US3128768A - Surgical drill - Google Patents

Surgical drill Download PDF

Info

Publication number
US3128768A
US3128768A US154580A US15458061A US3128768A US 3128768 A US3128768 A US 3128768A US 154580 A US154580 A US 154580A US 15458061 A US15458061 A US 15458061A US 3128768 A US3128768 A US 3128768A
Authority
US
United States
Prior art keywords
drill
section
mandrel
spring
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US154580A
Inventor
Geistauts Mikelis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Emerson Process Management Ltd
Original Assignee
Rosemount Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rosemount Engineering Co Ltd filed Critical Rosemount Engineering Co Ltd
Priority to US154580A priority Critical patent/US3128768A/en
Application granted granted Critical
Publication of US3128768A publication Critical patent/US3128768A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/1613Component parts
    • A61B17/1633Sleeves, i.e. non-rotating parts surrounding the bit shaft, e.g. the sleeve forming a single unit with the bit shaft
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/08Accessories or related features not otherwise provided for
    • A61B2090/0801Prevention of accidental cutting or pricking
    • A61B2090/08021Prevention of accidental cutting or pricking of the patient or his organs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T408/00Cutting by use of rotating axially moving tool
    • Y10T408/55Cutting by use of rotating axially moving tool with work-engaging structure other than Tool or tool-support
    • Y10T408/56Adapted to "form" recession in work
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T408/00Cutting by use of rotating axially moving tool
    • Y10T408/55Cutting by use of rotating axially moving tool with work-engaging structure other than Tool or tool-support
    • Y10T408/564Movable relative to Tool along tool-axis
    • Y10T408/5653Movable relative to Tool along tool-axis with means to bias Tool away from work

