical portion extending outwardly to a distance beyond the confines of said energizing means, said cover means further having an imperforate web portion integral with said cylindrical portion spanning the forward end thereof to define a weather tight enclosure, said web portion having a generally convex outwardly, conical conformation to reduce wind loading, a conducting facing on the interior surface of said cylindrical portion formed of relatively thin-gauge aluminum sheeting supported by said cylindrical portion for acting as a reflecting shroud to improve radiation
  • a high frequency antenna of paraboloid configuration comprising; a circular dish reflector having a concave reflecting surface and an outboard marginal dish flange, energizing means to radiate electromagnetic energy onto said surface from a point forwardly thereof for reflection as a sharply defined beam, a weather tight cover of unitary construction for enclosing the face of said reflector dish, said cover being formed of a low loss, light weight, non-metallic material, said cover including a cylindrical portion having a marginal flange extending radially from the base thereof to seat on said dish flange, said marginal cover flange having a cylindrical upstanding outer lip, said cylindrical portion extending in the axial direction from the periphery of said dish reflector to a point beyond the confines of said energizing means, said cylindrical portion having an imperforate web spanning the forward end thereof to define said weather tight cover, a conductive facing on the interior surface of said cylindrical portion operative to reflect radiant energy and improve the radiation directional pattern of the antenna, a resilient annulus sandwich
  • a high frequency antenna of paraboloid configuration comprising; a circular dish reflector having a concave reflecting surface with an outturned lip portion around the periphery thereof, energizing waveguide means to radiate electromagnetic energy onto said surface from a point forwardly thereof for reflection as a sharply defined beam, unitary cover means constructed of a plastic material with a reinforced fiberglass base for light weight, low loss and a high degree of mechanical rigidity for enclosing the face of said dish reflector and waveguide means, said cover means including a cylindrical portion having a marginal flange extending radially from one end with a cylindrical upstanding outer lip, said cylindrical portion extending in the axial direction to at least the focal point of said dish reflector, said cylindrical portion having an imperforate web portion spanning the forward end and integral therewith to form a weather tight enclosure, said web portion having a general convex outwardly, conical conformation to reduce Wind loading, a feed clearance chute depending mm the base of said cover means having an opening therein for receiving said energ

