Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3131763 A
Publication typeGrant
Publication date5 May 1964
Filing date30 Dec 1959
Priority date30 Dec 1959
Publication numberUS 3131763 A, US 3131763A, US-A-3131763, US3131763 A, US3131763A
InventorsBednarski Valery N, Kunetka Robert E, Towell Billy H, Woodward Charles D
Original AssigneeTexaco Inc
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Electrical borehole heater
US 3131763 A
Abstract  available in
Images(4)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

May 5, 1954 R. E. KU|-|r-;TK.1=\ ETAL ELECTRICAL BoREHoLE HEATER 4 Sheets-Sheet 1 Filed Deo. 5o, 1959 May 5, 1964 R. E. KUNETKA ETAL ELECTRICAL BoREHoLE HEATER 4 Sheets-Sheet 2 Filed Dec. 30, 1959 N.. .wwwsmwww s QQXWT 1%/ JZ/,d

MF/Tl n@ May 5, 1964 Filed Dec. 30, 1959 R. E. KUNETKA ETAL ELECTRICAL BOREHOLE HEATER 4 SheP'cS-Sheekl 3 May 5, 1964 R. E. KUNETKA ETAL 3,131,763

ELECTRICAL BOREHOLE HEATER 4 Sheets-Sheet 4 Filed Dec. '50, 1959 United States Patent O 3,131,763 ELECTRICAL BBREHLE HEATER Robert E. Kunetha, Houston, Valery N. Bednarsiri, Beilaire, and Billy H. Terrell and Charles D. Woodward,

Houston, Tex., assigner-s to rlexaco lne., New York,

FLY., a corporation of eiaware Filed Dec. 3i), i959, Ser. N 862,876 6 Claims. (Ci. l @-66) This invention relates to the treatment of underground formations and, more particularly, this invention relates to a heater suitable for use in boreholes.

Various techniques have been proposed for the recovery of petroleum from underground formations. One of the techniques involves in situ combustion. In this technique, as practiced in secondary recovery operations, the .petroleum producing .formation in the vicinity of a borehole or injection well is heated to a high temperature, for example 1000c F., and oxidizing gas, such as air, is supplied to the underground formation. The combustion gases produced around the borehole migrate through the formation to an output well or wells leading from n e formation from which a petroleum product is removed.

In accordance with this invention `an improved electrical heater is provided for initiating combustion of the hydrocarbon material in the subsurface formation, which is of a simple, rugged construction capable of withstanding greater thermal shock `due to rapid temperature changes than can prior art electrical borehole heaters, and can operate at higher temperatures for longer periods of time. Heat from the heater is introduced into the borehole at a relatively rapid rate until there exists a high temperature zone around the borehole suiiicient in extent 4to sustain the in situ combustion process.

The heater, in addition to being useful in secondary recovery operations, may also be used for the carbonization of the area around the well as a means of making it preferentially wettable `to oil and thereby to improve permeability. Furthermore, the Iheater may lbe used for the removal of moisture in subsurface formations in the vicinity of the well bore and for any other application where a concentrated high temperature is desired. The heater of the present invention comprises an electrically resistive wire wound in the form of a helix threaded through annular insulators carried by an elongated supporting structure.

`For a better understanding of the invention, reference may be had -to the accompanying drawing in which:

PIG. l is a vertical sectional view through a portion of a borehole traversing subsurface formations showing therein the general arrangement of the apparatus used in accordance with this invention,

FlGS. 2, 2a, 2b, 2c and 2d illustrate in more detail the apparatus shown in FIG. l,

FIG. 3 illustrates the electrical circuitry used in the apparatus of this invention,

FiG. 4 illustrates the heater element supporting frame of the apparatus of the invention,

FG. 5 is a cross-sectional View of the apparatus at 5 5 of FIG. 2b,

FIG. 6 is a cross-sectional view of the apparatus at 6 5 of FG. 2b,

FG. 7 is a cross-sectional lview of the apparatus taken at 7-7 of FIG. 2b, and

FIG. 8 is a cross sectional view of the yapparatus taken at y8 8 of FiG. 2c.

Referring to the drawing wherein like reference numerals refer to similar elements illustrated in the various figures, there is shown in FIG. l a borehole 10 traversing a producing formation l2. The upper portion of the bore- 3,131,763 Patented May 5, 1964 ice hole l0 is lined with a casing lli having La closed casing or braden head i6 yat the upper end thereof.

The well heating system or electrical borehole heater of the present invention which is suitable for use to heat a subsurface formation, such as formation l2, in the Vicinity of a borehole comprises `a heater housing 18 which includes a thin sheath `2% having a 41/2" outside diameter and a suitable length depending upon reservoir thickness, for example, l5 feet, a bottom plug 22 attached to the sheath 20 so as to form a seal therewith and a heater head 24 attached to the upper end of the sheath 2Q, a power cable 26 which is connected to a pair of heater elements 149 and 142 disposed within the sheath 20, temperature signal cable 28 which contains seven copper conductors for transmitting electrical signals indicative of temperature variations from four thermocouples 29, Si), 3l and 33 and a thermistor v.76 to the earths surface through suitable openings in the casing head 16, and a protective cable tubing 32 attached at its lower end to the heater head 24 and at its upper end to a cable cross-over 34 having an intake structure for receiving `the cables 26 and 28 so as to introduce these cables into the protective tubing 32. The cable cross-over 34, protective cable tubing 32, and the heater housing l are supported Iin the borehole by well tubing 35 having a pup-joint 33 at the lower end thereof, which tubing is suspended from the casing head .16. The power cable 25 and the signal cable 2S are supported in the well by a plurality of ties 2.1 made of suitable banding material attached to the well tubing 36 at longitudinally `spaced points. Connected to the upper end `of the Well tubing 36, preferably through a valve 39, is a gauge 4u yfor indicating the pressure in the borehole 1%. A pipe 4-2 having a valve 44 is connected to the upper portion of the casing 1d to introduce an oxidizing gas, for example, air into the borehole. The heater housing l has a heating section 27 located in the lower portion thereof and a heat baille section 23 located in the upper portion thereof. The four therrnocouples 29, 3d, 3l and 33` are disposed in the heater housing 13 Iat longitudinally spaced apart points.

As shown in more detail in FlGS. 2, 2a, 2b, 2c, and 2d, the apparatus or" the present invention includes a hanger head do having a shoulder 47 at the upper portion thereof as shown herein supported on the edge of a lirst pipe 49 disposed between the cable cross-over 34 and the pup-joint 3S of the well tubing 35. A top plug 43 having a circumferential groove therein containing an O-ring 45 is disposed within the lower end of the pupjoint 38 to provide a seal between the interior of the pup-joint 3S and the interior of the rst pipe 49. The pup-joint 33 and the first pipe @-9 are coupled together by a lirst coupler 35. A chain hanger 43 having a loop 51 at the lower end is inserted through an opening or passageway in the hanger head d6 and is supported by a wing nut Sil threaded thereon. The power cable 26, which includes two relatively high potential conductors 17 and 19, is introduced into the cable cross-over 34 through a passage S2 in a cable cross-over head 54. A packing 56 and a packing screw gland 58 surround the cable 26 witln'n the cable cross-over head 54 so as to provide a fluid-tight joint. A set screw 6i) is inserted into the cable cross-over head 54 to restrain the power cable 26 in the passage 52. The signal cable 2S is similarly introduced into the cable cross-over 34 through a passage 62, a packing 64 and packing screw gland 66. The crossover head 54 also has a gas entry port and valve 25 communicating with the passage in which the chain hanger 48 is disposed to introduce an inert gas into the cable cross-over 34 and the protectice cable tubing 32. The valve 2S may be protected by a suitable pipe Y 3 plug 59; An O-ring 68 is disposed in a circumferential groove in the cross-over head 54 so as to form a fluidtight seal between the cross-over head 54 and a cylindrical sheath 7G of the cable cross-over 34. Attached to the loop S1 of the chain hanger 4S is a chair; 72 for supporting the cables 26 arid 2S within the cable protective tubing 32. Suitable ties 74, which are made preferably of stainless steel annealed wire, are used to lash the cables 26 and 28 to the chain 72. A thermistor 76 connected to two of the seven copper conductors of the signal cable 2S is mounted within the cable cross-over dV so as to provide an indication of the temperature therein. A cable cross-over adapter 77 having a circumferential groove containing an O-ring 'i9 couples the cable cross-over 34 to the protective cable tubing 32. Thermocouple wires 73 of the four thermocouples 29, 3i?, 31 and 33, which are preferably made of material known by the trade name Alumel and Chromel, are connected to the remaining five conductors of the signal cable 23 in the cable cross-over 34 at a cold junction terminal 75 in the vicinity of the thermistor 76. The power cable 26 and the thermocouple wires 73 are supported Within the heater head 24% by means of cable clamps '78 i and a cable bracket iii? attached to a vertical support member S1 mounted on a supporting block 84. Disposed within the heater head 24 is the uppermost or first thermocouple 29, as shown in FIG. 2b. An O-ring 33 is contained in a groove disposed around the lower portion of the heater head 24 to provide a seal between the heater head 24 and the supporting block S4. The supporting block 84 has a pair of O-rings 92 to form a seal between the supporting block S4 and the sheath 29 of the heater housing 18. The supporting block 84 also has a gas entry port and valve 86 communicating with a passage 8S which is used to introduce an inert gas into the heater housing 1S. The valve S6 may be protected by a suitable pipe plug Qil. The supporting block 34 further includes a shoulder 85 supported by the upper edge of the sheath 20. The supporting block S4- is firmly held in position within the sheath 2l) by a plurality of set screws 94,k as shown more clearly in FG. 7 of the drawing.