Definitions

  • This invention relates to an appliance for drilling into the bone of the patient, for the setting of the reinforcing wires or nails, as during bone-fracture repair.
  • FIGURE 1 is a side elevational view of the drill, in place relative to a bone, into which the drill is penetrated.
  • FIGURE 2 is a longitudinal cross-sectional view of the drill of the present invention.
  • FIGURE 3 is an enlarged fragmentary longitudinal sectional view of the drill bit end portion of the apparatus.
  • FIGURE 4 is a transverse sectional view taken along the line and in the direction of the arrow 44 of FIG- URE 3.
  • FIGURE 5 is a fragmentary longitudinal sectional view illustrating a slightly modified form of the drill guide.
  • the drill guide consists of a plurality of telescoping housing sections 10, 11 and 12.
  • the section is of maximum diameter and at its righthand end, as shown in FIGURE 2 has a slightly enlarged portion 10A, the interior surface of which is threaded at 10B.
  • section 10 is inturned at 10C, so as to provide an inner shoulder for engaging enlarged flanged end 11A of the section 11.
  • the left-hand end of section 11, as shown in FIGURE 2 is inturned at 11B to provide an inner flange for engaging the outwardly turned end flange 12A of the end section 12.
  • section 12 is provided at its left end with internal threads 12B, terminating at a shoulder 120.
  • This internally threaded end of the section 12 is made thus to receive an end collar 13, which is similarly threaded at 13B to match the thread 12B of section 12, into which it is screwed.
  • the inner bore 13C of the end collar is of such a diameter as to provide only a slight clearance 14 relative to the diameter of drill 16, and accordingly the end 13D of the collar is exposed adjacent the seat 12C, and thereby forms a seating surface against which the end of the coil spring 15 is adapted to rest.
  • the coil spring has an inside diameter only slightly larger than the diameter of the drill 16, and the spring extends back and is seated in a recess 17A of the inner drill support 17.
  • the drill support is provided with threads at 17B which match the threads 1013 of section 10.
  • the drill support has a bore all the way through which receives the drill 16, and the drill is adapted to be held firmly with reference to the drill support by means of a set screw 18, which passes through a threaded aperture 10D in portion 10A of section 10. Accordingly, the set screw 18 not only serves firmly to attach the drill 16 to the drill support 17, but also the set screw 18 serves as a key, to prevent rotation of the drill guide 17 in the threads 10B, 17B.
  • the exposed end 17C of the drill guide is adapted to receive a chunk C of any suitable hand or motor driven device D by which the drill support 17 and everything attached to it may be rotated.
  • the drill and drill guide are shown in the position of use in FIGURE 2.
  • the sections 10, 11 and 12 are extended lengthwise to their maximum position so that the flanges 10C and 11A of sections 10 and 11 respectively, and the flanges 11B and 12A of the sections 11 and 12 respectively are engaged.
  • the drill 16 is adjusted relative to the drill support 17 so that only a very small end portion 16E of the drill is exposed, as shown in FIGURE 2.
  • the set screw 13 is then tightened, and the drill 16 will thereafter not move relative to the drill support 17.
  • the surgeon is then able to take the drill guide and seat the points 20 which extend from the collar 13 in position on the bone BO. At least two points 20 will normally engage the bone, and thereby prevent the end collar 13 of the drill guide from either sliding around the bone or moving longitudinally with reference to the bone.
  • the drilling device D With the points 20 thus firmly seated, the drilling device D is rotated, and this causes rotation of the drill support 17 and section 10. Section 11 is free-floating, whereas section 12 is prevented from rotation, and relative rotation may therefore take place at the flanges 10C-11A or at the flanges 11B-12A, wherever a minimum friction occurs.
  • the rotation is imported to the drill 16 and the drill will be projected through the collar 13 until it engages the bone B0, and drill penetration begins.
  • the spring 15 is merely compressed. Accordingly, the drill 16 is free to extend farther and farther through the collar 13, while rotation of the drill and drill penetration continues.
  • the portion of the drill 16 is supported by the spring 15, particularly through section 11.
  • the spring 15 normally will rotate with the drill and its left end, as shown in FIGURES 1, 2 and 3, rotating against the smooth face 13D of the collar 13.
  • the spring 15 has merely clearance relative to the drill 16 and the inside surface of section 12. Inside the bore 13C of the collar 13, the drill turns with only a slight clearance 14.