Description

W U m W PM A E \w Nov. 7, 1967 J. w. HART SHROUDED PARABOLIC ANTENNA STRUCTURE 2 Sheets-Sheet 1 Filed Feb. l7, 1965 N 7, J. w. HART 3,351,947
SHROUD ED PARABOLIC ANTENNA STRUCTURE Filed Feb. 17, 1965 2 Sheets-Sheet 2 Inventor- Ja mes W. H'nr'fi mm & we
ifi' rnew United States Patent 3,351,947 SHRGUDED PARABOLIC ANTENNA STRUCTURE James W. Hart, Highland Park, Ill., assignor, by mesne assignments, to Mark Products (Iornpany, Skolrie, Ill., a corporation of Illinois Filed Feb. 17, I965, Ser. No. 433,288 Claims. (Cl. 343-840) This invention relates in general to high frequency antennas and more particularly to an improved parabolic antenna having a light weight, weather tight, self-supporting radome cover with associated internal reflecting shroud effective to enclose the face of the dish reflector and, improve the radiation directional pattern, and avoid leakage.
The advantages of parabolic antennas in high frequency point-t0 point communication systems are well known. Such antennas, when properly constructed, exhibit an extremely high front-to-back ratio and consequently high gain. Relatively little radiant energy is transmitted in the minor lobes so that a sharply defined, narrow beam of energy is obtained.
There are, however, certain inherent disadvantages. For example, such antennas are usually placed high above the surrounding terrain, and are thus subjected to substantial wind loading, as well as being exposed to severe environmental extremes, which may vary the energization of the dish reflector. Such variations, even though slight, detract from the otherwise optimum performance characteristics and result in undesired side and back radiations.
Solid metal reflecting shrouds encircling the periphery of the reflector dish have heretofore been used to suppress radiation to the side and back. However, the need to withstand wind, especially under conditions of rain, snow, sleet and ice, in addition to the need for an effective reflecting shroud, had made it difficult or impossible to reduce weight and size of the overall structure. Since support must be achieved outside the radiating beam, such antennas have required heavy, expensive support struc ture. In addition, these radome enclosures usually span the open end of the shroud with a flat disc of suitable material of low loss characteristics. Because of the flat-faced configurations, such discs develop maximum wind resistance to head-on winds. Moreover, such discs are in the nature of diaphragms that contribute little, if any, structural strength and do not contribute the required rigidity of shroud and antenna structure. In some instances, substantial leakage radiation has been encountered between the reflector dish and the bottom edge of the reflecting shroud.
Accordingly, it is an object of the present invention to provide an improved high frequency shrouded dish parabola antenna structure characterized by light weight and favorable radiation performance characteristics under all operating conditions.
It is another object to provide a parabolic antenna having a weather tight, radome cover of low loss material totally enclosing the face of the reflector dish and defining a shroud in such fashion as to minimize the effects of wind loading and provide a light weight, self-sustaining structure requiring relatively small supporting structure.
Another object is to provide a parabolic antenna with a weather tight, radome cover of low loss material totally enclosing the face of the reflector dish and constructed of a light weight, mechanically rigid material in a formed self-supporting unit and having a cylindrical shroud portion with an interior surface of a conductive material extending perpendicularly from the periphery of the reflector dish to at least the focal point thereof and in which spurious radiation is avoided.
Still another object is to provide a light weight, unitary radome cover for a parabolic antenna wherein a cylindrical portion is atfixed to the periphery of the reflector 335L947 Patented Nov. 7, I967 ICC dish defining a shroud and at its open end is spanned by an imperforate web of a generally convex outwardly conical conformation defining a weather tight enclosure with minimum weight and wind resistance.
Further, it is an object of this invention to provide an improved shrouded parabolic antenna dish reflector in which flexible screen elements coact with a resilient flange gasket to provide a low-leakage, electrical shield between the shroud and antenna reflector.
Still another object of the present invention is to provide an improved shrouded parabolic dish antenna having features of construction, combination and arrangement making it simple, readily manufactured, capable of twopart arrangement for knocked-down shipment and storage, and in which the various parts coact to form an unusually strong, but light weight unit.
The novel features which I believe to be characteristic of my invention are set forth with particularity in the appended claims. My invention itself, however, both as to its organization and as to further objects and advantages thereof will best be understood from the following description, taken in conjunction with the accompanying drawings, in which:
FIGURE 1 is a partially broken away top plan view of an antenna structure constructed in accordance with the present invention;
FIGURE 2 is a side cross-sectional view of FIGURE 1;
FIGURE 3 is a fragmental view shown in perspective of a portion of the radome cover;
FIGURE 4- is a side cross-sectional view showing a mounting detail;
FIGURE 5 is a fragmentary side view showing an additional mounting detail;
FIGURE 6 depicts certain antenna radiation patterns useful in the explanation of the operation of the antenna of FIGURES 1 and 2; and
FIGURE 7 is a graphical representation of the resulttant stresses on the cover from Wind loading.
In practicing the invention, a parabolic antenna is provided having a reflector dish mounted on a cruciformshaped tubular support frame. The reflector dish is preferably formed of spun aluminum and the support frame of aluminum piping. The radiation injection of energizing mechanism comprises an inverted S-shaped waveguide section rigidly held in a fixed relation with respect to the reflector dish such that a radiation window or aperture is located approximately at the focal point thereof. A weather-tight cover encloses the front of the reflector dish and energizing waveguide section and is of a construction which includes a cylindrical portion spanned by an imperforate web of a generally conical shape to substantially reduce Wind loading on the overall antenna structure. The cover is preferably formed of low loss plastic, such as an epoxy resin, with embedded fiberglass to give light weight weight and high strength. The cylindrical portion extends from the periphery of the reflector dish to at least the focal point thereof with the interior surface lined with a conductive material, such as aluminum sheeting to form a reflecting shroud. Such shroud acts to suppress side and back radiations that might otherwise occur due to variations in the energization of the reflector dish from other than at the precise focal point and also from any imperfections or distortions that might be present in the reflector dish itself. The cover is supported in part directly by the support frame and also in part by the reflector dish. A flange extends radially from the base of the cover for fastening to the periphery of the dish reflector by a plurality of clamps. The underside of the cover flange is lined with a resilient supported, multi-layer of conductive mesh. This resiliently supported conductive mesh insures positive and continuous electrical continuity 3 between the shroud and the reflector dish at all points around the periphery to prevent leakage radiation.
Referring now to FIGURES 1 and 2, the antenna structure embodying the present invention comprises a dish reflector 11 formed of spun aluminum in the shape of a paraboloid of revolution. As best seen in FIGURE 4, the dish reflector 11 includes a downwardly turned lip portion 11a formed about the periphery thereof, which lip portion is supported at spaced intermediate points by a plurality of perpendicular support posts 120 of generally tubular construction and forming an integral part of a cruciform-shaped support frame indicated generally at 12. The frame 12 also includes a plurality of laterally extending tubular support members 1212. The members 12a and 1211 are preferably formed of aluminum piping and may be provided in integral unitary construction or as separate members suitably joined together by welding or otherwise.
The injection of energizing means for the parabolic reflector dish 11 Comprises a waveguide section 15 of an essentially inverted S-shape configuration having a radiation window or aperture 15a at one end and terminating in a flange 151) at the other end. The radiation windown 15a may be formed of any material suitably pervious to electromagnetic energy. The waveguide section 15 is maintained in a fixed relation with respect to the reflector dish 11 such that the radiation window 15a is located at substantially the focal point of the dish 11. Such position is rigidly maintained by a vertical support member 16 connected between the bottom-most support member 12a and the waveguide section 15 is shown in FIG- URE 2. The member 15 is formed by separate sections 16a and 1612 which terminate in respective flange couplings 16c and 16d and mated by suitable bolts (not shown). I
A radome cover 20 is provided to enclose the front of the reflector dish 11 and a major portion of the energizing waveguide section 15 and thereby provide the desired all-weather protection for the antenna structure 10 from severe environmental extremes. The radome cover 20 is preferably constructed of a plastic material, such as epoxy resin with a re-inforced base of fiberglass so as to provide a light-weight yet mechanically rugged structure which is completely impervious to severe environmental extremes. In addition, such construction provides a relatively low loss material which will not significantly attenuate the electromagnetic energy reflected from the dish 11. A typical attenuation figure is 0.1 db.
In fabrication, the radome cover 20 includes a cylindrical portion 20a spanned at its forward end by an imperforate web portion 2012 so as to define a completely weather-tight enclosure of unitary construction. As best seen in FIGURE 2, the web portion 29b protrudes slightly forward at the center to present a generally conical or convex outwardly shaped conformation. The wall of the cylindrical portion 2% is of sufficient length to extend outwardly to a distance beyond the focal point of the dish 11 when the cover 20 is mounted to the face of the dish 11 in the manner to be hereinafter described.
As seen in FIGURES 3 and 4, the cover 20 further includes a flange portion 260 extending radially from the rear or base thereof. A rim 20d depends perpendicularly from the outermost edge of the flange portion 200. In addition, a hollow, triangular-shaped housing extension 202 depends downwardly from the bottom of the cover 20 to act as a feed clearancechute for the Waveguide section 15. The housing extension 202 has an open side from the rear as viewed in FIGURE 2 through which the waveguide section 15 extends. A cross sectional view of the housing extension is 20@ shown in FIGURE 3.
A plurality of support flanges 22 are formed in the outer wall of the cylindrical portion 20a at the respective sides and top of the cover 20 at approximately 90 degree spacings to permit the cover 20 to be supported, at least in part, directly by the support frame 12. As best seen in FIGURE 5, each of the support flanges 22 include a mounting plate 23 secured to the respective sides thereof by a pair of bolts 24 and associated mating nuts (not shown). A portion of the mounting plates 23 extend outboard of the associated support flange 22 to permit :51 rotatably adjustable turn-buckle 25 to be secured between such outboard portion of the mounting plates 23 and a pipe clamp 26 securely fastened to the support member 12a by bolts 27 in the manner shown.
The cover 20 is also supported on the reflector dish 11 and rigidly held in place thereon by a plurality of mounting clamps 30 intermittently spaced around the periphery of the dish 11. As best seen in FIGURE 4, each of the mounting clamps 30 includes a bottom U-shaped member 31 underlying the dish lip portion 11a and a top L-shaped member 32 overlying the top of the cover flange portion 200 and extending downward beyond the depending rim 29:1 to abut against the bottom member 31. A bolt 33 passes through suitable clearance holes provided in the members 31 and 32 to mate with an associated nut 34, which when drawn up tightly, securely fastens the flange portion 200 of the radome cover 20 to the lip portion 11a of the reflector dish 11.