FIG. 2b or" the drawing shows the two power leads 17 and 19 passing through passageways 1116 and 162 in the supporting block S4, a seal being provided between each ofthe power leads 17 and 19 and the supporting block S4 by a packing 1194 and a packing screw gland 166. The wires 73 of the three thermocouples 3G, 31 and 33 disposed in the heating section 27 of the heater are fed through a passageway 168 in the supporting block 84 and a packing 110 and a packing screw gland 112 provide a seal between the thermocouple wires 73 and the supporting block 84.

A heater element support frame 114 is suspended from the supporting block 84 by means of a plurality of frame hangersV 116. The frame hangers 116 are preferably welded to the supporting block 84 and the support frame 114 is secured to the frame hangers 116 by means of a nut and bolt arrangement 118, as shown in FIG. 6 as well as in FIG. 2b of the drawing. The supporting frame 114 comprises an elongated plate 120 and two elongated L-snaped members 122 and 124 welded to opposite faces of the plate 126 to provide a frame having a cruciform transverse cross-section, as shown more clearly in FIG. 4 of the drawing. The frame 114 extends from the supporting block 84 longitudinally through the heat baille section 23 and the heating section 27 of the heater housing 18 to a point spaced a given distance from the top of the bottom plug 22 toallow for differential eXpansion associated with temperature changes in the heater Vhousing 18. The outer edges of the cruciform frame V114 are spaced from the sheath 20 of the heater housing 13 also to allow for dierential expansion due to temperature changes. The outer sheath 20 of the heater housing 18 and the portion of the supporting frame 114 within the heating section 27 of the heater housing 18 are preferably made of Ineonel which includes Ni(77.0). Cu(0.2), Fe(7.0), Mn(0.25), Si(0.25), C(0.08), S(0.0G7), and Cr(l5.0). The portion of the supporting frame 114- within the baille section 23 is preferably made of stainless steel. A plurality of lead-in brackets 126 each having a U-shaped edge opening to deine a saddle for receiving an annular insulator 127, preferably made of a ceramic material such as that known by the trade name Aisimag #222, for restraining one of the two power conductors or leads 17, 19 are mounted on the supporting frame 114, as shown in FIGS. 2b, 2c, 4 and 5. Also mounted on the supporting frame 114 are an upper heat baille 123 and a lower heat baille 13? suitably disposed in the heat Vbaille section 23 to protect the heater head 24 and the cables 26 and 2S at the upper portion of the heater from the high temperatures produced in the heating section 27. The heat bailles 128 and 130 are preferably made of insulator-tiberium ceramic liber paper. The thermocouple wires 73 are held in position against the supporting frame 114 but insulated therefrom by means of a plurality of straps 131. The thermocouple wires `V'73 are insulated throughout their entire length to a point spaced a short distance from their hot junction terminals, a iirst hot junction terminal 30 being located at the upper end, a second hot junction terminal 31 at the mid-point and a third hot junction terminal 33 at the lower end of the heating section 27.

In the heating section 27 of 4the heater the power conductors 17 and 19 are terminated at power lead terminals 132 and 134, respectively, to which 'they may be welded. A plurality of saddles vare formed in each of the four outer edges of the supporting frame 114 in the heating section 27 by removing a cup-shaped or U- shaped portion therefrom, the spacing between the saddles-115 being preferably greater at the mid-portion (not shown) than at the ends of the heating section 27. Annular insulators 127 are also inserted in each of the saddles 115 and held therein by retaining lingers or arfcuate arms 138 made by deforming a portion of the frame 114 embracing the annular insulators 127 at their outer periphery. This structure is consistent for all saddles 115 although only specioally illustrated in FIG. 4 and the upper left hand few saddles of FIG. 2c, for sake of convenience.

The heating section 27 contains two heater elements 140 and 142. Each of these heater elements is wound 'tin the form of a helix having a minor constant or uniform radius forming a `tirst coil which coil is in turn then wound in the form of a helix of major constant or uniform radius through the annular insulators 127 in the saddles 115 of the frame 1'14 to -form a second Icoil extending yfrom one of the two power lead terminals 132, 134 located at the upper end of `the heatfing section 27 to the lower end of the frame 114 and returning -to the upper end of the heating section 27 to the other of the two power lead terminals 132, 134, the pitch of each turn of the second coil being such as to receive in complementary fashion the turns of the other second coil. The ends of lthe two heater eletments 140 and 142 are preferably welded to the power lead terminals 132 and 134 to prov-ide electrical connection to the power'leads 17 and 19. The heater elements in the double helical form -are threaded through the annular insulators 127 so as to be supported by land electrically insulated from the supporting frame 114, as shown in FIGS. 2c, 2d, and 8. Each of the heater elements or wires 140 and 142 Vis preferably 175 long, formed in coils 40.5 feet long known by the trade name of #l2 Iellil` Alloy K wire. The heater elements 149 and 142 are connected in parallel and each is grounded at its electrical cen-V ter to the supporting lframe 114. This circuit arrangemeut provides a heater resistance of l1 ohms and has arid made of what is i a rating of approximately 16 kw. at 440 volts at a rating for the wire of l5 watts per square inch surface area.

The electrical circuit of the heater may be more clearly seen in FIG. 3 of the drawing. A suitable power source, which may be, for example, a 480 volt single phase 60 cycle per second source, is connected to a primary winding 156 of a power transformer 151 which has a secondary winding 152 grounded at its mid-point. The secondary winding 152 is connected across a coil 153 which with first and second variable taps 156 and 15S respectively, form an autotransformer 155 for supplying 4an adjustable voltage between the power conductors 117 and 19 connected to the two heater elements 149 and 142.

A temperature indicating device 160 which may be of any conventional type -is connected to the thermistor 76 ylocated in the cable cross-over 34 and also to each of the therrnocouples 29, 313, 31 and 33. A balancing network 162 which may be, yfor example, any suitable known bridge arrangement is selectively coupled through a three-position switch 164 having `a movable arm m and three stationary contacts zz, b and c, to one of the three thermocouples 39, 31 and 33 located in the heating section 27 oi the heater housing 18. The balancing network 162 is also coupled to a potentiometer 166 which has two iixed terminals 163 and v'176 and an adjustable tap 172. A rst reversible motor 174 is electrically controlled by the balancing network 162 and is mechanically coupled to the adjustable tap 172 of the potentiometer 166. A marker (not shown) of a stripchart recorder 167 is fitted on the tap 172 of the potentiometer v166 so as to produce a graph 176 on a stripchart 178 of the recorder 167 to provide a record of the borehole temperature thereon. The strip-chart 17S is driven at a uniform speed `by the ychart drive motor 182.

A movable Contact 184 is mounted on the tap 172 of potentiometer 166 so as to be electrically insulated therefrom. First and second electrical contacts 186 and 18S lare disposed at fixed spaced apart points so as to be electrically contacted by the movable contact 184 at various time intervals. The lirst electrical contact 186 is connected directly to one terminal of a first 110 volts, 60 cycle per second source 191 and the second electrical contact 13S is connected to the other terminal of the first ll() volt source 191 through a protective resistor 15). A relay 192 has a coil 194 connected between the second electrical contact 188 land the movable contact 184. The relay 192 also has a nst fixed contact 1136 and a cooperating first movable arm 198 normally in an open position yand second and third xed spaced apart contacts 2G13 and 262 and 'a cooperating second movable arm 294 normally contacting the third med Contact 292. The rst movable arm 198 is electrically connected to the movable contact 154 and the iirst ixed contact 196 is yconnected to the first electrical Contact 186. A second ll() volt, 6C cycle per second source 193 has a iirst terminal connected to a first terminal 295 of a second lreversible motor 296. A second terminal of the second 110 volt source 193 is connected through the second movable arm 294 and the lthird iixed .Contact 292 of the relay 152 and through a `first normally closed motor switch 268 to a second terminal 299 of the second reversible motor 2116. A third terminal 21) of the second reversible motor 2116 is connected through a second normally closed motor switch 212 to the Second lfixed contact 261B of the relay 122. A motor switch actuating arm 214 is mounted on the iirst variable tap 156 of the autotransformer 155 to open the fiest and second motor switches 26S and 212 when the desired voltage limits between the variable taps 156 and 158 are reached. The variable taps 156 and 15S of the autotransformer 155 are mechanically coupled to the second reversible motor 2156. The rst motor switch 208 .is disposed -in cooperation with the actuating arm 214 so as to provide a 'lower voltage limit for the heater elements 146 and 142 and the second motor switch 212 is disposed in cooperation with the actuating arm 214 so as to provide an upper voltage limit for the heater elements and 142.