  • the drill is entirely supported by the spring and the bore against lateral deflection except for the small distance between the outer face of collar 13 and the point of penetration of the drill into the bone.
  • the spring 15, where it passes through section 11 gives adequate support for the drill, and even though some slight lateral deflection may occur, this is not sufficient to be harmful. In this way, the entire drilling operation may be completed without undue ditficulty.
  • the surgeon will remove the drill support from the drill 17, while the drill is in place in the patient, and X-ray the patient to check the progress of the drill. This can easily be accomplished merely by loosening set screw 18, after which the whole drill guide and support is pulled off the drill while the drill still penetrates the bone of the patient.
  • the drill support and guide is again slipped down on the drill until points 20 seat, and screw 18 is then tightened and drilling proceeds.
  • X-raying during the drilling also enables the surgeon very accurately to estimate the additional penetration of the drill which is needed. This is done from the X-ray. Then, after the drill support has been replaced and screw 18 tightened, a measurement is taken before drilling is restarted, the measurement being taken from the points 20 back to a reference point, such as the back edge of housing A. In this way the surgeon can keep track of additional drill penetration.
  • the screw 18 is removed.
  • the drill support 17 may be unscrewed from section 10, and this permits withdrawal of the drill 16 and along with it there will be removed the spring 15.
  • the spring and drill 16 may then be removed from the drill support 17, and the set screw 18 may also be removed for complete sanitation and sterilization.
  • the end collar 13 is then unscrewed from section 12, and this permits section 12 to be removed from section 11, and section 11 can be removed from section 10. Accordingly, all parts of the drill guide can be completely dis-assembled with convenience for thorough cleaning and complete sanitation and sterilization.
  • FIGURE 5 there is illustrated a slightly modified form of the invention.
  • the section 10 is modified to provide outside threads 10E at its right end, as shown in FIGURE 5, and is provided with an inner journal surface 17].
  • An opening 10G in the wall of section 10 is provided through which a screw 18 is threaded. In this case the head of the screw lies flush with or below the surface of the drill support 17.
  • a cap 21 is threaded on the threaded end 10E to hold the drill support in the section 10.
  • the drill support 17 is provided with a smooth surfaced enlargement 178 (not threaded as in FIGURES 1-4), and this has bearing clearance at 17] so as to turn neatly in section 10.
  • the drill support 17 is pushed against cap 21 by the force of spring 15.
  • the drill support 17 is accordingly able to rotate within section 10, and section 17 therefore may be gripped by the surgeon. This is advantageous in certain locations where the surgeon or surgical assistant desires to steady the outer end of the drill guide structure.
  • a surgical drill comprising a hollow chucking mandrel, a slender drill fitted in said mandrel and having its bit end projecting from said mandrel, a helical coil spring slidably mounted over an exposed part of said drill and being of diameter to snugly fit said drill, a telescopic sleeve composed of at least two sections mounted over said drill and spring and attached to said mandrel, means to prevent said spring from moving axially out of said telescopic sleeve, said telescopic sleeve having an aperture therein through which the drill is adapted to be projected as the sleeve is telescoped.
  • the surgical drill specified in claim 1 further characterized in that means is provided for securing said end section of the sleeve, the mandrel and drill against rela tive rotation.
  • a surgical drill comprising a hollow mandrel adapted to be connected to a chuck for rotation, a slender wire drill fitted in said mandrel, and projecting therefrom, said mandrel including a tubular end where the drill projects, and a compressible helical spring having an inside diameter of a size to receive the drill therein and an external diameter to be received in said tubular end and a length such that it covers the projecting drill, a telescopic sleeve composed of at least proximal and distal sections slidable relative to each other from a condition of maximum extension to a condition of lesser extension, said proximal section of the sleeve being connected to the mandrel and the distal section having an axial opening therein through which the drill may be projected, said spring being seated in the distal sleeve section for normally urging it to a condition of maximum extension relative to the proximal section.
  • the surgical drill specified in claim 4 further characterized in that the telescopic sleeve is composed of proximal, distal and intermediate sections.