Thus it is seen that the radome cover 20 provides a weather-tight enclosure for the front of the reflector dish 11 and the energizing waveguide section 15 to protect the same from severe environmental conditions such as hi h winds, rain, sleet, snow and ice which might otherwise etfect undesired variations in the energizing of the antenna and thereby seriously impair the performance characteristics thereof. The cover 20 presents a light weight, self-supporting and mechanically rigid structure which requires little, if any, additional superstructure or bracing on the antenna support frame to adequately support the weight of the cover. Such characteristics stem not only from the epoxy resin construction with re-inforced fiberglass base, but also from the physical conformation of the cover 20 itself. As seen in FIGURE 7, the force exerted on the forward face of the cover 20 from wind loading is represented by the plurality of solid arrows. Due to the outward conical conformation of this face, such force is vectored diagonally, as represented by the arrows shown in dotted lines, toward the rim or top peripheral edge of the cylindrical portion 20a, indicated generally by the symbol A. Thus, such rim portion A is effectively placed in hoop expansion, and the entire structure is seen to possess a high degree of mechanical rigidity superior to that provided if the face of the cover 20 was merely of a flat configuration. In the latter case, it will be seen that the forces acting on the peripheral edge would tend to collapse such edge or rim inwardly.
While the cover 20 thus provides protection from the deteriorating effects of adverse weather conditions, it cannot, without more, effect any improvement in the radiation performance characteristics inherent in the antenna 10. Due to practical considerations, there are always a certain amount of variations in the energizing of the reflector dish 11 from other than the precise focal point as well as some imperfections which will occur in the reflector dish 11 itself. For illustrative purposes, typical side and back radiational patterns due to such imperfections and feed variations are depicted in FIGURE 6a.
To improve the radiation directional pattern of the antenna 10, a conductive facing is provided for the entire interior surface of the cylindrical portion 200 to act as a reflecting shroud. It is understood that such conductive facing may be provided in a number of ways, such as using a metalized paint to coat the interior surface or by employing a tape having an adherent on one side and a metallic coating on the other. The preferred embodiment, however, and as shown in FIGURE 3, cmploys aluminum sheeting of relatively thin-gauge, viz. on the order of .016", for the shroud 40 so as to insure an optimum reflecting surface for the desired degree of efliciency and yet be relatively light in weight. The shroud 40 is preferably secured to the interior surface of the cylindrical portion 20a by riveting the same at intermediate spacings along the respective edges. The shroud 40 is operative to reduce side and back radiations by refleeting any electromagnetic energy incident on its surface.
Notwithstanding the use of such reflecting shroud 40, it has been found that radiation leakage will occur at any point where there is a gap in direct physical contact between the dish 11 and the shroud 40. In most instances, such leakage radiation is substantial and suflicient to effectively nullify any improvements in the side radiational pattern otherwise gained by the use of a reflecting shroud 40. To insure that no such disruptive leakage radiation occurs between the dish 11 and the shroud 40', a multilayer conductive mesh 45 is provided on the upperside of the flange portion 200. Preferably, such conductive mesh includes at least four layers. An underlay of rubber stripping 46 is included to provide a resilient support for the conductive mesh 45 whereby positive and continuous electrical continuity is established at all points around the periphery of the dish 11 despite any dimensional variations or the like which might be encountered in the various component parts. The mesh 45 is secured to the shroud 40 by inserting a portion thereof between the wall of the cylindrical portion 202: and a top portion of the shroud 40 before riveting a strap 47 on the upper edge in the manner shown in FIGURE 3. The mesh 45 is held in place on the surface of the flange portion 200 by an additional strap riveted along the inner surface of the rim 20d.
The interior surface of the housing extension 20c is also lined with a like conductive mesh 49 which is suitably secured to the shroud by overlying corner brackets 50 suitably riveted to the cover 20 and shroud 40. The conductive mesh 45 and 49 is preferably formed from aluminum screening which, being the same material as the dish 11 and the shroud 40, prevents any galvanic currents, and the attendant corrosion, which would otherwise occur if dissimilar metals were to be used.
The resultant establishment of electrical continuity between the shroud 40 and the dish 11 at all points around the periphery thereof insures that no leakage radiation will occur from therebetween and the reflecting shroud 40 reflects back all electromagnetic energy incident on its surface to further suppress radiation to the side and rear. The resultant improvement in side and back directional radiation pattern over that without the shroud 40 is shown in FIGURE 6b.
As mentioned above, the cover means 20 may be of two-part construction so that it can be knocked down for shipment. It is assembled in unitary form, however, before use and acts as a unitary structure in the product as used. The term unitary is used in the appended claims to designate the structure whether in one piece or two, so long as it is assembled in one unit and so acts in the completed structure.
It will be understood that, while a specific antenna construction embodying the present invention is shown and described herein, various modifications therefrom may be made without departing from the true scope of the invention.
What is claimed is:
1. A high frequency antenna of paraboloid configuration, comprising; a parabolic dish reflector having a concave reflecting surface and a marginal flange, energizing means to radiate electromagnetic energy onto said surface from a point forwardly thereof for reflection as a sharply defined beam, unitary cover means constructed of low loss, light weight, non-metallic material having a marginal conformation to seat on said dish flange, said cover means having a cylindrical portion extending from the periphery of said dish reflector to a point beyond the confines of said energizing means, said cover means further having an imperforate web portion integral with the cylindrical portion spanning the forward end thereof to define a weather-tight enclosure for the reflector surface, said web portion protruding outwardly towards the center to present a generally conical conformation so as to substantially reduce wind loading and form a mechani cally rigid structure, and a conducting facing on the interior surface of said cylindrical portion operative to function as a reflecting shroud and improve the radiation directional pattern of said antenna.
2. A high frequency antenna of paraboloid configuration, com-prising; a circular dish reflector having a concave reflecting surface with an outturned lip portion around the periphery thereof, energizing means to radiate electromagnetic energy onto said surface from a point forwardly thereof for reflection as a sharply defined beam, unitary cover means constructed of a light weight, low loss non-metallic material for enclosing the face of said dish reflector and having a marginal flange extending radially therefrom for seating on said dish lip portion, said cover means having a cylindrical portion extending outwardly to a distance beyond the confines of said energizing means, said cover means further having an imperforate web portion integral with said cylindrical portion spanning the forward end thereof to define a weather tight enclosure, said web portion having a generally convex outwardly, conical conformation to reduce wind loading, a conducting facing on the interior surface of said cylindrical portion formed of relatively thin-gauge aluminum sheeting supported by said cylindrical portion for acting as a reflecting shroud to improve radiation directional pattern of said antenna, and a resilient annulus sandwiched between said marginal cover flange and said outturned lip, and at least one layer of conductive mesh having opposing longitudinal edges affixed to said cover flange outboard said outturned lip and to said conducting facing, respectively, and interposed between the outturned lip and said resilient annulus to prevent leakage radiation.
3. A high frequency antenna of paraboloid configuration, comprising; a circular dish reflector having a concave reflecting surface and an outboard marginal dish flange, energizing means to radiate electromagnetic energy onto said surface from a point forwardly thereof for reflection as a sharply defined beam, a weather tight cover of unitary construction for enclosing the face of said reflector dish, said cover being formed of a low loss, light weight, non-metallic material, said cover including a cylindrical portion having a marginal flange extending radially from the base thereof to seat on said dish flange, said marginal cover flange having a cylindrical upstanding outer lip, said cylindrical portion extending in the axial direction from the periphery of said dish reflector to a point beyond the confines of said energizing means, said cylindrical portion having an imperforate web spanning the forward end thereof to define said weather tight cover, a conductive facing on the interior surface of said cylindrical portion operative to reflect radiant energy and improve the radiation directional pattern of the antenna, a resilient annulus sandwiched between said marginal dish flange and said marginal cover flange, and at least four layers of conductive mesh having respective opposing sides aflixed to the interior of the cylindrical portion adjacent the marginal cover flange and to the upstanding outer lip and extending across the resilient annulus between the same and the outturned marginal dish flange.
4. A weather tight, low loss radome cover of unitary construction for enclosing the face of a parabolic antenna dish reflector having an outturned lip portion around the periphery thereof, including in combination; a cylindrical portion having a flange extending radially from the base and having a cylindrical upstanding outer lip, said cylindrical portion extending in the axial direction from the periphery of said dish reflector to a point beyond the focal point of said dish reflector, said cylindrical portion having an imperforate web spanning the forward end to define a weather tight enclosure, a conductive facing on the interior surface of said cylindrical portion operative as a reflecting shroud to reflect radiant energy incident thereon and improve the radiation directional pattern, and a resilient annulus sandwiched between said outturned lip of said dish and said cover flange, and at least one layer of conductive mesh having opposing longitudinal edges affixed to said outer lip of said cover flange and to said conductive facing respectively, and interposed between said outturned lip of said dish and said resilient annulus, said cover flange seating on said outturned lip of said dish with said resiliently supported conductive mesh insuring positive and continuous electrical continuity between said conductive facing and all points around the periphery of said reflector dish, thereby preventing leakage radiation from occurring therebetween.
5. A high frequency antenna of paraboloid configuration, comprising; a circular dish reflector having a concave reflecting surface with an outturned lip portion around the periphery thereof, energizing waveguide means to radiate electromagnetic energy onto said surface from a point forwardly thereof for reflection as a sharply defined beam, unitary cover means constructed of a plastic material with a reinforced fiberglass base for light weight, low loss and a high degree of mechanical rigidity for enclosing the face of said dish reflector and waveguide means, said cover means including a cylindrical portion having a marginal flange extending radially from one end with a cylindrical upstanding outer lip, said cylindrical portion extending in the axial direction to at least the focal point of said dish reflector, said cylindrical portion having an imperforate web portion spanning the forward end and integral therewith to form a weather tight enclosure, said web portion having a general convex outwardly, conical conformation to reduce Wind loading, a feed clearance chute depending mm the base of said cover means having an opening therein for receiving said energizing waveguide means therethrough, means for securing said cover flange to said outturned lip of said dish, including a plurality of peripherally spaced mounting clamps, a conductive facing formed of relatively thin gauge aluminum sheeting supported by said cylindrical portion on the interior surface thereof and effective as a reflecting shroud to improve the radiation directional pattern of said antenna, and shielding means for preventing leakage radiation to the side and back, said shielding means including at least four layers of aluminum screening with an underlay of resilient, rubberlike material, said screening having opposing longitudinal edges aflixed to said outer lip of said cover flange and to said conductive facing, respectively, said shielding means further including additional aluminum screening lining the interior surface of said feed clearance chute.
References Cited FOREIGN PATENTS 6/1957 Germany.
OTHER REFERENCES ELI LIEBERMAN, Primary Examiner.