In operation the electrical heater elements 140 and 142 may be assembled within the heater housing 18 at any convenient location but preferably without connecting thereto the power and signal cables 26 and 25 which may be done at the well site. The temperature indicating device 160, the strip-chart recorder 167, the balancing network 162, the relay 192 and the first and second reversible motors 174 and 296 may be installed in a vantype truck for ease of operation and protection from the elements. At the well site the necessary length of the insulation coated power cable 26, for example, a Teflon cable, is connected to the power leads 17 and 19 in the heater head 24. The heater head 24 is then attached to the heater housing sheath 20 and the interior of the heater housing 1S is pressurized through valve 86 located in the support block S4 to approximately 200 p.s.i.g. to protect the housing 18 from high borehole pressure. The power and signal cables 26 and 28 and the chain 72 are taped or tied together and threaded through successive joints of the protective tubing 32 for approximately 200 feet and, preferably, the number of feet necessary to prevent the cable cross-over 34 from being immersed in the borehole liquid. The heater housing 1S and its contents are then placed in the borehole and the protective tubing 32, with the cables enclosed, is made up into a string as the heater housing 18 is lowered into the well. The cable cross-over 34 through which the cables 26 and 28 pass horn inside to the outside thereof is then connected to the upper end of the protective tubing 32 and this section of the string is pressurized through the valve 25 in the cross-over 34 to approximately 200 p.s.i.g. to insure against collapsing of this section during normal operations when the annulus pressure is about 500 p.s.i.g., or higher.

The perforated pup-joint 38 is next placed in the string to allow the well bore to be flushed from the bottom upward with a gas, for example, carbon dioxide, prior to pulling the heater from the borehole following the completion of the in situ combustion operation. Successive joints of well tubing 36 are then made up in the tubing string with the cables 26 and 28 banded or tied to the string by ties 21, preferably, at each joint, until the heating section 27 of the heater housing 13 is lowered to a total depth adjacent to the formation to be treated, as shown in FIG. l of the drawing.

The braden head 16 of the well 10 is installed with the cables 26 and 28 passing therethrough and packed olf pressure tight. The power cable 26 is connected to the autotransformer and the signal cable 23 is connected to the temperature indicating device and two of the conductors of the signal cable 23 also are connected to the balancing network 162 so as to couple the balancing network 162 to one of the three thermocouples 30, 31 and 33 in the heating section 27 through the three-position switch 164.

With the down hole equipment in place, an air compressor (not shown) is operated to force air through the pipe 42 into the annular space between the well casing 14 and the outside of the strings of tubing 32 and 36. The air may be injected into the well through the pipe 42 at a relatively high initial pressure to remove the borehole tiuid and then reduced by a substantial amount. The voltage is then applied to the power cable 26 to supply energy to the heater elements 140 and 142. The system of the present invention has been so designed that, if desired, full load may be applied to the heater elements 146 and 142 at any time without regard to a thermal gradient.

The temperature indicating device 160 continuously and simultaneously indicates the temperature of five longitudinally spaced points in the borehole, at the thermistor 76 which provides indications of the temperature in the cable cross-over 34, at the first thermocouple 29 which provides an indication of the temperature in the heater head 24 and at the thermocouples 3i), 31 and 33 which provide indications of the temperature at the upper, middle and lower portions, respectively, of the heating section 27. The temperature detected by one of the thermocouples 30, 31 or 33 may be recorded in the strip-chart recorder 167 by placing the movable arm m iu contact with one of the stationary contacts a, b or c, respectively, of the three-position switch 164. As shown in FIGURE 3 of the drawing, the movable arm m is in contact With iixed contact b of the three-position switch 164 so that a record will be provided of the temperature detected by the thermocouple 31 located in the middle portion of the heating section 27. Thus, the voltage produced by the thermocouple 31 will be applied to the balancing network 162. The potentiometer 166 has a constant voltage applied to the tWo fixed terminals 168 and 176 to produce a range oi' voltages which may be used to balance the voltage produced by the thermocouple 31. The required voltage to balance-the balancing network 162 is derived from the adjustable tap 172 of the potentiometer 166, the portion of which is adjusted by the first reversible motor 174. When the balancing network 162 is in equilibrium the iirst motor 174 is stationary, but when the voltage produced by the therrnocouple 31 increases, the unbalanced condition will cause the first motor 174 to move the tap 172 in one direction until a balancing voltage is reached, and when the voltage produced by the thermocouple 31 is decreased, the unbalanced condition will cause the first motor 174 to move the tap 172 of the potentiometer 166 in the opposite direction until a balancing voltage is reached, so as to again produce au equilibrium condition in the balancing network 162 at which time the rst reversible motor 174 ceases to .drive the adjustable tap 172. Since the position of the tap 172 of the potentiometer 166 is an indication of the temperature in the middle portion of the heating section 27, a marker mounted on the tap 172 of the potentiometer 166 produces a graph 176 on the strip chart 178 of the recorder 167.

v In order to control the temperature range within which the heater elements 14) and 142 are to operate the first and second electrical contacts 136 and 188 are positioned at spacedV apart points so as to cause an increase in the voltage applied to the conductors 17 and 19 of the power cable 26 when the temperature in the heating section 27 falls to the minimum desired temperature and to cause a decrease in the voltage applied to the conductors 17 and 19 of the power cable 26 when the temperature in the heating section reaches the desired maximum temperature. When the desired maximum temperature is produced in the heating section 27 the movable contact 184 mounted on the tap 172 is in electrical contact with the second electrical contact 183 which shorts out the coil 1% of the relay 192. With the coil 194 shorted the second movable arm 204 contacts the third xed contact 292 of the relay 192 to complete the circuit from the second llO volt source 193 through the lirst normally closed motor switch 26S to the second terminal 209 of the second reversible motor 266. The variable tap 156 which carries the actuatirig arm 214 of the autotransformer 155 is then driven to the right as illustrated in FIGURE 3 of the drawing to decrease the voltage between the first and second variable taps 156 and 158 and thus between conductors 17 and 19 of the power cable 26. The first variable tap 156 will continue to move toward the right until the actuating arm 214 opens the irst motor switch 26S thusl to provide the minimum voltage applied to the conductors 17 and 19 of the power cable 26. The decrease in voltage between the conductors 17 and 19 produces a decrease in the arnount of energy supplied to the heating section 27. This will tend to cause a decrease in the temperature in the heating section 27 and thus Vthe rst reversible motor 174 in response to the output from the balancing network 162 will drive the tap 172 of the potentiometer 166 toward the first electrical Contact 186. When the tap 172 reaches the point on the potentiometer 166 corresponding to the desired minimum temperature the movable Contact 184 will contact the first electrical contact 136 to energize the coil 194 of the relay 192. When the coil 194 is energized the rst movable arm 198 contacts the lirst fixed contact 196 which continues to connect the coil 194 to the first 110 volt source 191 even after the movable contact 184 hasy been disconnected from the first electrical Contact 186. When the coil 194 is energized the second movable arm 204 of the relay 192 is in contact with the second ixed Contact 200 of the relay 192. With the movable arm 204 contacting the second iixed Contact 260, the second ll() volt source 193 is connected through the second normally closed motor switch 212 to the third terminal 210 of the second reversible motor 2%. The variable taps 156 and 158 of the autotransformer 155 will now move toward the left as illustrated in FIGURE 3 of the drawing Lmtil the actuating arm 214 on the variable tap 156 opens the second motor switch 212 thus to provide the maximum voltage applied to the two conductors 17 Vand 19 of the power cable 26. This maximum voltage will be applied continuously to the heating elements and 142 tmtil the desired maximum temperature is reached in the heating section 27 at which time the movable contact 184 will contact the second electrical contact 188, as shown in FIG. 3 of the drawing to short circuit the coil 194 of the relay 192 to again place the second movable arm 2li-- in contact with the third Xed contact 202 of the relay 192 to cause motor 266 to drive the first and second variable taps 156 and 155 or the autotransformer toward the right in the direction which decreases the voltage applied to the conductors 17 and 19 of the power cable 26. This operation is repeated for any desired length of time.