Description

Ap 1964 M. GEISTAUTS SURGICAL DRILL Filed Nov. 24, 1961 8 RT m U mm m u ATTORNEYS United States Patent 3,128,768 SURGICAL DRILL Mikelis Geistauts, St. Paul, Minn, assignor to Rosemount Engineering Company, Minneapolis, Minn., a corporation of Minnesota Filed Nov. 24, 1961, Ser. No. 154,580 8 Claims. (U. 128-305) This invention relates to an appliance for drilling into the bone of the patient, for the setting of the reinforcing wires or nails, as during bone-fracture repair. In some instances, in such surgical procedure, it is necessary to start a drill of small diameter in a location of deep penetration, through an incision opening in flesh, and in unhandy positions, and frequently it is necessary to start the drill at an oblique angle relative to the surface of the bone in which the drill is to penetrate.
It is an object of the invention to provide an improved appliance which may be used by the surgeon for carrying out the drillling operation. It is another object of the invention to provide an improved drill which will provide support for the drill during the starting of the drill and during the subsequent drilling operation. It is a further object of the invention to provide an improved surgical drill guide which provides support for the drill as the drill penetrates. It is another object of the invention to provide a hygienic device for drilling and guiding drills, during surgical operations.
Other and further objects are those inherent in the invention herein illustrated, described and claimed and will be apparent as the description proceeds.
To the accomplishment of the foregoing and related ends this invention then comprises the features hereinafter fully described and particularly pointed out in the claims, the following description setting forth in detail certain illustrative embodiments of the invention, these being indicative, however, of but a few of the various ways in which the principles of the invention may be employed.
This invention is illustrated with reference to the drawings wherein:
FIGURE 1 is a side elevational view of the drill, in place relative to a bone, into which the drill is penetrated.
FIGURE 2 is a longitudinal cross-sectional view of the drill of the present invention.
FIGURE 3 is an enlarged fragmentary longitudinal sectional view of the drill bit end portion of the apparatus.
FIGURE 4 is a transverse sectional view taken along the line and in the direction of the arrow 44 of FIG- URE 3.
FIGURE 5 is a fragmentary longitudinal sectional view illustrating a slightly modified form of the drill guide.
Throughout the drawings, the corresponding numerals refer to the same parts.
Referring to the drawings, the drill guide consists of a plurality of telescoping housing sections 10, 11 and 12. The section is of maximum diameter and at its righthand end, as shown in FIGURE 2 has a slightly enlarged portion 10A, the interior surface of which is threaded at 10B. At the opposite end, section 10 is inturned at 10C, so as to provide an inner shoulder for engaging enlarged flanged end 11A of the section 11. Similarly, the left-hand end of section 11, as shown in FIGURE 2, is inturned at 11B to provide an inner flange for engaging the outwardly turned end flange 12A of the end section 12. Referring to FIGURES 1, 2 and 3, section 12 is provided at its left end with internal threads 12B, terminating at a shoulder 120. This internally threaded end of the section 12 is made thus to receive an end collar 13, which is similarly threaded at 13B to match the thread 12B of section 12, into which it is screwed. It will be noted that the inner bore 13C of the end collar is of such a diameter as to provide only a slight clearance 14 relative to the diameter of drill 16, and accordingly the end 13D of the collar is exposed adjacent the seat 12C, and thereby forms a seating surface against which the end of the coil spring 15 is adapted to rest. The coil spring has an inside diameter only slightly larger than the diameter of the drill 16, and the spring extends back and is seated in a recess 17A of the inner drill support 17.
The drill support is provided with threads at 17B which match the threads 1013 of section 10. The drill support has a bore all the way through which receives the drill 16, and the drill is adapted to be held firmly with reference to the drill support by means of a set screw 18, which passes through a threaded aperture 10D in portion 10A of section 10. Accordingly, the set screw 18 not only serves firmly to attach the drill 16 to the drill support 17, but also the set screw 18 serves as a key, to prevent rotation of the drill guide 17 in the threads 10B, 17B. The exposed end 17C of the drill guide is adapted to receive a chunk C of any suitable hand or motor driven device D by which the drill support 17 and everything attached to it may be rotated.
The drill and drill guide are shown in the position of use in FIGURE 2. To prepare the guide for use, the sections 10, 11 and 12 are extended lengthwise to their maximum position so that the flanges 10C and 11A of sections 10 and 11 respectively, and the flanges 11B and 12A of the sections 11 and 12 respectively are engaged. The drill 16 is adjusted relative to the drill support 17 so that only a very small end portion 16E of the drill is exposed, as shown in FIGURE 2. The set screw 13 is then tightened, and the drill 16 will thereafter not move relative to the drill support 17.
Accordingly, with the incision made in the patient, and the bone BO exposed, the surgeon is then able to take the drill guide and seat the points 20 which extend from the collar 13 in position on the bone BO. At least two points 20 will normally engage the bone, and thereby prevent the end collar 13 of the drill guide from either sliding around the bone or moving longitudinally with reference to the bone. With the points 20 thus firmly seated, the drilling device D is rotated, and this causes rotation of the drill support 17 and section 10. Section 11 is free-floating, whereas section 12 is prevented from rotation, and relative rotation may therefore take place at the flanges 10C-11A or at the flanges 11B-12A, wherever a minimum friction occurs. As the device D is rotated, the rotation is imported to the drill 16 and the drill will be projected through the collar 13 until it engages the bone B0, and drill penetration begins. There is nothing to prevent the sections 10, 11 and 12 from telescoping as section 10 rotates relative to section 12, and the spring 15 is merely compressed. Accordingly, the drill 16 is free to extend farther and farther through the collar 13, while rotation of the drill and drill penetration