Claims (1)

1. A HIGH FREQUENCY ANTENNA OF PARABOLOID CONFIRGUATION, COMPRISING; A PARABOLIC DISH REFLECTOR HAVING A CONCAVE REFLECTING SURFACE AND A MRAGINAL FLANGE, ENERGIZING MEANS TO RADIATE ELECTROMAGNETIC ENERGY ONTO SAID SURFACE FROM A POINT FORWARDLY THEREOF FOR REFLECTION AS A SHARPLY DEFINED BEAM, UNITARY COVER MEANS CONSTRUCTED OF LOW LOSS, LIGHT WEIGHT, NON-METALLIC MATERIAL HAVING A MARGINAL CONFORMATION TO SEAT ON SAID DISH FLANGE, SAID COVER MEANS HAVING A CLYINDRICAL PORTION EXTENDING FROM THE PERIPHERY OF SAID DISH REFLECTOR TO A POINT BEYOND THE CONFINES OF SAID ENERGIZING MEANS, SAID COVER MEANS FURTHER HAVING AN IMPERFORATE WEB PORTION INTEGRAL WITH THE CLYINDRICAL PORTION SPANNING THE FORWARD END THEREOF TO DEFINE A WEATHER-TIGHT ENCLOSURE FOR THE REFLECTOR SURFACE, SAID WEB PORTION PROTRUDING OUTWARDLY TOWARDS THE CENTER TO PRESENT A GENERALLY CONICAL CONFORMATION SO AS TO SUBSTANTIALLY REDUCE WIND LOADING AND FORM A MECHANICALLY RIGID STRUCTURE, AND CONDUCTING FACING ON THE INTERIOR SURFACE OF SAID CYLINDRICAL PORTION OPERATIVE TO FUNCTION AS A FEFLECTING SHROUD AND IMPROVE THE RADIATION DIRECTIONAL PATTERN OF SAID ANTENNA.
US433288A 1965-02-17 1965-02-17 Shrouded parabolic antenna structure Expired - Lifetime US3351947A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US433288A US3351947A (en) 1965-02-17 1965-02-17 Shrouded parabolic antenna structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US433288A US3351947A (en) 1965-02-17 1965-02-17 Shrouded parabolic antenna structure

Publications (1)

Publication Number Publication Date
US3351947A true US3351947A (en) 1967-11-07

Family

ID=23719586

Family Applications (1)

Application Number Title Priority Date Filing Date
US433288A Expired - Lifetime US3351947A (en) 1965-02-17 1965-02-17 Shrouded parabolic antenna structure

Country Status (1)

Country Link
US (1) US3351947A (en)