In one well in which an in situ combustion operation was performed with the heater of the present invention, an initial pressure of 680 p.s.i.g. was maintained in the well for about one hour after which time the pressure was decreased to 500 p.s.i.g. at which level it was held constant for five hours. During this period of time, the fluid in the well bore was displaced into the subsurface formations. The air injection rate during this period was about 340,000 cubic feet per day. After about two days of operation, the air injection ratewas reduced and varied between about 160,000 to 200,000 cubic feet per day for the remainder of the in situ combustion operation. The electrical power to the heater was turned on and increased over a period of ten hours to a load of 360 volts and 28.2 amperes, with a recorded temperature of approximately 870 F. After the borehole temperature reached approximately 870 F., the temperature in the well bore increased without an increase of power input to the electrical heater. The power to the heater was then cut off and the temperature continued to increase to about l,350 F. and then gradually decreased over a period of about three hours to approximately 950 F. At this point the power was again turned on and gradually increased to 440 volts and 33.5 amperes where it remained for about l2() hours, i.e. until the in situ combustion operation was completed.

Although in the above-mentioned in situ combustlon operation of one well the heater operated at 950 F. for a period of 120 hours, it has been successfully operated at higher temperatures for longer periods of time and 1s capable of sustained operation at l,500 F.

Accordingly, it can be seen that an improved heater for the recovery of petroleum by thermal methodshas been provided. Furthermore, the invention has provided a heater which is easily positioned in a borehole by the use of standard oil field supplies ordinarily found at a Well site which eliminates the need for expensive armored mul ti-conductor cables.

Obviously, many modifications and variations of the invention as hereinabove set forth may be made Without departing from the spirit and scope thereof and therefore only such limitations should be imposed as are indicated in the appended claims.

We claim:

1. An electrical borehole heater comprising in combination an elongated heater housing having a heating section below a heat baille section, an electrically resistive element located in said heating section, a support frame for said element disposed Within said housing, said frame extending longitudinally over the lengaA of both said heating and heat baille sections, said comprising elongated ilat plates disposed transversely along a longitudinal axis to form a cruciform cross-section, a plurality of openings in said frame located in said heating section and near the longitudinal exterior edges of said plates, a plurality of annular insulators for supporting said resistive element and adapted to be inserted in said openings, electric circuit rneans in said housing for supplying electrical energy to said resistive element, and means for suspending said housinJ at a predetermined location in a borehole.

2. An electrical borehole heater as set forth in claim 1 wherein said electrically resistive element is wound in the forni of a first helix of a irst constant radius which first helix is Wound in the form of a second helix of a second constant radius substantially greater than the iirst radius, and the internal diameter of each of said annular insulators is substantially equal to the external diameter of the first helix.

3. An electrical borehole heater as set forth in claim l wherein said sus ending means includes a string of protective tubing connected to the upper portion of said heater housing coaxial therewith, and wherein Said electric circuit means includes a power cable disposed within said protective tubing, said string of protective tubing including means for providing a fluid-tight seal between the interior and exterior thereof.

4. An electrical borehole heater as set forth in claim 3 further including means disposed within said protective tubing for supporting said power cable.

5. An electrical borehole heater as set forth in claim 4 wherein said supporting means includes a chain and a plurality of longitudinally spaced ties attaching said power cable to said chain.

6. An electrical borehole heater as set forth in claim 1 further including temperature responsive means in said heater housing, and means responsive to said temperature responsive means for controlling the flow of electrical energy to said resistive element.

References Cited in the tile of this patent UNITED STATES PATENTS 1,140,982 Huff May 25, 1915 1,841,332 Kranz Jan. 12, 1932 2,771,140 Barclay et al. Nov. 20, 1956 2,792,895 Carpenter May 2l, 1957 2,836,248 Covington May 27, 1958 FOREIGN PATENTS 316,463 Great Britain Aug. 1, 1929 331,436 Great Britain `luly 3, 1930