continues. Meanwhile, the portion of the drill 16 is supported by the spring 15, particularly through section 11. The spring 15 normally will rotate with the drill and its left end, as shown in FIGURES 1, 2 and 3, rotating against the smooth face 13D of the collar 13. The spring 15 has merely clearance relative to the drill 16 and the inside surface of section 12. Inside the bore 13C of the collar 13, the drill turns with only a slight clearance 14. Therefore, adjacent the point of drill penetration, the drill is entirely supported by the spring and the bore against lateral deflection except for the small distance between the outer face of collar 13 and the point of penetration of the drill into the bone. The spring 15, where it passes through section 11 gives adequate support for the drill, and even though some slight lateral deflection may occur, this is not sufficient to be harmful. In this way, the entire drilling operation may be completed without undue ditficulty. In some instances, the surgeon will remove the drill support from the drill 17, while the drill is in place in the patient, and X-ray the patient to check the progress of the drill. This can easily be accomplished merely by loosening set screw 18, after which the whole drill guide and support is pulled off the drill while the drill still penetrates the bone of the patient. If the X-ray pictures show the drill to be properly directed, the drill support and guide is again slipped down on the drill until points 20 seat, and screw 18 is then tightened and drilling proceeds. X-raying during the drilling also enables the surgeon very accurately to estimate the additional penetration of the drill which is needed. This is done from the X-ray. Then, after the drill support has been replaced and screw 18 tightened, a measurement is taken before drilling is restarted, the measurement being taken from the points 20 back to a reference point, such as the back edge of housing A. In this way the surgeon can keep track of additional drill penetration.
From the sanitary standpoint, when the drilling operation is complete, the screw 18 is removed. When this is done, the drill support 17 may be unscrewed from section 10, and this permits withdrawal of the drill 16 and along with it there will be removed the spring 15. The spring and drill 16 may then be removed from the drill support 17, and the set screw 18 may also be removed for complete sanitation and sterilization.
The end collar 13 is then unscrewed from section 12, and this permits section 12 to be removed from section 11, and section 11 can be removed from section 10. Accordingly, all parts of the drill guide can be completely dis-assembled with convenience for thorough cleaning and complete sanitation and sterilization.
Referring to FIGURE 5, there is illustrated a slightly modified form of the invention. In this form of the invention the section 10 is modified to provide outside threads 10E at its right end, as shown in FIGURE 5, and is provided with an inner journal surface 17]. An opening 10G in the wall of section 10 is provided through which a screw 18 is threaded. In this case the head of the screw lies flush with or below the surface of the drill support 17. A cap 21 is threaded on the threaded end 10E to hold the drill support in the section 10.
The drill support 17 is provided with a smooth surfaced enlargement 178 (not threaded as in FIGURES 1-4), and this has bearing clearance at 17] so as to turn neatly in section 10. The drill support 17 is pushed against cap 21 by the force of spring 15.
With these modifications, the drill support 17 is accordingly able to rotate within section 10, and section 17 therefore may be gripped by the surgeon. This is advantageous in certain locations where the surgeon or surgical assistant desires to steady the outer end of the drill guide structure.
As many apparently widely different embodiments of 4 this invention may be made without departing from the spirit and scope thereof, it is to be understood that I do not limit myself to the specific embodiments disclosed herein.
What I claim is:
1. A surgical drill comprising a hollow chucking mandrel, a slender drill fitted in said mandrel and having its bit end projecting from said mandrel, a helical coil spring slidably mounted over an exposed part of said drill and being of diameter to snugly fit said drill, a telescopic sleeve composed of at least two sections mounted over said drill and spring and attached to said mandrel, means to prevent said spring from moving axially out of said telescopic sleeve, said telescopic sleeve having an aperture therein through which the drill is adapted to be projected as the sleeve is telescoped.
2. The surgical drill specified in claim 1 further characterized in that means is provided for securing said end section of the sleeve, the mandrel and drill against rela tive rotation.
3. The surgical drill specified in claim 1 further characterized in that said end section of the sleeve is journaled on said mandrel and the drill is secured in said mandrel.
4. A surgical drill comprising a hollow mandrel adapted to be connected to a chuck for rotation, a slender wire drill fitted in said mandrel, and projecting therefrom, said mandrel including a tubular end where the drill projects, and a compressible helical spring having an inside diameter of a size to receive the drill therein and an external diameter to be received in said tubular end and a length such that it covers the projecting drill, a telescopic sleeve composed of at least proximal and distal sections slidable relative to each other from a condition of maximum extension to a condition of lesser extension, said proximal section of the sleeve being connected to the mandrel and the distal section having an axial opening therein through which the drill may be projected, said spring being seated in the distal sleeve section for normally urging it to a condition of maximum extension relative to the proximal section.
5. The surgical drill specified in claim 4 further characterized in that the telescopic sleeve is composed of proximal, distal and intermediate sections.
6. The surgical drill specified in claim 4 further characterized in that the telescopic sleeve proximal section is secured to the mandrel for rotation therewith.
7. The surgical drill specified in claim 4 further characterized in that the telescopic sleeve proximal section is journalled on the mandrel.
8. The surgical drill specified in claim 4- further characterized in that said distal section includes projections outwardly thereon.
References Cited in the file of thispatent FOREIGN PATENTS 565,964 Great Britain Dec. 6, 1944