Cited By (161)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3388401A (en) * 1965-06-30 1968-06-11 Andrew Antenna Company Ltd Parabolic antenna with low-loss flexible radome
FR2025593A1 (en) * 1968-12-07 1970-09-11 Telefunken Gmbh
US4282530A (en) * 1979-12-26 1981-08-04 Bell Telephone Laboratories, Incorporated Cylindrical paraboloid weather cover for a horn reflector antenna with wave absorbing means
WO1988007268A1 (en) * 1987-02-24 1988-09-22 Schudel Conrad R Monocoque antenna structure
US4786915A (en) * 1985-04-26 1988-11-22 British Telecommunications Public Limited Company Attenuation of microwave signals
US4860021A (en) * 1985-06-28 1989-08-22 Hitachi, Ltd. Parabolic antenna
US4918459A (en) * 1989-02-27 1990-04-17 Teso John S De Apparatus for protecting antennas
US5451972A (en) * 1994-05-12 1995-09-19 Paul Dean Franklin Satellite antenna dish cover
US5528253A (en) * 1994-05-12 1996-06-18 Paul Dean Franklin Satellite dish utility cover
USD387356S (en) * 1996-09-13 1997-12-09 W. L. Gore & Associates, Inc. Satellite dish cover
US5815125A (en) * 1997-02-05 1998-09-29 W. L. Gore & Associates, Inc. Satellite dish cover
US5940047A (en) * 1998-02-25 1999-08-17 Pfnister; David Satellite antenna cover device
US6072440A (en) * 1997-05-02 2000-06-06 Bowman; Francis E. Satellite receiving dish feed horn or LNB cover
US6933908B1 (en) 2004-11-10 2005-08-23 Epher T. Mirabueno Protective cover for satellite dishes
US7330160B1 (en) * 2006-08-18 2008-02-12 The Regents Of The University Of California Support apparatus for a reflector
US20100315307A1 (en) * 2009-06-12 2010-12-16 Andrew Llc Radome and Shroud Enclosure for Reflector Antenna
US20120019430A1 (en) * 2009-04-02 2012-01-26 Astrium Sas Radio antenna including improved means of rigidification
US20120248236A1 (en) * 2011-03-30 2012-10-04 Raytheon Company Guided munitions including interlocking dome covers and methods for equipping guided munitions with the same
US20130099991A1 (en) * 2011-10-24 2013-04-25 Andew Llc Method and Apparatus for Radome and Reflector Dish Interconnection
US8519312B1 (en) * 2010-01-29 2013-08-27 Raytheon Company Missile with shroud that separates in flight
EP2712019A1 (en) * 2012-09-24 2014-03-26 Alcatel- Lucent Shanghai Bell Co., Ltd Device for attaching a radome to a parabolic reflector of an antenna
US20150138022A1 (en) * 2012-05-08 2015-05-21 Nec Corporation Antenna device and method for attaching the same
US9608740B2 (en) 2015-07-15 2017-03-28 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9640850B2 (en) 2015-06-25 2017-05-02 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium
US20170133755A1 (en) * 2014-03-07 2017-05-11 Commscope Technologies Llc Radome - reflector assembly mechanism
US9667317B2 (en) 2015-06-15 2017-05-30 At&T Intellectual Property I, L.P. Method and apparatus for providing security using network traffic adjustments
US9674711B2 (en) 2013-11-06 2017-06-06 At&T Intellectual Property I, L.P. Surface-wave communications and methods thereof
US9685992B2 (en) 2014-10-03 2017-06-20 At&T Intellectual Property I, L.P. Circuit panel network and methods thereof
US9705610B2 (en) 2014-10-21 2017-07-11 At&T Intellectual Property I, L.P. Transmission device with impairment compensation and methods for use therewith
US9705561B2 (en) 2015-04-24 2017-07-11 At&T Intellectual Property I, L.P. Directional coupling device and methods for use therewith
US9722318B2 (en) 2015-07-14 2017-08-01 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US9729197B2 (en) 2015-10-01 2017-08-08 At&T Intellectual Property I, L.P. Method and apparatus for communicating network management traffic over a network
US9735833B2 (en) 2015-07-31 2017-08-15 At&T Intellectual Property I, L.P. Method and apparatus for communications management in a neighborhood network
US9742462B2 (en) 2014-12-04 2017-08-22 At&T Intellectual Property I, L.P. Transmission medium and communication interfaces and methods for use therewith
US9742521B2 (en) 2014-11-20 2017-08-22 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
US9749053B2 (en) 2015-07-23 2017-08-29 At&T Intellectual Property I, L.P. Node device, repeater and methods for use therewith
US9748626B2 (en) 2015-05-14 2017-08-29 At&T Intellectual Property I, L.P. Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium
US9749013B2 (en) 2015-03-17 2017-08-29 At&T Intellectual Property I, L.P. Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium
US9762289B2 (en) 2014-10-14 2017-09-12 At&T Intellectual Property I, L.P. Method and apparatus for transmitting or receiving signals in a transportation system
US9769128B2 (en) 2015-09-28 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for encryption of communications over a network
US9768833B2 (en) 2014-09-15 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves
US9769020B2 (en) 2014-10-21 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for responding to events affecting communications in a communication network
US9780834B2 (en) 2014-10-21 2017-10-03 At&T Intellectual Property I, L.P. Method and apparatus for transmitting electromagnetic waves
US9788326B2 (en) 2012-12-05 2017-10-10 At&T Intellectual Property I, L.P. Backhaul link for distributed antenna system
US9787412B2 (en) 2015-06-25 2017-10-10 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a fundamental wave mode on a transmission medium
US9793955B2 (en) 2015-04-24 2017-10-17 At&T Intellectual Property I, Lp Passive electrical coupling device and methods for use therewith
US9793951B2 (en) 2015-07-15 2017-10-17 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9793954B2 (en) 2015-04-28 2017-10-17 At&T Intellectual Property I, L.P. Magnetic coupling device and methods for use therewith
US9800327B2 (en) 2014-11-20 2017-10-24 At&T Intellectual Property I, L.P. Apparatus for controlling operations of a communication device and methods thereof
US9820146B2 (en) 2015-06-12 2017-11-14 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9838896B1 (en) 2016-12-09 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for assessing network coverage
US9838078B2 (en) 2015-07-31 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US9847850B2 (en) 2014-10-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a mode of communication in a communication network
US9847566B2 (en) 2015-07-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a field of a signal to mitigate interference
US9853342B2 (en) 2015-07-14 2017-12-26 At&T Intellectual Property I, L.P. Dielectric transmission medium connector and methods for use therewith
US9860075B1 (en) 2016-08-26 2018-01-02 At&T Intellectual Property I, L.P. Method and communication node for broadband distribution
US9866276B2 (en) 2014-10-10 2018-01-09 At&T Intellectual Property I, L.P. Method and apparatus for arranging communication sessions in a communication system
US9866309B2 (en) 2015-06-03 2018-01-09 At&T Intellectual Property I, Lp Host node device and methods for use therewith
US9865911B2 (en) 2015-06-25 2018-01-09 At&T Intellectual Property I, L.P. Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium
US9871283B2 (en) 2015-07-23 2018-01-16 At&T Intellectual Property I, Lp Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration
US9871282B2 (en) 2015-05-14 2018-01-16 At&T Intellectual Property I, L.P. At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric
US9871558B2 (en) 2014-10-21 2018-01-16 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
US9876570B2 (en) 2015-02-20 2018-01-23 At&T Intellectual Property I, Lp Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9876264B2 (en) 2015-10-02 2018-01-23 At&T Intellectual Property I, Lp Communication system, guided wave switch and methods for use therewith
US9876605B1 (en) 2016-10-21 2018-01-23 At&T Intellectual Property I, L.P. Launcher and coupling system to support desired guided wave mode
US9882257B2 (en) 2015-07-14 2018-01-30 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9887447B2 (en) 2015-05-14 2018-02-06 At&T Intellectual Property I, L.P. Transmission medium having multiple cores and methods for use therewith
US9893795B1 (en) 2016-12-07 2018-02-13 At&T Intellectual Property I, Lp Method and repeater for broadband distribution
US9906269B2 (en) 2014-09-17 2018-02-27 At&T Intellectual Property I, L.P. Monitoring and mitigating conditions in a communication network
US9912033B2 (en) 2014-10-21 2018-03-06 At&T Intellectual Property I, Lp Guided wave coupler, coupling module and methods for use therewith
US9911020B1 (en) 2016-12-08 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for tracking via a radio frequency identification device
US9913139B2 (en) 2015-06-09 2018-03-06 At&T Intellectual Property I, L.P. Signal fingerprinting for authentication of communicating devices
US9912381B2 (en) 2015-06-03 2018-03-06 At&T Intellectual Property I, Lp Network termination and methods for use therewith
US9912027B2 (en) 2015-07-23 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US9912419B1 (en) 2016-08-24 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for managing a fault in a distributed antenna system
US9917341B2 (en) 2015-05-27 2018-03-13 At&T Intellectual Property I, L.P. Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves
US9929755B2 (en) 2015-07-14 2018-03-27 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US9927517B1 (en) 2016-12-06 2018-03-27 At&T Intellectual Property I, L.P. Apparatus and methods for sensing rainfall
US9930668B2 (en) 2013-05-31 2018-03-27 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9948333B2 (en) 2015-07-23 2018-04-17 At&T Intellectual Property I, L.P. Method and apparatus for wireless communications to mitigate interference
US9948354B2 (en) 2015-04-28 2018-04-17 At&T Intellectual Property I, L.P. Magnetic coupling device with reflective plate and methods for use therewith
US9948355B2 (en) 2014-10-21 2018-04-17 At&T Intellectual Property I, L.P. Apparatus for providing communication services and methods thereof
US9954287B2 (en) 2014-11-20 2018-04-24 At&T Intellectual Property I, L.P. Apparatus for converting wireless signals and electromagnetic waves and methods thereof
US9954286B2 (en) 2014-10-21 2018-04-24 At&T Intellectual Property I, L.P. Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9967173B2 (en) 2015-07-31 2018-05-08 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9973416B2 (en) 2014-10-02 2018-05-15 At&T Intellectual Property I, L.P. Method and apparatus that provides fault tolerance in a communication network
US9973940B1 (en) 2017-02-27 2018-05-15 At&T Intellectual Property I, L.P. Apparatus and methods for dynamic impedance matching of a guided wave launcher
US9991580B2 (en) 2016-10-21 2018-06-05 At&T Intellectual Property I, L.P. Launcher and coupling system for guided wave mode cancellation
US9997819B2 (en) 2015-06-09 2018-06-12 At&T Intellectual Property I, L.P. Transmission medium and method for facilitating propagation of electromagnetic waves via a core
US9999038B2 (en) 2013-05-31 2018-06-12 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9998870B1 (en) 2016-12-08 2018-06-12 At&T Intellectual Property I, L.P. Method and apparatus for proximity sensing
US10009067B2 (en) 2014-12-04 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for configuring a communication interface
US10009063B2 (en) 2015-09-16 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an out-of-band reference signal
US10020844B2 (en) 2016-12-06 2018-07-10 T&T Intellectual Property I, L.P. Method and apparatus for broadcast communication via guided waves
US10027398B2 (en) 2015-06-11 2018-07-17 At&T Intellectual Property I, Lp Repeater and methods for use therewith
US10027397B2 (en) 2016-12-07 2018-07-17 At&T Intellectual Property I, L.P. Distributed antenna system and methods for use therewith
US10033108B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave having a wave mode that mitigates interference
US10044409B2 (en) 2015-07-14 2018-08-07 At&T Intellectual Property I, L.P. Transmission medium and methods for use therewith
US10069535B2 (en) 2016-12-08 2018-09-04 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves having a certain electric field structure
US10079661B2 (en) 2015-09-16 2018-09-18 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having a clock reference
US10090594B2 (en) 2016-11-23 2018-10-02 At&T Intellectual Property I, L.P. Antenna system having structural configurations for assembly
US10090606B2 (en) 2015-07-15 2018-10-02 At&T Intellectual Property I, L.P. Antenna system with dielectric array and methods for use therewith
US10103801B2 (en) 2015-06-03 2018-10-16 At&T Intellectual Property I, L.P. Host node device and methods for use therewith
US10103422B2 (en) 2016-12-08 2018-10-16 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10136434B2 (en) 2015-09-16 2018-11-20 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an ultra-wideband control channel
US10135146B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via circuits
US10135147B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via an antenna
US10135145B2 (en) 2016-12-06 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave along a transmission medium
US10139820B2 (en) 2016-12-07 2018-11-27 At&T Intellectual Property I, L.P. Method and apparatus for deploying equipment of a communication system
US10144036B2 (en) 2015-01-30 2018-12-04 At&T Intellectual Property I, L.P. Method and apparatus for mitigating interference affecting a propagation of electromagnetic waves guided by a transmission medium
US10148016B2 (en) 2015-07-14 2018-12-04 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array
US10170840B2 (en) 2015-07-14 2019-01-01 At&T Intellectual Property I, L.P. Apparatus and methods for sending or receiving electromagnetic signals
US10168695B2 (en) 2016-12-07 2019-01-01 At&T Intellectual Property I, L.P. Method and apparatus for controlling an unmanned aircraft
US10178445B2 (en) 2016-11-23 2019-01-08 At&T Intellectual Property I, L.P. Methods, devices, and systems for load balancing between a plurality of waveguides
US10205655B2 (en) 2015-07-14 2019-02-12 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array and multiple communication paths
US10225025B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Method and apparatus for detecting a fault in a communication system
US10224634B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Methods and apparatus for adjusting an operational characteristic of an antenna
US10243784B2 (en) 2014-11-20 2019-03-26 At&T Intellectual Property I, L.P. System for generating topology information and methods thereof
US10243270B2 (en) 2016-12-07 2019-03-26 At&T Intellectual Property I, L.P. Beam adaptive multi-feed dielectric antenna system and methods for use therewith
US10264586B2 (en) 2016-12-09 2019-04-16 At&T Mobility Ii Llc Cloud-based packet controller and methods for use therewith
US10291311B2 (en) 2016-09-09 2019-05-14 At&T Intellectual Property I, L.P. Method and apparatus for mitigating a fault in a distributed antenna system
US10291334B2 (en) 2016-11-03 2019-05-14 At&T Intellectual Property I, L.P. System for detecting a fault in a communication system
US10298293B2 (en) 2017-03-13 2019-05-21 At&T Intellectual Property I, L.P. Apparatus of communication utilizing wireless network devices
US10305190B2 (en) 2016-12-01 2019-05-28 At&T Intellectual Property I, L.P. Reflecting dielectric antenna system and methods for use therewith
US10312567B2 (en) 2016-10-26 2019-06-04 At&T Intellectual Property I, L.P. Launcher with planar strip antenna and methods for use therewith
US10320586B2 (en) 2015-07-14 2019-06-11 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an insulated transmission medium
US10326689B2 (en) 2016-12-08 2019-06-18 At&T Intellectual Property I, L.P. Method and system for providing alternative communication paths
US10326494B2 (en) 2016-12-06 2019-06-18 At&T Intellectual Property I, L.P. Apparatus for measurement de-embedding and methods for use therewith
US10340603B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Antenna system having shielded structural configurations for assembly
US10340983B2 (en) 2016-12-09 2019-07-02 At&T Intellectual Property I, L.P. Method and apparatus for surveying remote sites via guided wave communications
US10340573B2 (en) 2016-10-26 2019-07-02 At&T Intellectual Property I, L.P. Launcher with cylindrical coupling device and methods for use therewith
US10340600B2 (en) 2016-10-18 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via plural waveguide systems
US10341142B2 (en) 2015-07-14 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an uninsulated conductor
US10340601B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Multi-antenna system and methods for use therewith
US10355367B2 (en) 2015-10-16 2019-07-16 At&T Intellectual Property I, L.P. Antenna structure for exchanging wireless signals
US10361489B2 (en) 2016-12-01 2019-07-23 At&T Intellectual Property I, L.P. Dielectric dish antenna system and methods for use therewith
US10359749B2 (en) 2016-12-07 2019-07-23 At&T Intellectual Property I, L.P. Method and apparatus for utilities management via guided wave communication
US10374316B2 (en) 2016-10-21 2019-08-06 At&T Intellectual Property I, L.P. System and dielectric antenna with non-uniform dielectric
US10382976B2 (en) 2016-12-06 2019-08-13 At&T Intellectual Property I, L.P. Method and apparatus for managing wireless communications based on communication paths and network device positions
US10389037B2 (en) 2016-12-08 2019-08-20 At&T Intellectual Property I, L.P. Apparatus and methods for selecting sections of an antenna array and use therewith
US10389029B2 (en) 2016-12-07 2019-08-20 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system with core selection and methods for use therewith
US10411356B2 (en) 2016-12-08 2019-09-10 At&T Intellectual Property I, L.P. Apparatus and methods for selectively targeting communication devices with an antenna array
US10439675B2 (en) 2016-12-06 2019-10-08 At&T Intellectual Property I, L.P. Method and apparatus for repeating guided wave communication signals
US10446936B2 (en) 2016-12-07 2019-10-15 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system and methods for use therewith
US10498044B2 (en) 2016-11-03 2019-12-03 At&T Intellectual Property I, L.P. Apparatus for configuring a surface of an antenna
US10530505B2 (en) 2016-12-08 2020-01-07 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves along a transmission medium
US10535928B2 (en) 2016-11-23 2020-01-14 At&T Intellectual Property I, L.P. Antenna system and methods for use therewith
US10547348B2 (en) 2016-12-07 2020-01-28 At&T Intellectual Property I, L.P. Method and apparatus for switching transmission mediums in a communication system
US10601494B2 (en) 2016-12-08 2020-03-24 At&T Intellectual Property I, L.P. Dual-band communication device and method for use therewith
US10637149B2 (en) 2016-12-06 2020-04-28 At&T Intellectual Property I, L.P. Injection molded dielectric antenna and methods for use therewith
US10650940B2 (en) 2015-05-15 2020-05-12 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US10694379B2 (en) 2016-12-06 2020-06-23 At&T Intellectual Property I, L.P. Waveguide system with device-based authentication and methods for use therewith
US10727599B2 (en) 2016-12-06 2020-07-28 At&T Intellectual Property I, L.P. Launcher with slot antenna and methods for use therewith
US10755542B2 (en) 2016-12-06 2020-08-25 At&T Intellectual Property I, L.P. Method and apparatus for surveillance via guided wave communication
US10777873B2 (en) 2016-12-08 2020-09-15 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10797781B2 (en) 2015-06-03 2020-10-06 At&T Intellectual Property I, L.P. Client node device and methods for use therewith
US10811767B2 (en) 2016-10-21 2020-10-20 At&T Intellectual Property I, L.P. System and dielectric antenna with convex dielectric radome
US10819035B2 (en) 2016-12-06 2020-10-27 At&T Intellectual Property I, L.P. Launcher with helical antenna and methods for use therewith
US10916969B2 (en) 2016-12-08 2021-02-09 At&T Intellectual Property I, L.P. Method and apparatus for providing power using an inductive coupling
US10938108B2 (en) 2016-12-08 2021-03-02 At&T Intellectual Property I, L.P. Frequency selective multi-feed dielectric antenna system and methods for use therewith
US11032819B2 (en) 2016-09-15 2021-06-08 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having a control channel reference signal