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US1140982 *6 Apr 191525 May 1915Louise Guidry MossOperating oil-wells.
US1841332 *9 May 192912 Jan 1932Grigsby Grunow CompanyResistance device
US2771140 *28 Aug 195320 Nov 1956Socony Mobil Oil Co IncSubsurface igniter
US2792895 *3 May 195421 May 1957Union Oil CoWell heater
US2836248 *13 Nov 195127 May 1958Union Oil CoWell heater
GB316463A * Title not available
GB331436A * Title not available
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4570715 *6 Apr 198418 Feb 1986Shell Oil CompanyFormation-tailored method and apparatus for uniformly heating long subterranean intervals at high temperature
US4585066 *30 Nov 198429 Apr 1986Shell Oil CompanyWell treating process for installing a cable bundle containing strands of changing diameter
US4704514 *11 Jan 19853 Nov 1987Egmond Cor F VanHeating rate variant elongated electrical resistance heater
US4805698 *17 Nov 198721 Feb 1989Hughes Tool CompanyPacker cooling system for a downhole steam generator assembly
US4834174 *17 Nov 198730 May 1989Hughes Tool CompanyCompletion system for downhole steam generator
US4886118 *17 Feb 198812 Dec 1989Shell Oil CompanyConductively heating a subterranean oil shale to create permeability and subsequently produce oil
US5060287 *4 Dec 199022 Oct 1991Shell Oil CompanyHeater utilizing copper-nickel alloy core
US5065818 *7 Jan 199119 Nov 1991Shell Oil CompanySubterranean heaters
US5255742 *12 Jun 199226 Oct 1993Shell Oil CompanyHeat injection process
US5297626 *12 Jun 199229 Mar 1994Shell Oil CompanyOil recovery process
US6269876 *8 Mar 19997 Aug 2001Shell Oil CompanyElectrical heater
US658168424 Apr 200124 Jun 2003Shell Oil CompanyIn Situ thermal processing of a hydrocarbon containing formation to produce sulfur containing formation fluids
US658850424 Apr 20018 Jul 2003Shell Oil CompanyIn situ thermal processing of a coal formation to produce nitrogen and/or sulfur containing formation fluids
US659190624 Apr 200115 Jul 2003Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected oxygen content
US659190724 Apr 200115 Jul 2003Shell Oil CompanyIn situ thermal processing of a coal formation with a selected vitrinite reflectance
US660703324 Apr 200119 Aug 2003Shell Oil CompanyIn Situ thermal processing of a coal formation to produce a condensate
US660957024 Apr 200126 Aug 2003Shell Oil CompanyIn situ thermal processing of a coal formation and ammonia production
US668838724 Apr 200110 Feb 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce a hydrocarbon condensate
US669851524 Apr 20012 Mar 2004Shell Oil CompanyIn situ thermal processing of a coal formation using a relatively slow heating rate
US670201624 Apr 20019 Mar 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with heat sources located at an edge of a formation layer
US670875824 Apr 200123 Mar 2004Shell Oil CompanyIn situ thermal processing of a coal formation leaving one or more selected unprocessed areas
US671213524 Apr 200130 Mar 2004Shell Oil CompanyIn situ thermal processing of a coal formation in reducing environment
US671213624 Apr 200130 Mar 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a selected production well spacing
US671213724 Apr 200130 Mar 2004Shell Oil CompanyIn situ thermal processing of a coal formation to pyrolyze a selected percentage of hydrocarbon material
US671554624 Apr 20016 Apr 2004Shell Oil CompanyIn situ production of synthesis gas from a hydrocarbon containing formation through a heat source wellbore
US671554724 Apr 20016 Apr 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to form a substantially uniform, high permeability formation
US671554824 Apr 20016 Apr 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce nitrogen containing formation fluids
US671554924 Apr 20016 Apr 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected atomic oxygen to carbon ratio
US672242924 Apr 200120 Apr 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation leaving one or more selected unprocessed areas
US672243024 Apr 200120 Apr 2004Shell Oil CompanyIn situ thermal processing of a coal formation with a selected oxygen content and/or selected O/C ratio
US672243124 Apr 200120 Apr 2004Shell Oil CompanyIn situ thermal processing of hydrocarbons within a relatively permeable formation
US672592024 Apr 200127 Apr 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to convert a selected amount of total organic carbon into hydrocarbon products
US672592124 Apr 200127 Apr 2004Shell Oil CompanyIn situ thermal processing of a coal formation by controlling a pressure of the formation
US672592824 Apr 200127 Apr 2004Shell Oil CompanyIn situ thermal processing of a coal formation using a distributed combustor
US672939524 Apr 20014 May 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected ratio of heat sources to production wells
US672939624 Apr 20014 May 2004Shell Oil CompanyIn situ thermal processing of a coal formation to produce hydrocarbons having a selected carbon number range
US672939724 Apr 20014 May 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected vitrinite reflectance
US672940124 Apr 20014 May 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation and ammonia production
US673279424 Apr 200111 May 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content
US673279524 Apr 200111 May 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to pyrolyze a selected percentage of hydrocarbon material
US673279624 Apr 200111 May 2004Shell Oil CompanyIn situ production of synthesis gas from a hydrocarbon containing formation, the synthesis gas having a selected H2 to CO ratio
US673621524 Apr 200118 May 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation, in situ production of synthesis gas, and carbon dioxide sequestration
US673939324 Apr 200125 May 2004Shell Oil CompanyIn situ thermal processing of a coal formation and tuning production
US673939424 Apr 200125 May 2004Shell Oil CompanyProduction of synthesis gas from a hydrocarbon containing formation
US674258724 Apr 20011 Jun 2004Shell Oil CompanyIn situ thermal processing of a coal formation to form a substantially uniform, relatively high permeable formation
US674258824 Apr 20011 Jun 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce formation fluids having a relatively low olefin content
US674258924 Apr 20011 Jun 2004Shell Oil CompanyIn situ thermal processing of a coal formation using repeating triangular patterns of heat sources
US674259324 Apr 20011 Jun 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using heat transfer from a heat transfer fluid to heat the formation
US674583124 Apr 20018 Jun 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation by controlling a pressure of the formation
US674583224 Apr 20018 Jun 2004Shell Oil CompanySitu thermal processing of a hydrocarbon containing formation to control product composition
US674583724 Apr 20018 Jun 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a controlled heating rate
US674902124 Apr 200115 Jun 2004Shell Oil CompanyIn situ thermal processing of a coal formation using a controlled heating rate
US675221024 Apr 200122 Jun 2004Shell Oil CompanyIn situ thermal processing of a coal formation using heat sources positioned within open wellbores
US675826824 Apr 20016 Jul 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a relatively slow heating rate
US676121624 Apr 200113 Jul 2004Shell Oil CompanyIn situ thermal processing of a coal formation to produce hydrocarbon fluids and synthesis gas
US676388624 Apr 200120 Jul 2004Shell Oil CompanyIn situ thermal processing of a coal formation with carbon dioxide sequestration
US676948324 Apr 20013 Aug 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using conductor in conduit heat sources
US676948524 Apr 20013 Aug 2004Shell Oil CompanyIn situ production of synthesis gas from a coal formation through a heat source wellbore
US678962524 Apr 200114 Sep 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using exposed metal heat sources
US680519524 Apr 200119 Oct 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce hydrocarbon fluids and synthesis gas
US682068824 Apr 200123 Nov 2004Shell Oil CompanyIn situ thermal processing of coal formation with a selected hydrogen content and/or selected H/C ratio
US686609724 Apr 200115 Mar 2005Shell Oil CompanyIn situ thermal processing of a coal formation to increase a permeability/porosity of the formation
US687170724 Apr 200129 Mar 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with carbon dioxide sequestration
US687755424 Apr 200112 Apr 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using pressure and/or temperature control
US687755524 Apr 200212 Apr 2005Shell Oil CompanyIn situ thermal processing of an oil shale formation while inhibiting coking
US688063324 Apr 200219 Apr 2005Shell Oil CompanyIn situ thermal processing of an oil shale formation to produce a desired product
US688063524 Apr 200119 Apr 2005Shell Oil CompanyIn situ production of synthesis gas from a coal formation, the synthesis gas having a selected H2 to CO ratio
US688976924 Apr 200110 May 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected moisture content
US689605324 Apr 200124 May 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using repeating triangular patterns of heat sources
US690200324 Apr 20017 Jun 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation having a selected total organic carbon content
US690200424 Apr 20017 Jun 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a movable heating element
US691053624 Apr 200128 Jun 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor
US691307824 Apr 20015 Jul 2005Shell Oil CompanyIn Situ thermal processing of hydrocarbons within a relatively impermeable formation
US691585024 Apr 200212 Jul 2005Shell Oil CompanyIn situ thermal processing of an oil shale formation having permeable and impermeable sections
US691844224 Apr 200219 Jul 2005Shell Oil CompanyIn situ thermal processing of an oil shale formation in a reducing environment