Claims (1)

1. A SURGICAL DRILL COMPRISING A HOLLOW CHUCKING MANDREL, A SLENDER DRILL FITTED IN SAID MANDREL AND HAVING ITS BIT END PROJECTING FROM SAID MANDREL, A HELICAL COIL SPRING SLIDABLY MOUNTED OVER AN EXPOSED PART OF SAID DRILL AND BEING OF DIAMETER TO SNUGLY FIT SAID DRILL, A TELESCOPIC SLEEVE COMPOSED OF AT LEAST TWO SECTIONS MOUNTED OVER SAID DRILL AND SPRING AND ATTACHED TO SAID MANDREL, MEANS TO PREVENT SAID SPRING FROM MOVING AXIALLY OUT OF SAID TELESCOPIC SLEEVE, SAID TELESCOPIC SLEEVE HAVING AN APERTURE THEREIN THROUGH WHICH THE DRILL IS ADAPTED TO BE PROJECTED AS THE SLEEVE IS TELESCOPED.
US154580A 1961-11-24 1961-11-24 Surgical drill Expired - Lifetime US3128768A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US154580A US3128768A (en) 1961-11-24 1961-11-24 Surgical drill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US154580A US3128768A (en) 1961-11-24 1961-11-24 Surgical drill

Publications (1)

Publication Number Publication Date
US3128768A true US3128768A (en) 1964-04-14

Family

ID=22551900

Family Applications (1)

Application Number Title Priority Date Filing Date
US154580A Expired - Lifetime US3128768A (en) 1961-11-24 1961-11-24 Surgical drill

Country Status (1)

Country Link
US (1) US3128768A (en)