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1010124B (en) * 1955-07-08 1957-06-13 Telefunken Gmbh Directional antenna

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1010124B (en) * 1955-07-08 1957-06-13 Telefunken Gmbh Directional antenna

Cited By (189)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3388401A (en) * 1965-06-30 1968-06-11 Andrew Antenna Company Ltd Parabolic antenna with low-loss flexible radome
FR2025593A1 (en) * 1968-12-07 1970-09-11 Telefunken Gmbh
US4282530A (en) * 1979-12-26 1981-08-04 Bell Telephone Laboratories, Incorporated Cylindrical paraboloid weather cover for a horn reflector antenna with wave absorbing means
US4786915A (en) * 1985-04-26 1988-11-22 British Telecommunications Public Limited Company Attenuation of microwave signals
US4860021A (en) * 1985-06-28 1989-08-22 Hitachi, Ltd. Parabolic antenna
WO1988007268A1 (en) * 1987-02-24 1988-09-22 Schudel Conrad R Monocoque antenna structure
US4804972A (en) * 1987-02-24 1989-02-14 Schudel Conrad R Monocoque antenna structure
US4918459A (en) * 1989-02-27 1990-04-17 Teso John S De Apparatus for protecting antennas
US5451972A (en) * 1994-05-12 1995-09-19 Paul Dean Franklin Satellite antenna dish cover
US5528253A (en) * 1994-05-12 1996-06-18 Paul Dean Franklin Satellite dish utility cover
USD387356S (en) * 1996-09-13 1997-12-09 W. L. Gore & Associates, Inc. Satellite dish cover
US5815125A (en) * 1997-02-05 1998-09-29 W. L. Gore & Associates, Inc. Satellite dish cover
US6072440A (en) * 1997-05-02 2000-06-06 Bowman; Francis E. Satellite receiving dish feed horn or LNB cover
US5940047A (en) * 1998-02-25 1999-08-17 Pfnister; David Satellite antenna cover device
US6933908B1 (en) 2004-11-10 2005-08-23 Epher T. Mirabueno Protective cover for satellite dishes
US7330160B1 (en) * 2006-08-18 2008-02-12 The Regents Of The University Of California Support apparatus for a reflector
US20080042920A1 (en) * 2006-08-18 2008-02-21 The Regents Of The University Of California Support apparatus for a reflector
US20120019430A1 (en) * 2009-04-02 2012-01-26 Astrium Sas Radio antenna including improved means of rigidification
US8077113B2 (en) * 2009-06-12 2011-12-13 Andrew Llc Radome and shroud enclosure for reflector antenna
US20100315307A1 (en) * 2009-06-12 2010-12-16 Andrew Llc Radome and Shroud Enclosure for Reflector Antenna
US8519312B1 (en) * 2010-01-29 2013-08-27 Raytheon Company Missile with shroud that separates in flight
US20120248236A1 (en) * 2011-03-30 2012-10-04 Raytheon Company Guided munitions including interlocking dome covers and methods for equipping guided munitions with the same
US8497456B2 (en) * 2011-03-30 2013-07-30 Raytheon Company Guided munitions including interlocking dome covers and methods for equipping guided munitions with the same
US9050692B2 (en) * 2011-10-24 2015-06-09 Commscope Technologies Llc Method and apparatus for radome and reflector dish interconnection
CN103875123A (en) * 2011-10-24 2014-06-18 安德鲁有限责任公司 Method and apparatus for radome and reflector dish interconnection
US20130099991A1 (en) * 2011-10-24 2013-04-25 Andew Llc Method and Apparatus for Radome and Reflector Dish Interconnection
CN103875123B (en) * 2011-10-24 2015-12-09 康普技术有限责任公司 For the method and apparatus of radome and reflector disks cross tie part
US9484617B2 (en) * 2012-05-08 2016-11-01 Nec Corporation Antenna device and method for attaching the same
US20150138022A1 (en) * 2012-05-08 2015-05-21 Nec Corporation Antenna device and method for attaching the same
CN104685712B (en) * 2012-09-24 2017-01-18 上海贝尔股份有限公司 Joining device for fastening a radome onto an antenna reflector
EP2712019A1 (en) * 2012-09-24 2014-03-26 Alcatel- Lucent Shanghai Bell Co., Ltd Device for attaching a radome to a parabolic reflector of an antenna
US9768489B2 (en) 2012-09-24 2017-09-19 Alcatel Lucent Joining device for fastening a radome onto an antenna reflector
US9788326B2 (en) 2012-12-05 2017-10-10 At&T Intellectual Property I, L.P. Backhaul link for distributed antenna system
US9930668B2 (en) 2013-05-31 2018-03-27 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9999038B2 (en) 2013-05-31 2018-06-12 At&T Intellectual Property I, L.P. Remote distributed antenna system
US10091787B2 (en) 2013-05-31 2018-10-02 At&T Intellectual Property I, L.P. Remote distributed antenna system
US10051630B2 (en) 2013-05-31 2018-08-14 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9674711B2 (en) 2013-11-06 2017-06-06 At&T Intellectual Property I, L.P. Surface-wave communications and methods thereof
US20170133755A1 (en) * 2014-03-07 2017-05-11 Commscope Technologies Llc Radome - reflector assembly mechanism
US10490888B2 (en) * 2014-03-07 2019-11-26 Commscope Technologies Llc Radome-reflector assembly mechanism
US9768833B2 (en) 2014-09-15 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves
US9906269B2 (en) 2014-09-17 2018-02-27 At&T Intellectual Property I, L.P. Monitoring and mitigating conditions in a communication network
US10063280B2 (en) 2014-09-17 2018-08-28 At&T Intellectual Property I, L.P. Monitoring and mitigating conditions in a communication network
US9973416B2 (en) 2014-10-02 2018-05-15 At&T Intellectual Property I, L.P. Method and apparatus that provides fault tolerance in a communication network
US9685992B2 (en) 2014-10-03 2017-06-20 At&T Intellectual Property I, L.P. Circuit panel network and methods thereof
US9866276B2 (en) 2014-10-10 2018-01-09 At&T Intellectual Property I, L.P. Method and apparatus for arranging communication sessions in a communication system
US9762289B2 (en) 2014-10-14 2017-09-12 At&T Intellectual Property I, L.P. Method and apparatus for transmitting or receiving signals in a transportation system
US9847850B2 (en) 2014-10-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a mode of communication in a communication network
US9780834B2 (en) 2014-10-21 2017-10-03 At&T Intellectual Property I, L.P. Method and apparatus for transmitting electromagnetic waves
US9960808B2 (en) 2014-10-21 2018-05-01 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
US9948355B2 (en) 2014-10-21 2018-04-17 At&T Intellectual Property I, L.P. Apparatus for providing communication services and methods thereof
US9954286B2 (en) 2014-10-21 2018-04-24 At&T Intellectual Property I, L.P. Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9769020B2 (en) 2014-10-21 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for responding to events affecting communications in a communication network
US9705610B2 (en) 2014-10-21 2017-07-11 At&T Intellectual Property I, L.P. Transmission device with impairment compensation and methods for use therewith
US9912033B2 (en) 2014-10-21 2018-03-06 At&T Intellectual Property I, Lp Guided wave coupler, coupling module and methods for use therewith
US9876587B2 (en) 2014-10-21 2018-01-23 At&T Intellectual Property I, L.P. Transmission device with impairment compensation and methods for use therewith
US9871558B2 (en) 2014-10-21 2018-01-16 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
US10243784B2 (en) 2014-11-20 2019-03-26 At&T Intellectual Property I, L.P. System for generating topology information and methods thereof
US9800327B2 (en) 2014-11-20 2017-10-24 At&T Intellectual Property I, L.P. Apparatus for controlling operations of a communication device and methods thereof
US9742521B2 (en) 2014-11-20 2017-08-22 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
US9954287B2 (en) 2014-11-20 2018-04-24 At&T Intellectual Property I, L.P. Apparatus for converting wireless signals and electromagnetic waves and methods thereof
US9749083B2 (en) 2014-11-20 2017-08-29 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
US10009067B2 (en) 2014-12-04 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for configuring a communication interface
US9742462B2 (en) 2014-12-04 2017-08-22 At&T Intellectual Property I, L.P. Transmission medium and communication interfaces and methods for use therewith
US10144036B2 (en) 2015-01-30 2018-12-04 At&T Intellectual Property I, L.P. Method and apparatus for mitigating interference affecting a propagation of electromagnetic waves guided by a transmission medium
US9876570B2 (en) 2015-02-20 2018-01-23 At&T Intellectual Property I, Lp Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9876571B2 (en) 2015-02-20 2018-01-23 At&T Intellectual Property I, Lp Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9749013B2 (en) 2015-03-17 2017-08-29 At&T Intellectual Property I, L.P. Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium
US9705561B2 (en) 2015-04-24 2017-07-11 At&T Intellectual Property I, L.P. Directional coupling device and methods for use therewith
US9831912B2 (en) 2015-04-24 2017-11-28 At&T Intellectual Property I, Lp Directional coupling device and methods for use therewith
US9793955B2 (en) 2015-04-24 2017-10-17 At&T Intellectual Property I, Lp Passive electrical coupling device and methods for use therewith
US10224981B2 (en) 2015-04-24 2019-03-05 At&T Intellectual Property I, Lp Passive electrical coupling device and methods for use therewith
US9948354B2 (en) 2015-04-28 2018-04-17 At&T Intellectual Property I, L.P. Magnetic coupling device with reflective plate and methods for use therewith
US9793954B2 (en) 2015-04-28 2017-10-17 At&T Intellectual Property I, L.P. Magnetic coupling device and methods for use therewith
US9871282B2 (en) 2015-05-14 2018-01-16 At&T Intellectual Property I, L.P. At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric
US9748626B2 (en) 2015-05-14 2017-08-29 At&T Intellectual Property I, L.P. Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium
US9887447B2 (en) 2015-05-14 2018-02-06 At&T Intellectual Property I, L.P. Transmission medium having multiple cores and methods for use therewith
US10650940B2 (en) 2015-05-15 2020-05-12 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US9917341B2 (en) 2015-05-27 2018-03-13 At&T Intellectual Property I, L.P. Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves
US9935703B2 (en) 2015-06-03 2018-04-03 At&T Intellectual Property I, L.P. Host node device and methods for use therewith
US9866309B2 (en) 2015-06-03 2018-01-09 At&T Intellectual Property I, Lp Host node device and methods for use therewith
US10812174B2 (en) 2015-06-03 2020-10-20 At&T Intellectual Property I, L.P. Client node device and methods for use therewith
US10797781B2 (en) 2015-06-03 2020-10-06 At&T Intellectual Property I, L.P. Client node device and methods for use therewith
US10050697B2 (en) 2015-06-03 2018-08-14 At&T Intellectual Property I, L.P. Host node device and methods for use therewith
US9967002B2 (en) 2015-06-03 2018-05-08 At&T Intellectual I, Lp Network termination and methods for use therewith
US10103801B2 (en) 2015-06-03 2018-10-16 At&T Intellectual Property I, L.P. Host node device and methods for use therewith
US9912382B2 (en) 2015-06-03 2018-03-06 At&T Intellectual Property I, Lp Network termination and methods for use therewith
US9912381B2 (en) 2015-06-03 2018-03-06 At&T Intellectual Property I, Lp Network termination and methods for use therewith
US9913139B2 (en) 2015-06-09 2018-03-06 At&T Intellectual Property I, L.P. Signal fingerprinting for authentication of communicating devices
US9997819B2 (en) 2015-06-09 2018-06-12 At&T Intellectual Property I, L.P. Transmission medium and method for facilitating propagation of electromagnetic waves via a core
US10142010B2 (en) 2015-06-11 2018-11-27 At&T Intellectual Property I, L.P. Repeater and methods for use therewith
US10027398B2 (en) 2015-06-11 2018-07-17 At&T Intellectual Property I, Lp Repeater and methods for use therewith
US9820146B2 (en) 2015-06-12 2017-11-14 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9667317B2 (en) 2015-06-15 2017-05-30 At&T Intellectual Property I, L.P. Method and apparatus for providing security using network traffic adjustments
US9865911B2 (en) 2015-06-25 2018-01-09 At&T Intellectual Property I, L.P. Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium
US9787412B2 (en) 2015-06-25 2017-10-10 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a fundamental wave mode on a transmission medium