US691844324 Apr 200219 Jul 2005Shell Oil CompanyIn situ thermal processing of an oil shale formation to produce hydrocarbons having a selected carbon number range
US692325724 Apr 20022 Aug 2005Shell Oil CompanyIn situ thermal processing of an oil shale formation to produce a condensate
US692325812 Jun 20032 Aug 2005Shell Oil CompanyIn situ thermal processsing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content
US692906724 Apr 200216 Aug 2005Shell Oil CompanyHeat sources with conductive material for in situ thermal processing of an oil shale formation
US694856224 Apr 200227 Sep 2005Shell Oil CompanyProduction of a blending agent using an in situ thermal process in a relatively permeable formation
US694856324 Apr 200127 Sep 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected hydrogen content
US695124724 Apr 20024 Oct 2005Shell Oil CompanyIn situ thermal processing of an oil shale formation using horizontal heat sources
US695308724 Apr 200111 Oct 2005Shell Oil CompanyThermal processing of a hydrocarbon containing formation to increase a permeability of the formation
US695976124 Apr 20011 Nov 2005Shell Oil CompanyIn situ thermal processing of a coal formation with a selected ratio of heat sources to production wells
US696430024 Apr 200215 Nov 2005Shell Oil CompanyIn situ thermal recovery from a relatively permeable formation with backproduction through a heater wellbore
US696637224 Apr 200122 Nov 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce oxygen containing formation fluids
US696637424 Apr 200222 Nov 2005Shell Oil CompanyIn situ thermal recovery from a relatively permeable formation using gas to increase mobility
US696912324 Oct 200229 Nov 2005Shell Oil CompanyUpgrading and mining of coal
US697396724 Apr 200113 Dec 2005Shell Oil CompanySitu thermal processing of a coal formation using pressure and/or temperature control
US698154824 Apr 20023 Jan 2006Shell Oil CompanyIn situ thermal recovery from a relatively permeable formation
US699103124 Apr 200131 Jan 2006Shell Oil CompanyIn situ thermal processing of a coal formation to convert a selected total organic carbon content into hydrocarbon products
US699103224 Apr 200231 Jan 2006Shell Oil CompanyIn situ thermal processing of an oil shale formation using a pattern of heat sources
US699103324 Apr 200231 Jan 2006Shell Oil CompanyIn situ thermal processing while controlling pressure in an oil shale formation
US699103624 Apr 200231 Jan 2006Shell Oil CompanyThermal processing of a relatively permeable formation
US699416024 Apr 20017 Feb 2006Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce hydrocarbons having a selected carbon number range
US699416124 Apr 20017 Feb 2006Kevin Albert MaherIn situ thermal processing of a coal formation with a selected moisture content
US6994168 *24 Apr 20017 Feb 2006Scott Lee WellingtonIn situ thermal processing of a hydrocarbon containing formation with a selected hydrogen to carbon ratio
US699416924 Apr 20027 Feb 2006Shell Oil CompanyIn situ thermal processing of an oil shale formation with a selected property
US699725524 Apr 200114 Feb 2006Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation in a reducing environment
US699751824 Apr 200214 Feb 2006Shell Oil CompanyIn situ thermal processing and solution mining of an oil shale formation
US700424724 Apr 200228 Feb 2006Shell Oil CompanyConductor-in-conduit heat sources for in situ thermal processing of an oil shale formation
US700425124 Apr 200228 Feb 2006Shell Oil CompanyIn situ thermal processing and remediation of an oil shale formation
US701397224 Apr 200221 Mar 2006Shell Oil CompanyIn situ thermal processing of an oil shale formation using a natural distributed combustor
US701766124 Apr 200128 Mar 2006Shell Oil CompanyProduction of synthesis gas from a coal formation
US7032660 *24 Apr 200225 Apr 2006Shell Oil CompanyIn situ thermal processing and inhibiting migration of fluids into or out of an in situ oil shale formation
US703658324 Sep 20012 May 2006Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to increase a porosity of the formation
US704039824 Apr 20029 May 2006Shell Oil CompanyIn situ thermal processing of a relatively permeable formation in a reducing environment
US704039924 Apr 20029 May 2006Shell Oil CompanyIn situ thermal processing of an oil shale formation using a controlled heating rate
US704040024 Apr 20029 May 2006Shell Oil CompanyIn situ thermal processing of a relatively impermeable formation using an open wellbore
US705180724 Apr 200230 May 2006Shell Oil CompanyIn situ thermal recovery from a relatively permeable formation with quality control
US705181124 Apr 200230 May 2006Shell Oil CompanyIn situ thermal processing through an open wellbore in an oil shale formation
US705560024 Apr 20026 Jun 2006Shell Oil CompanyIn situ thermal recovery from a relatively permeable formation with controlled production rate
US706314524 Oct 200220 Jun 2006Shell Oil CompanyMethods and systems for heating a hydrocarbon containing formation in situ with an opening contacting the earth's surface at two locations
US707719824 Oct 200218 Jul 2006Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation using barriers
US707719924 Oct 200218 Jul 2006Shell Oil CompanyIn situ thermal processing of an oil reservoir formation
US708646824 Apr 20018 Aug 2006Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using heat sources positioned within open wellbores
US709694124 Apr 200129 Aug 2006Shell Oil CompanyIn situ thermal processing of a coal formation with heat sources located at an edge of a coal layer
US709694224 Apr 200229 Aug 2006Shell Oil CompanyIn situ thermal processing of a relatively permeable formation while controlling pressure
US709695324 Apr 200129 Aug 2006Shell Oil CompanyIn situ thermal processing of a coal formation using a movable heating element
US711456624 Oct 20023 Oct 2006Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor
US742491522 Apr 200516 Sep 2008Shell Oil CompanyVacuum pumping of conductor-in-conduit heaters
US764476519 Oct 200712 Jan 2010Shell Oil CompanyHeating tar sands formations while controlling pressure
US767368119 Oct 20079 Mar 2010Shell Oil CompanyTreating tar sands formations with karsted zones
US767378620 Apr 20079 Mar 2010Shell Oil CompanyWelding shield for coupling heaters
US767731019 Oct 200716 Mar 2010Shell Oil CompanyCreating and maintaining a gas cap in tar sands formations
US767731419 Oct 200716 Mar 2010Shell Oil CompanyMethod of condensing vaporized water in situ to treat tar sands formations
US768164719 Oct 200723 Mar 2010Shell Oil CompanyMethod of producing drive fluid in situ in tar sands formations
US768329620 Apr 200723 Mar 2010Shell Oil CompanyAdjusting alloy compositions for selected properties in temperature limited heaters
US770351319 Oct 200727 Apr 2010Shell Oil CompanyWax barrier for use with in situ processes for treating formations
US771717119 Oct 200718 May 2010Shell Oil CompanyMoving hydrocarbons through portions of tar sands formations with a fluid
US773094519 Oct 20078 Jun 2010Shell Oil CompanyUsing geothermal energy to heat a portion of a formation for an in situ heat treatment process
US773094619 Oct 20078 Jun 2010Shell Oil CompanyTreating tar sands formations with dolomite
US773094719 Oct 20078 Jun 2010Shell Oil CompanyCreating fluid injectivity in tar sands formations
US77359351 Jun 200715 Jun 2010Shell Oil CompanyIn situ thermal processing of an oil shale formation containing carbonate minerals
US778542720 Apr 200731 Aug 2010Shell Oil CompanyHigh strength alloys
US779372220 Apr 200714 Sep 2010Shell Oil CompanyNon-ferromagnetic overburden casing
US779822018 Apr 200821 Sep 2010Shell Oil CompanyIn situ heat treatment of a tar sands formation after drive process treatment
US779822131 May 200721 Sep 2010Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US783113421 Apr 20069 Nov 2010Shell Oil CompanyGrouped exposed metal heaters
US783248418 Apr 200816 Nov 2010Shell Oil CompanyMolten salt as a heat transfer fluid for heating a subsurface formation
US784140119 Oct 200730 Nov 2010Shell Oil CompanyGas injection to inhibit migration during an in situ heat treatment process
US784140818 Apr 200830 Nov 2010Shell Oil CompanyIn situ heat treatment from multiple layers of a tar sands formation
US784142518 Apr 200830 Nov 2010Shell Oil CompanyDrilling subsurface wellbores with cutting structures
US784541119 Oct 20077 Dec 2010Shell Oil CompanyIn situ heat treatment process utilizing a closed loop heating system
US784992218 Apr 200814 Dec 2010Shell Oil CompanyIn situ recovery from residually heated sections in a hydrocarbon containing formation
US786037721 Apr 200628 Dec 2010Shell Oil CompanySubsurface connection methods for subsurface heaters
US786638520 Apr 200711 Jan 2011Shell Oil CompanyPower systems utilizing the heat of produced formation fluid
US786638613 Oct 200811 Jan 2011Shell Oil CompanyIn situ oxidation of subsurface formations
US786638813 Oct 200811 Jan 2011Shell Oil CompanyHigh temperature methods for forming oxidizer fuel
US791235820 Apr 200722 Mar 2011Shell Oil CompanyAlternate energy source usage for in situ heat treatment processes
US793108618 Apr 200826 Apr 2011Shell Oil CompanyHeating systems for heating subsurface formations
US794219721 Apr 200617 May 2011Shell Oil CompanyMethods and systems for producing fluid from an in situ conversion process
US79422034 Jan 201017 May 2011Shell Oil CompanyThermal processes for subsurface formations
US795045318 Apr 200831 May 2011Shell Oil CompanyDownhole burner systems and methods for heating subsurface formations
US798686921 Apr 200626 Jul 2011Shell Oil CompanyVarying properties along lengths of temperature limited heaters
US801145113 Oct 20086 Sep 2011Shell Oil CompanyRanging methods for developing wellbores in subsurface formations
US802757121 Apr 200627 Sep 2011Shell Oil CompanyIn situ conversion process systems utilizing wellbores in at least two regions of a formation
US804261018 Apr 200825 Oct 2011Shell Oil CompanyParallel heater system for subsurface formations