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3719186A (en) * 1971-04-22 1973-03-06 Univ Alabama In Birmingham Surgical instrument for placement of bone pins and holes therefor
US3815605A (en) * 1971-05-19 1974-06-11 Philips Corp Device and holder therefor for inserting a hollow coupling member into bone marrow
US3892232A (en) * 1973-09-24 1975-07-01 Alonzo J Neufeld Method and apparatus for performing percutaneous bone surgery
US4299212A (en) * 1977-09-08 1981-11-10 Nederlandsch Central Organisatie voor Toegepast-Natuurwetenschappelijk Onderzoek External fracture immobilization splint
US4549538A (en) * 1982-11-12 1985-10-29 Zimmer, Inc. Pin inserter sheath
US4790812A (en) * 1985-11-15 1988-12-13 Hawkins Jr Irvin F Apparatus and method for removing a target object from a body passsageway
US5015247A (en) * 1988-06-13 1991-05-14 Michelson Gary K Threaded spinal implant
US5439005A (en) * 1993-03-02 1995-08-08 Midas Rex Pneumatic Tools, Inc. Surgical instrument with telescoping sleeve
US5545162A (en) * 1995-02-15 1996-08-13 Huebner; Randall J. External fixator for repairing fractures of distal radius and wrist
US5569254A (en) * 1995-04-12 1996-10-29 Midas Rex Pneumatic Tools, Inc. Surgical resection tool having an irrigation, lighting, suction and vision attachment
US5575794A (en) * 1993-02-12 1996-11-19 Walus; Richard L. Tool for implanting a fiducial marker
US5624440A (en) * 1996-01-11 1997-04-29 Huebner; Randall J. Compact small bone fixator
WO1997024991A1 (en) * 1996-01-04 1997-07-17 Orsco International A driver
US5658283A (en) * 1995-02-15 1997-08-19 Huebner; Randall J. External fixator for repairing fractures
US5662649A (en) * 1995-02-15 1997-09-02 Huebner; Randall J. External fixator for repairing fractures of distal radius and wrist
US5772661A (en) * 1988-06-13 1998-06-30 Michelson; Gary Karlin Methods and instrumentation for the surgical correction of human thoracic and lumbar spinal disease from the antero-lateral aspect of the spine
US5797909A (en) * 1988-06-13 1998-08-25 Michelson; Gary Karlin Apparatus for inserting spinal implants
US5976134A (en) * 1995-06-01 1999-11-02 Huebner; Randall J. External fixator for repairing fractures
US6096038A (en) * 1988-06-13 2000-08-01 Michelson; Gary Karlin Apparatus for inserting spinal implants
US6120502A (en) * 1988-06-13 2000-09-19 Michelson; Gary Karlin Apparatus and method for the delivery of electrical current for interbody spinal arthrodesis
US6123705A (en) * 1988-06-13 2000-09-26 Sdgi Holdings, Inc. Interbody spinal fusion implants
US6149650A (en) * 1988-06-13 2000-11-21 Michelson; Gary Karlin Threaded spinal implant
US6162224A (en) * 1995-02-15 2000-12-19 Acumed, Inc. External fixator for repairing fractures of distal radius and wrist
US6171309B1 (en) 1995-02-15 2001-01-09 Acumed, Inc. External fixator for repairing fractures of distal radius and wrist
US6200322B1 (en) * 1999-08-13 2001-03-13 Sdgi Holdings, Inc. Minimal exposure posterior spinal interbody instrumentation and technique
US6210412B1 (en) 1988-06-13 2001-04-03 Gary Karlin Michelson Method for inserting frusto-conical interbody spinal fusion implants
US6224603B1 (en) * 1998-06-09 2001-05-01 Nuvasive, Inc. Transiliac approach to entering a patient's intervertebral space
US6224595B1 (en) 1995-02-17 2001-05-01 Sofamor Danek Holdings, Inc. Method for inserting a spinal implant
DE10064975C1 (en) * 2000-12-23 2002-07-25 Aesculap Ag & Co Kg Drilling tool for a surgical drill
US20020138144A1 (en) * 1995-02-17 2002-09-26 Michelson Gary Karlin Threaded frusto-conical interbody spinal fusion implants
US20020198532A1 (en) * 1993-06-10 2002-12-26 Sofamor Danek Holdings, Inc. Apparatus and method of inserting spinal implants
US6519319B1 (en) 1999-02-19 2003-02-11 Nuvasive, Inc. Image intensifier reticle system
US20030158553A1 (en) * 1988-06-13 2003-08-21 Michelson Gary Karlin Instrumentation for the surgical correction of spinal disease
US20030220641A1 (en) * 2000-03-07 2003-11-27 Thelen Sarah L. Method and apparatus for reducing femoral fractures
US20030220646A1 (en) * 2002-05-23 2003-11-27 Thelen Sarah L. Method and apparatus for reducing femoral fractures
US6758849B1 (en) 1995-02-17 2004-07-06 Sdgi Holdings, Inc. Interbody spinal fusion implants
US6770074B2 (en) 1988-06-13 2004-08-03 Gary Karlin Michelson Apparatus for use in inserting spinal implants
US20040181221A1 (en) * 2003-03-12 2004-09-16 Huebner Randall J. External fixator
US20050059975A1 (en) * 2003-09-17 2005-03-17 Jonathan Fanger Variable depth drill with self-centering sleeve
US20050165489A1 (en) * 1995-06-07 2005-07-28 Michelson Gary K. Frusto-conical spinal implant
US20050203508A1 (en) * 2000-03-07 2005-09-15 Thelen Sarah L. Method and apparatus for reducing femoral fractures
US20060052788A1 (en) * 2003-02-04 2006-03-09 Thelen Sarah L Expandable fixation devices for minimally invasive surgery
US20060064164A1 (en) * 2000-03-07 2006-03-23 Thelen Sarah L Method and apparatus for reducing femoral fractures
US20060084992A1 (en) * 1988-06-13 2006-04-20 Michelson Gary K Tubular member having a passage and opposed bone contacting extensions
US20060229624A1 (en) * 2005-03-31 2006-10-12 Zimmer Technology, Inc. Orthopaedic cutting instrument and method
US20070093844A1 (en) * 2005-10-12 2007-04-26 Dye Donald W Calcar planers for minimally invasive surgery
US7291149B1 (en) 1995-06-07 2007-11-06 Warsaw Orthopedic, Inc. Method for inserting interbody spinal fusion implants
US20070276401A1 (en) * 2006-05-23 2007-11-29 Choe Simon H Instrumentation for fixation devices
US20100076503A1 (en) * 2007-02-07 2010-03-25 N.M.B. Medical Applications Ltd Bone implant
US20130178860A1 (en) * 2012-01-06 2013-07-11 Stryker Trauma Sa Soft tissue protector and drill guide for an implantation kit
US20140371522A1 (en) * 2000-11-17 2014-12-18 Embro Corporation Vein harvesting system and method
US9572589B2 (en) 2012-07-10 2017-02-21 Stryker European Holdings I, Llc Drill guide
US11083596B2 (en) * 2018-09-29 2021-08-10 Jan William Duncan Minimally invasive transforaminal lumbar interbody fusion