US9640850B2 (en) 2015-06-25 2017-05-02 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium
US10069185B2 (en) 2015-06-25 2018-09-04 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium
US10205655B2 (en) 2015-07-14 2019-02-12 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array and multiple communication paths
US9847566B2 (en) 2015-07-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a field of a signal to mitigate interference
US10320586B2 (en) 2015-07-14 2019-06-11 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an insulated transmission medium
US9853342B2 (en) 2015-07-14 2017-12-26 At&T Intellectual Property I, L.P. Dielectric transmission medium connector and methods for use therewith
US10341142B2 (en) 2015-07-14 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an uninsulated conductor
US10148016B2 (en) 2015-07-14 2018-12-04 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array
US10170840B2 (en) 2015-07-14 2019-01-01 At&T Intellectual Property I, L.P. Apparatus and methods for sending or receiving electromagnetic signals
US10044409B2 (en) 2015-07-14 2018-08-07 At&T Intellectual Property I, L.P. Transmission medium and methods for use therewith
US10033108B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave having a wave mode that mitigates interference
US9929755B2 (en) 2015-07-14 2018-03-27 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US9882257B2 (en) 2015-07-14 2018-01-30 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9722318B2 (en) 2015-07-14 2017-08-01 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US9793951B2 (en) 2015-07-15 2017-10-17 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9608740B2 (en) 2015-07-15 2017-03-28 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US10090606B2 (en) 2015-07-15 2018-10-02 At&T Intellectual Property I, L.P. Antenna system with dielectric array and methods for use therewith
US9749053B2 (en) 2015-07-23 2017-08-29 At&T Intellectual Property I, L.P. Node device, repeater and methods for use therewith
US9871283B2 (en) 2015-07-23 2018-01-16 At&T Intellectual Property I, Lp Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration
US9912027B2 (en) 2015-07-23 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US9948333B2 (en) 2015-07-23 2018-04-17 At&T Intellectual Property I, L.P. Method and apparatus for wireless communications to mitigate interference
US9806818B2 (en) 2015-07-23 2017-10-31 At&T Intellectual Property I, Lp Node device, repeater and methods for use therewith
US9967173B2 (en) 2015-07-31 2018-05-08 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9735833B2 (en) 2015-07-31 2017-08-15 At&T Intellectual Property I, L.P. Method and apparatus for communications management in a neighborhood network
US9838078B2 (en) 2015-07-31 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US10136434B2 (en) 2015-09-16 2018-11-20 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an ultra-wideband control channel
US10079661B2 (en) 2015-09-16 2018-09-18 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having a clock reference
US10009063B2 (en) 2015-09-16 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an out-of-band reference signal
US9769128B2 (en) 2015-09-28 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for encryption of communications over a network
US9729197B2 (en) 2015-10-01 2017-08-08 At&T Intellectual Property I, L.P. Method and apparatus for communicating network management traffic over a network
US9876264B2 (en) 2015-10-02 2018-01-23 At&T Intellectual Property I, Lp Communication system, guided wave switch and methods for use therewith
US10355367B2 (en) 2015-10-16 2019-07-16 At&T Intellectual Property I, L.P. Antenna structure for exchanging wireless signals
US9912419B1 (en) 2016-08-24 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for managing a fault in a distributed antenna system
US9860075B1 (en) 2016-08-26 2018-01-02 At&T Intellectual Property I, L.P. Method and communication node for broadband distribution
US10291311B2 (en) 2016-09-09 2019-05-14 At&T Intellectual Property I, L.P. Method and apparatus for mitigating a fault in a distributed antenna system
US11032819B2 (en) 2016-09-15 2021-06-08 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having a control channel reference signal
US10135146B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via circuits
US10135147B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via an antenna
US10340600B2 (en) 2016-10-18 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via plural waveguide systems
US10374316B2 (en) 2016-10-21 2019-08-06 At&T Intellectual Property I, L.P. System and dielectric antenna with non-uniform dielectric
US9876605B1 (en) 2016-10-21 2018-01-23 At&T Intellectual Property I, L.P. Launcher and coupling system to support desired guided wave mode
US10811767B2 (en) 2016-10-21 2020-10-20 At&T Intellectual Property I, L.P. System and dielectric antenna with convex dielectric radome
US9991580B2 (en) 2016-10-21 2018-06-05 At&T Intellectual Property I, L.P. Launcher and coupling system for guided wave mode cancellation
US10340573B2 (en) 2016-10-26 2019-07-02 At&T Intellectual Property I, L.P. Launcher with cylindrical coupling device and methods for use therewith
US10312567B2 (en) 2016-10-26 2019-06-04 At&T Intellectual Property I, L.P. Launcher with planar strip antenna and methods for use therewith
US10498044B2 (en) 2016-11-03 2019-12-03 At&T Intellectual Property I, L.P. Apparatus for configuring a surface of an antenna
US10291334B2 (en) 2016-11-03 2019-05-14 At&T Intellectual Property I, L.P. System for detecting a fault in a communication system
US10225025B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Method and apparatus for detecting a fault in a communication system
US10224634B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Methods and apparatus for adjusting an operational characteristic of an antenna
US10340601B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Multi-antenna system and methods for use therewith
US10535928B2 (en) 2016-11-23 2020-01-14 At&T Intellectual Property I, L.P. Antenna system and methods for use therewith
US10090594B2 (en) 2016-11-23 2018-10-02 At&T Intellectual Property I, L.P. Antenna system having structural configurations for assembly
US10340603B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Antenna system having shielded structural configurations for assembly
US10178445B2 (en) 2016-11-23 2019-01-08 At&T Intellectual Property I, L.P. Methods, devices, and systems for load balancing between a plurality of waveguides
US10305190B2 (en) 2016-12-01 2019-05-28 At&T Intellectual Property I, L.P. Reflecting dielectric antenna system and methods for use therewith
US10361489B2 (en) 2016-12-01 2019-07-23 At&T Intellectual Property I, L.P. Dielectric dish antenna system and methods for use therewith
US10135145B2 (en) 2016-12-06 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave along a transmission medium
US10020844B2 (en) 2016-12-06 2018-07-10 T&T Intellectual Property I, L.P. Method and apparatus for broadcast communication via guided waves
US10326494B2 (en) 2016-12-06 2019-06-18 At&T Intellectual Property I, L.P. Apparatus for measurement de-embedding and methods for use therewith
US10819035B2 (en) 2016-12-06 2020-10-27 At&T Intellectual Property I, L.P. Launcher with helical antenna and methods for use therewith
US10755542B2 (en) 2016-12-06 2020-08-25 At&T Intellectual Property I, L.P. Method and apparatus for surveillance via guided wave communication
US10727599B2 (en) 2016-12-06 2020-07-28 At&T Intellectual Property I, L.P. Launcher with slot antenna and methods for use therewith
US10694379B2 (en) 2016-12-06 2020-06-23 At&T Intellectual Property I, L.P. Waveguide system with device-based authentication and methods for use therewith
US9927517B1 (en) 2016-12-06 2018-03-27 At&T Intellectual Property I, L.P. Apparatus and methods for sensing rainfall
US10637149B2 (en) 2016-12-06 2020-04-28 At&T Intellectual Property I, L.P. Injection molded dielectric antenna and methods for use therewith
US10439675B2 (en) 2016-12-06 2019-10-08 At&T Intellectual Property I, L.P. Method and apparatus for repeating guided wave communication signals
US10382976B2 (en) 2016-12-06 2019-08-13 At&T Intellectual Property I, L.P. Method and apparatus for managing wireless communications based on communication paths and network device positions
US10139820B2 (en) 2016-12-07 2018-11-27 At&T Intellectual Property I, L.P. Method and apparatus for deploying equipment of a communication system
US9893795B1 (en) 2016-12-07 2018-02-13 At&T Intellectual Property I, Lp Method and repeater for broadband distribution
US10027397B2 (en) 2016-12-07 2018-07-17 At&T Intellectual Property I, L.P. Distributed antenna system and methods for use therewith
US10389029B2 (en) 2016-12-07 2019-08-20 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system with core selection and methods for use therewith
US10359749B2 (en) 2016-12-07 2019-07-23 At&T Intellectual Property I, L.P. Method and apparatus for utilities management via guided wave communication
US10243270B2 (en) 2016-12-07 2019-03-26 At&T Intellectual Property I, L.P. Beam adaptive multi-feed dielectric antenna system and methods for use therewith
US10446936B2 (en) 2016-12-07 2019-10-15 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system and methods for use therewith
US10168695B2 (en) 2016-12-07 2019-01-01 At&T Intellectual Property I, L.P. Method and apparatus for controlling an unmanned aircraft
US10547348B2 (en) 2016-12-07 2020-01-28 At&T Intellectual Property I, L.P. Method and apparatus for switching transmission mediums in a communication system
US9998870B1 (en) 2016-12-08 2018-06-12 At&T Intellectual Property I, L.P. Method and apparatus for proximity sensing
US10411356B2 (en) 2016-12-08 2019-09-10 At&T Intellectual Property I, L.P. Apparatus and methods for selectively targeting communication devices with an antenna array
US10916969B2 (en) 2016-12-08 2021-02-09 At&T Intellectual Property I, L.P. Method and apparatus for providing power using an inductive coupling
US10601494B2 (en) 2016-12-08 2020-03-24 At&T Intellectual Property I, L.P. Dual-band communication device and method for use therewith
US10777873B2 (en) 2016-12-08 2020-09-15 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10069535B2 (en) 2016-12-08 2018-09-04 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves having a certain electric field structure
US9911020B1 (en) 2016-12-08 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for tracking via a radio frequency identification device
US10938108B2 (en) 2016-12-08 2021-03-02 At&T Intellectual Property I, L.P. Frequency selective multi-feed dielectric antenna system and methods for use therewith
US10326689B2 (en) 2016-12-08 2019-06-18 At&T Intellectual Property I, L.P. Method and system for providing alternative communication paths
US10103422B2 (en) 2016-12-08 2018-10-16 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10530505B2 (en) 2016-12-08 2020-01-07 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves along a transmission medium
US10389037B2 (en) 2016-12-08 2019-08-20 At&T Intellectual Property I, L.P. Apparatus and methods for selecting sections of an antenna array and use therewith
US10264586B2 (en) 2016-12-09 2019-04-16 At&T Mobility Ii Llc Cloud-based packet controller and methods for use therewith
US9838896B1 (en) 2016-12-09 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for assessing network coverage
US10340983B2 (en) 2016-12-09 2019-07-02 At&T Intellectual Property I, L.P. Method and apparatus for surveying remote sites via guided wave communications
US9973940B1 (en) 2017-02-27 2018-05-15 At&T Intellectual Property I, L.P. Apparatus and methods for dynamic impedance matching of a guided wave launcher
US10298293B2 (en) 2017-03-13 2019-05-21 At&T Intellectual Property I, L.P. Apparatus of communication utilizing wireless network devices