US807084021 Apr 20066 Dec 2011Shell Oil CompanyTreatment of gas from an in situ conversion process
US808381320 Apr 200727 Dec 2011Shell Oil CompanyMethods of producing transportation fuel
US811327213 Oct 200814 Feb 2012Shell Oil CompanyThree-phase heaters with common overburden sections for heating subsurface formations
US814666113 Oct 20083 Apr 2012Shell Oil CompanyCryogenic treatment of gas
US814666913 Oct 20083 Apr 2012Shell Oil CompanyMulti-step heater deployment in a subsurface formation
US81518809 Dec 201010 Apr 2012Shell Oil CompanyMethods of making transportation fuel
US815190710 Apr 200910 Apr 2012Shell Oil CompanyDual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US816205913 Oct 200824 Apr 2012Shell Oil CompanyInduction heaters used to heat subsurface formations
US816240510 Apr 200924 Apr 2012Shell Oil CompanyUsing tunnels for treating subsurface hydrocarbon containing formations
US817233510 Apr 20098 May 2012Shell Oil CompanyElectrical current flow between tunnels for use in heating subsurface hydrocarbon containing formations
US817730510 Apr 200915 May 2012Shell Oil CompanyHeater connections in mines and tunnels for use in treating subsurface hydrocarbon containing formations
US819163028 Apr 20105 Jun 2012Shell Oil CompanyCreating fluid injectivity in tar sands formations
US819268226 Apr 20105 Jun 2012Shell Oil CompanyHigh strength alloys
US819665813 Oct 200812 Jun 2012Shell Oil CompanyIrregular spacing of heat sources for treating hydrocarbon containing formations
US82205399 Oct 200917 Jul 2012Shell Oil CompanyControlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation
US822416324 Oct 200317 Jul 2012Shell Oil CompanyVariable frequency temperature limited heaters
US822416424 Oct 200317 Jul 2012Shell Oil CompanyInsulated conductor temperature limited heaters
US822416521 Apr 200617 Jul 2012Shell Oil CompanyTemperature limited heater utilizing non-ferromagnetic conductor
US822586621 Jul 201024 Jul 2012Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US823092716 May 201131 Jul 2012Shell Oil CompanyMethods and systems for producing fluid from an in situ conversion process
US823378229 Sep 201031 Jul 2012Shell Oil CompanyGrouped exposed metal heaters
US823873024 Oct 20037 Aug 2012Shell Oil CompanyHigh voltage temperature limited heaters
US824077413 Oct 200814 Aug 2012Shell Oil CompanySolution mining and in situ treatment of nahcolite beds
US82565129 Oct 20094 Sep 2012Shell Oil CompanyMovable heaters for treating subsurface hydrocarbon containing formations
US82571128 Oct 20104 Sep 2012Shell Oil CompanyPress-fit coupling joint for joining insulated conductors
US82618329 Oct 200911 Sep 2012Shell Oil CompanyHeating subsurface formations with fluids
US82671709 Oct 200918 Sep 2012Shell Oil CompanyOffset barrier wells in subsurface formations
US82671859 Oct 200918 Sep 2012Shell Oil CompanyCirculated heated transfer fluid systems used to treat a subsurface formation
US827245513 Oct 200825 Sep 2012Shell Oil CompanyMethods for forming wellbores in heated formations
US827666113 Oct 20082 Oct 2012Shell Oil CompanyHeating subsurface formations by oxidizing fuel on a fuel carrier
US82818619 Oct 20099 Oct 2012Shell Oil CompanyCirculated heated transfer fluid heating of subsurface hydrocarbon formations
US832768118 Apr 200811 Dec 2012Shell Oil CompanyWellbore manufacturing processes for in situ heat treatment processes
US83279329 Apr 201011 Dec 2012Shell Oil CompanyRecovering energy from a subsurface formation
US83533479 Oct 200915 Jan 2013Shell Oil CompanyDeployment of insulated conductors for treating subsurface formations
US835562322 Apr 200515 Jan 2013Shell Oil CompanyTemperature limited heaters with high power factors
US83569358 Oct 201022 Jan 2013Shell Oil CompanyMethods for assessing a temperature in a subsurface formation
US838181518 Apr 200826 Feb 2013Shell Oil CompanyProduction from multiple zones of a tar sands formation
US84345559 Apr 20107 May 2013Shell Oil CompanyIrregular pattern treatment of a subsurface formation
US84487079 Apr 201028 May 2013Shell Oil CompanyNon-conducting heater casings
US845935918 Apr 200811 Jun 2013Shell Oil CompanyTreating nahcolite containing formations and saline zones
US848525211 Jul 201216 Jul 2013Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US84852568 Apr 201116 Jul 2013Shell Oil CompanyVariable thickness insulated conductors
US8485847 *30 Aug 201216 Jul 2013Shell Oil CompanyPress-fit coupling joint for joining insulated conductors
US85021208 Apr 20116 Aug 2013Shell Oil CompanyInsulating blocks and methods for installation in insulated conductor heaters
US853649713 Oct 200817 Sep 2013Shell Oil CompanyMethods for forming long subsurface heaters
US855597131 May 201215 Oct 2013Shell Oil CompanyTreating tar sands formations with dolomite
US856207825 Nov 200922 Oct 2013Shell Oil CompanyHydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations
US857903117 May 201112 Nov 2013Shell Oil CompanyThermal processes for subsurface formations
US85868667 Oct 201119 Nov 2013Shell Oil CompanyHydroformed splice for insulated conductors
US85868677 Oct 201119 Nov 2013Shell Oil CompanyEnd termination for three-phase insulated conductors
US860609120 Oct 200610 Dec 2013Shell Oil CompanySubsurface heaters with low sulfidation rates
US860824926 Apr 201017 Dec 2013Shell Oil CompanyIn situ thermal processing of an oil shale formation
US86278878 Dec 200814 Jan 2014Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US86318668 Apr 201121 Jan 2014Shell Oil CompanyLeak detection in circulated fluid systems for heating subsurface formations
US863632325 Nov 200928 Jan 2014Shell Oil CompanyMines and tunnels for use in treating subsurface hydrocarbon containing formations
US866217518 Apr 20084 Mar 2014Shell Oil CompanyVarying properties of in situ heat treatment of a tar sands formation based on assessed viscosities
US87017688 Apr 201122 Apr 2014Shell Oil CompanyMethods for treating hydrocarbon formations
US87017698 Apr 201122 Apr 2014Shell Oil CompanyMethods for treating hydrocarbon formations based on geology
US87329467 Oct 201127 May 2014Shell Oil CompanyMechanical compaction of insulator for insulated conductor splices
US87398748 Apr 20113 Jun 2014Shell Oil CompanyMethods for heating with slots in hydrocarbon formations
US875290410 Apr 200917 Jun 2014Shell Oil CompanyHeated fluid flow in mines and tunnels used in heating subsurface hydrocarbon containing formations
US878958612 Jul 201329 Jul 2014Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US879139618 Apr 200829 Jul 2014Shell Oil CompanyFloating insulated conductors for heating subsurface formations
US88162038 Oct 201026 Aug 2014Shell Oil CompanyCompacted coupling joint for coupling insulated conductors
US88204068 Apr 20112 Sep 2014Shell Oil CompanyElectrodes for electrical current flow heating of subsurface formations with conductive material in wellbore
US88334538 Apr 201116 Sep 2014Shell Oil CompanyElectrodes for electrical current flow heating of subsurface formations with tapered copper thickness
US88511709 Apr 20107 Oct 2014Shell Oil CompanyHeater assisted fluid treatment of a subsurface formation
US88570517 Oct 201114 Oct 2014Shell Oil CompanySystem and method for coupling lead-in conductor to insulated conductor
US885750624 May 201314 Oct 2014Shell Oil CompanyAlternate energy source usage methods for in situ heat treatment processes
US88599426 Aug 201314 Oct 2014Shell Oil CompanyInsulating blocks and methods for installation in insulated conductor heaters
US88818069 Oct 200911 Nov 2014Shell Oil CompanySystems and methods for treating a subsurface formation with electrical conductors
US89392078 Apr 201127 Jan 2015Shell Oil CompanyInsulated conductor heaters with semiconductor layers
US89436867 Oct 20113 Feb 2015Shell Oil CompanyCompaction of electrical insulation for joining insulated conductors
US89672598 Apr 20113 Mar 2015Shell Oil CompanyHelical winding of insulated conductor heaters for installation
US90163706 Apr 201228 Apr 2015Shell Oil CompanyPartial solution mining of hydrocarbon containing layers prior to in situ heat treatment
US902210921 Jan 20145 May 2015Shell Oil CompanyLeak detection in circulated fluid systems for heating subsurface formations
US90221189 Oct 20095 May 2015Shell Oil CompanyDouble insulated heaters for treating subsurface formations
US90330428 Apr 201119 May 2015Shell Oil CompanyForming bitumen barriers in subsurface hydrocarbon formations
US90486536 Apr 20122 Jun 2015Shell Oil CompanySystems for joining insulated conductors
US90518299 Oct 20099 Jun 2015Shell Oil CompanyPerforated electrical conductors for treating subsurface formations
US90804094 Oct 201214 Jul 2015Shell Oil CompanyIntegral splice for insulated conductors
US90809174 Oct 201214 Jul 2015Shell Oil CompanySystem and methods for using dielectric properties of an insulated conductor in a subsurface formation to assess properties of the insulated conductor
US91275238 Apr 20118 Sep 2015Shell Oil CompanyBarrier methods for use in subsurface hydrocarbon formations
US91275388 Apr 20118 Sep 2015Shell Oil CompanyMethodologies for treatment of hydrocarbon formations using staged pyrolyzation
US91297289 Oct 20098 Sep 2015Shell Oil CompanySystems and methods of forming subsurface wellbores
US918178018 Apr 200810 Nov 2015Shell Oil CompanyControlling and assessing pressure conditions during treatment of tar sands formations
US92263414 Oct 201229 Dec 2015Shell Oil CompanyForming insulated conductors using a final reduction step after heat treating
US93097554 Oct 201212 Apr 2016Shell Oil CompanyThermal expansion accommodation for circulated fluid systems used to heat subsurface formations
US933755018 Nov 201310 May 2016Shell Oil CompanyEnd termination for three-phase insulated conductors
US93999054 May 201526 Jul 2016Shell Oil CompanyLeak detection in circulated fluid systems for heating subsurface formations
US94668968 Oct 201011 Oct 2016Shell Oil CompanyParallelogram coupling joint for coupling insulated conductors
US952832216 Jun 201427 Dec 2016Shell Oil CompanyDual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US975541511 Apr 20165 Sep 2017Shell Oil CompanyEnd termination for three-phase insulated conductors
US20020046883 *24 Apr 200125 Apr 2002Wellington Scott LeeIn situ thermal processing of a coal formation using pressure and/or temperature control
US20030079877 *24 Apr 20021 May 2003Wellington Scott LeeIn situ thermal processing of a relatively impermeable formation in a reducing environment
US20030098149 *24 Apr 200229 May 2003Wellington Scott LeeIn situ thermal recovery from a relatively permeable formation using gas to increase mobility
US20030098605 *24 Apr 200229 May 2003Vinegar Harold J.In situ thermal recovery from a relatively permeable formation
US20030102126 *24 Apr 20025 Jun 2003Sumnu-Dindoruk Meliha DenizIn situ thermal recovery from a relatively permeable formation with controlled production rate
US20030131993 *24 Apr 200217 Jul 2003Etuan ZhangIn situ thermal processing of an oil shale formation with a selected property
US20030131995 *24 Apr 200217 Jul 2003De Rouffignac Eric PierreIn situ thermal processing of a relatively impermeable formation to increase permeability of the formation
US20030131996 *24 Apr 200217 Jul 2003Vinegar Harold J.In situ thermal processing of an oil shale formation having permeable and impermeable sections
US20030136558 *24 Apr 200224 Jul 2003Wellington Scott LeeIn situ thermal processing of an oil shale formation to produce a desired product
US20030136559 *24 Apr 200224 Jul 2003Wellington Scott LeeIn situ thermal processing while controlling pressure in an oil shale formation
US20030141067 *24 Apr 200231 Jul 2003Rouffignac Eric Pierre DeIn situ thermal processing of an oil shale formation to increase permeability of the formation
US20030142964 *24 Apr 200231 Jul 2003Wellington Scott LeeIn situ thermal processing of an oil shale formation using a controlled heating rate
US20030146002 *24 Apr 20027 Aug 2003Vinegar Harold J.Removable heat sources for in situ thermal processing of an oil shale formation
US20030164239 *24 Apr 20024 Sep 2003Wellington Scott LeeIn situ thermal processing of an oil shale formation in a reducing environment
US20030173085 *24 Oct 200218 Sep 2003Vinegar Harold J.Upgrading and mining of coal
US20040144541 *24 Oct 200329 Jul 2004Picha Mark GregoryForming wellbores using acoustic methods
US20040211554 *24 Apr 200228 Oct 2004Vinegar Harold J.Heat sources with conductive material for in situ thermal processing of an oil shale formation
US20040211557 *24 Apr 200228 Oct 2004Cole Anthony ThomasConductor-in-conduit heat sources for in situ thermal processing of an oil shale formation
US20070045265 *21 Apr 20061 Mar 2007Mckinzie Billy J IiLow temperature barriers with heat interceptor wells for in situ processes
US20070095536 *20 Oct 20063 May 2007Vinegar Harold JCogeneration systems and processes for treating hydrocarbon containing formations
US20070127897 *20 Oct 20067 Jun 2007John Randy CSubsurface heaters with low sulfidation rates
US20070131419 *20 Oct 200614 Jun 2007Maria Roes Augustinus WMethods of producing alkylated hydrocarbons from an in situ heat treatment process liquid
US20070131420 *20 Oct 200614 Jun 2007Weijian MoMethods of cracking a crude product to produce additional crude products
US20070221377 *20 Oct 200627 Sep 2007Vinegar Harold JSolution mining systems and methods for treating hydrocarbon containing formations
US20080035346 *20 Apr 200714 Feb 2008Vijay NairMethods of producing transportation fuel
US20080035348 *20 Apr 200714 Feb 2008Vitek John MTemperature limited heaters using phase transformation of ferromagnetic material
US20080035705 *20 Apr 200714 Feb 2008Menotti James LWelding shield for coupling heaters
US20080038144 *20 Apr 200714 Feb 2008Maziasz Phillip JHigh strength alloys
US20080107577 *20 Oct 20068 May 2008Vinegar Harold JVarying heating in dawsonite zones in hydrocarbon containing formations
US20080128134 *19 Oct 20075 Jun 2008Ramesh Raju MudunuriProducing drive fluid in situ in tar sands formations
US20080135244 *19 Oct 200712 Jun 2008David Scott MillerHeating hydrocarbon containing formations in a line drive staged process
US20080135253 *19 Oct 200712 Jun 2008Vinegar Harold JTreating tar sands formations with karsted zones
US20080135254 *19 Oct 200712 Jun 2008Vinegar Harold JIn situ heat treatment process utilizing a closed loop heating system
US20080142216 *19 Oct 200719 Jun 2008Vinegar Harold JTreating tar sands formations with dolomite
US20080142217 *19 Oct 200719 Jun 2008Roelof PietersonUsing geothermal energy to heat a portion of a formation for an in situ heat treatment process
US20080173442 *20 Apr 200724 Jul 2008Vinegar Harold JSulfur barrier for use with in situ processes for treating formations
US20080173444 *20 Apr 200724 Jul 2008Francis Marion StoneAlternate energy source usage for in situ heat treatment processes
US20080173450 *20 Apr 200724 Jul 2008Bernard GoldbergTime sequenced heating of multiple layers in a hydrocarbon containing formation
US20080174115 *20 Apr 200724 Jul 2008Gene Richard LambirthPower systems utilizing the heat of produced formation fluid
US20080217004 *19 Oct 200711 Sep 2008De Rouffignac Eric PierreHeating hydrocarbon containing formations in a checkerboard pattern staged process
US20080217015 *19 Oct 200711 Sep 2008Vinegar Harold JHeating hydrocarbon containing formations in a spiral startup staged sequence
US20080277113 *19 Oct 200713 Nov 2008George Leo StegemeierHeating tar sands formations while controlling pressure
US20090014180 *19 Oct 200715 Jan 2009George Leo StegemeierMoving hydrocarbons through portions of tar sands formations with a fluid
US20090014181 *19 Oct 200715 Jan 2009Vinegar Harold JCreating and maintaining a gas cap in tar sands formations
US20090071652 *18 Apr 200819 Mar 2009Vinegar Harold JIn situ heat treatment from multiple layers of a tar sands formation
US20090078461 *18 Apr 200826 Mar 2009Arthur James MansureDrilling subsurface wellbores with cutting structures
US20090084547 *18 Apr 20082 Apr 2009Walter Farman FarmayanDownhole burner systems and methods for heating subsurface formations
US20090090509 *18 Apr 20089 Apr 2009Vinegar Harold JIn situ recovery from residually heated sections in a hydrocarbon containing formation
US20090095476 *18 Apr 200816 Apr 2009Scott Vinh NguyenMolten salt as a heat transfer fluid for heating a subsurface formation
US20090095477 *18 Apr 200816 Apr 2009Scott Vinh NguyenHeating systems for heating subsurface formations
US20090095479 *18 Apr 200816 Apr 2009John Michael KaranikasProduction from multiple zones of a tar sands formation
US20090126929 *18 Apr 200821 May 2009Vinegar Harold JTreating nahcolite containing formations and saline zones
US20090189617 *13 Oct 200830 Jul 2009David BurnsContinuous subsurface heater temperature measurement
US20090194269 *13 Oct 20086 Aug 2009Vinegar Harold JThree-phase heaters with common overburden sections for heating subsurface formations
US20090194282 *13 Oct 20086 Aug 2009Gary Lee BeerIn situ oxidation of subsurface formations
US20090194329 *13 Oct 20086 Aug 2009Rosalvina Ramona GuimeransMethods for forming wellbores in heated formations
US20090194524 *13 Oct 20086 Aug 2009Dong Sub KimMethods for forming long subsurface heaters
US20090200025 *13 Oct 200813 Aug 2009Jose Luis BravoHigh temperature methods for forming oxidizer fuel
US20090200031 *13 Oct 200813 Aug 2009David Scott MillerIrregular spacing of heat sources for treating hydrocarbon containing formations
US20090200854 *13 Oct 200813 Aug 2009Vinegar Harold JSolution mining and in situ treatment of nahcolite beds
US20090260823 *10 Apr 200922 Oct 2009Robert George Prince-WrightMines and tunnels for use in treating subsurface hydrocarbon containing formations
US20090260824 *10 Apr 200922 Oct 2009David Booth BurnsHydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations
US20090272533 *10 Apr 20095 Nov 2009David Booth BurnsHeated fluid flow in mines and tunnels used in heating subsurface hydrocarbon containing formations
US20090272535 *10 Apr 20095 Nov 2009David Booth BurnsUsing tunnels for treating subsurface hydrocarbon containing formations
US20090272578 *10 Apr 20095 Nov 2009Macdonald Duncan CharlesDual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US20100089586 *9 Oct 200915 Apr 2010John Andrew StaneckiMovable heaters for treating subsurface hydrocarbon containing formations
US20100096137 *9 Oct 200922 Apr 2010Scott Vinh NguyenCirculated heated transfer fluid heating of subsurface hydrocarbon formations
US20100101783 *9 Oct 200929 Apr 2010Vinegar Harold JUsing self-regulating nuclear reactors in treating a subsurface formation
US20100101784 *9 Oct 200929 Apr 2010Vinegar Harold JControlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation
US20100108310 *9 Oct 20096 May 2010Thomas David FowlerOffset barrier wells in subsurface formations
US20100108379 *9 Oct 20096 May 2010David Alston EdburySystems and methods of forming subsurface wellbores
US20110124223 *8 Oct 201026 May 2011David Jon TilleyPress-fit coupling joint for joining insulated conductors
US20110124228 *8 Oct 201026 May 2011John Matthew ColesCompacted coupling joint for coupling insulated conductors
US20110132661 *8 Oct 20109 Jun 2011Patrick Silas HarmasonParallelogram coupling joint for coupling insulated conductors
US20110134958 *8 Oct 20109 Jun 2011Dhruv AroraMethods for assessing a temperature in a subsurface formation
US20140069896 *9 Sep 201313 Mar 2014Foro Energy, Inc.Light weight high power laser presure control systems and methods of use
USRE35696 *28 Sep 199523 Dec 1997Shell Oil CompanyHeat injection process
WO2001081239A2 *24 Apr 20011 Nov 2001Shell Internationale Research Maatschappij B.V.In situ recovery from a hydrocarbon containing formation
WO2001081239A3 *24 Apr 200123 May 2002Shell Oil CoIn situ recovery from a hydrocarbon containing formation
Classifications
U.S. Classification166/60, 166/64
International ClassificationE21B36/04, E21B36/00
Cooperative ClassificationE21B36/04
European ClassificationE21B36/04