Similar Documents

Publication Publication Date Title
US3351947A (en) Shrouded parabolic antenna structure
US6856295B2 (en) Attenuation apparatus for minimizing reflections of electromagnetic energy from an antenna disposed within a radome
US4783666A (en) Protective shield for an antenna array
US3296685A (en) Method of making dielectric foam antenna
US4282530A (en) Cylindrical paraboloid weather cover for a horn reflector antenna with wave absorbing means
US3056131A (en) Inflatable antenna
US3832717A (en) Dish reflector for a high gain antenna
US3234550A (en) Thin skinned parabolic reflector with radial ribs
US3733609A (en) Shrouded offset parabolic reflector antenna
US3176301A (en) Plural horns at focus of parabolic reflector with shields to reduce spillover and side lobes
US3133284A (en) Paraboloidal antenna with compensating elements to reduce back radiation into feed
US3810187A (en) Capped antenna of the offset cassegrainian type
US5844527A (en) Radar antenna
US3550142A (en) Horn reflector antenna
US3696436A (en) Cassegrain antenna with absorber to reduce back radiation
GB2120858A (en) Radome-covered reflector antennas
US2729816A (en) Lens antenna
US3706999A (en) Cassegraninian antenna having limited spillover energy
EP3227958B1 (en) Antenna radome with absorbers
JP2002353723A (en) Parabolic antenna with radome
EP0452077A1 (en) Antenna arrangements
US3569975A (en) Phase pattern correction for transmitter having a radome
US3167776A (en) Dielectric foam antenna
JPS6138882B2 (en)
GB2071423A (en) Dual refelctor antenna