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB565964A (en) * 1943-06-04 1944-12-06 Ernest Ivan Greenhill Improvements in or relating to drilling and like machines

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB565964A (en) * 1943-06-04 1944-12-06 Ernest Ivan Greenhill Improvements in or relating to drilling and like machines

Cited By (130)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3719186A (en) * 1971-04-22 1973-03-06 Univ Alabama In Birmingham Surgical instrument for placement of bone pins and holes therefor
US3815605A (en) * 1971-05-19 1974-06-11 Philips Corp Device and holder therefor for inserting a hollow coupling member into bone marrow
US3892232A (en) * 1973-09-24 1975-07-01 Alonzo J Neufeld Method and apparatus for performing percutaneous bone surgery
US4299212A (en) * 1977-09-08 1981-11-10 Nederlandsch Central Organisatie voor Toegepast-Natuurwetenschappelijk Onderzoek External fracture immobilization splint
US4549538A (en) * 1982-11-12 1985-10-29 Zimmer, Inc. Pin inserter sheath
US4790812A (en) * 1985-11-15 1988-12-13 Hawkins Jr Irvin F Apparatus and method for removing a target object from a body passsageway
US7569054B2 (en) 1988-06-13 2009-08-04 Warsaw Orthopedic, Inc. Tubular member having a passage and opposed bone contacting extensions
US7491205B1 (en) 1988-06-13 2009-02-17 Warsaw Orthopedic, Inc. Instrumentation for the surgical correction of human thoracic and lumbar spinal disease from the lateral aspect of the spine
US8066705B2 (en) 1988-06-13 2011-11-29 Warsaw Orthopedic, Inc. Instrumentation for the endoscopic correction of spinal disease
US7914530B2 (en) 1988-06-13 2011-03-29 Warsaw Orthopedic, Inc. Tissue dilator and method for performing a spinal procedure
US20030158553A1 (en) * 1988-06-13 2003-08-21 Michelson Gary Karlin Instrumentation for the surgical correction of spinal disease
US20040133277A1 (en) * 1988-06-13 2004-07-08 Michelson Gary Karlin Spinal implant for insertion between vertebral bodies
US7722619B2 (en) 1988-06-13 2010-05-25 Warsaw Orthopedic, Inc. Method of maintaining distraction of a spinal disc space
US7686805B2 (en) 1988-06-13 2010-03-30 Warsaw Orthopedic, Inc. Methods for distraction of a disc space
US8251997B2 (en) 1988-06-13 2012-08-28 Warsaw Orthopedic, Inc. Method for inserting an artificial implant between two adjacent vertebrae along a coronal plane
US5015247A (en) * 1988-06-13 1991-05-14 Michelson Gary K Threaded spinal implant
US5741253A (en) * 1988-06-13 1998-04-21 Michelson; Gary Karlin Method for inserting spinal implants
US5772661A (en) * 1988-06-13 1998-06-30 Michelson; Gary Karlin Methods and instrumentation for the surgical correction of human thoracic and lumbar spinal disease from the antero-lateral aspect of the spine
US5797909A (en) * 1988-06-13 1998-08-25 Michelson; Gary Karlin Apparatus for inserting spinal implants
US8353909B2 (en) 1988-06-13 2013-01-15 Warsaw Orthopedic, Inc. Surgical instrument for distracting a spinal disc space
US7534254B1 (en) 1988-06-13 2009-05-19 Warsaw Orthopedic, Inc. Threaded frusto-conical interbody spinal fusion implants
US6096038A (en) * 1988-06-13 2000-08-01 Michelson; Gary Karlin Apparatus for inserting spinal implants
US6120502A (en) * 1988-06-13 2000-09-19 Michelson; Gary Karlin Apparatus and method for the delivery of electrical current for interbody spinal arthrodesis
US6123705A (en) * 1988-06-13 2000-09-26 Sdgi Holdings, Inc. Interbody spinal fusion implants
US6149650A (en) * 1988-06-13 2000-11-21 Michelson; Gary Karlin Threaded spinal implant
US20040078039A1 (en) * 1988-06-13 2004-04-22 Michelson Gary Karlin Method for forming through a guard an implantation space in the human spine
US7452359B1 (en) 1988-06-13 2008-11-18 Warsaw Orthopedic, Inc. Apparatus for inserting spinal implants
US7288093B2 (en) 1988-06-13 2007-10-30 Warsaw Orthopedic, Inc. Spinal fusion implant having a curved end
US6210412B1 (en) 1988-06-13 2001-04-03 Gary Karlin Michelson Method for inserting frusto-conical interbody spinal fusion implants
US8734447B1 (en) 1988-06-13 2014-05-27 Warsaw Orthopedic, Inc. Apparatus and method of inserting spinal implants
US8758344B2 (en) 1988-06-13 2014-06-24 Warsaw Orthopedic, Inc. Spinal implant and instruments
US6264656B1 (en) 1988-06-13 2001-07-24 Gary Karlin Michelson Threaded spinal implant
US6270498B1 (en) 1988-06-13 2001-08-07 Gary Karlin Michelson Apparatus for inserting spinal implants
US7115128B2 (en) 1988-06-13 2006-10-03 Sdgi Holdings, Inc. Method for forming through a guard an implantation space in the human spine
US20060200138A1 (en) * 1988-06-13 2006-09-07 Sdgi Holdings, Inc. Surgical instrument for distracting a spinal disc space
US20060084992A1 (en) * 1988-06-13 2006-04-20 Michelson Gary K Tubular member having a passage and opposed bone contacting extensions
US6770074B2 (en) 1988-06-13 2004-08-03 Gary Karlin Michelson Apparatus for use in inserting spinal implants
US6923810B1 (en) 1988-06-13 2005-08-02 Gary Karlin Michelson Frusto-conical interbody spinal fusion implants
US20050065518A1 (en) * 1988-06-13 2005-03-24 Karlin Technology, Inc. Spinal fusion system including spinal fusion device and additional orthopedic hardware
US20030065394A1 (en) * 1988-06-13 2003-04-03 Karlin Technology, Inc. Spinal fusion implant having a curved end
US6582432B1 (en) 1988-06-13 2003-06-24 Karlin Technology Inc. Cap for use with artificial spinal fusion implant
US20030139816A1 (en) * 1988-06-13 2003-07-24 Karlin Technology, Inc. Threaded spinal implant for insertion between vertebral bodies
US5595193A (en) * 1993-02-12 1997-01-21 Walus; Richard L. Tool for implanting a fiducial marker
US5575794A (en) * 1993-02-12 1996-11-19 Walus; Richard L. Tool for implanting a fiducial marker
US5439005A (en) * 1993-03-02 1995-08-08 Midas Rex Pneumatic Tools, Inc. Surgical instrument with telescoping sleeve
US7399303B2 (en) 1993-06-10 2008-07-15 Warsaw Orthopedic, Inc. Bone cutting device and method for use thereof
US20060058793A1 (en) * 1993-06-10 2006-03-16 Karlin Technology, Inc. Distractor for use in spinal surgery
US20080287955A1 (en) * 1993-06-10 2008-11-20 Karlin Technology, Inc. Distractor for use in spinal surgery and method of use thereof
US20040034358A1 (en) * 1993-06-10 2004-02-19 Sofamor Danek Holdings, Inc. Bone cutting device and method for use thereof
US7993347B1 (en) 1993-06-10 2011-08-09 Warsaw Orthopedic, Inc. Guard for use in performing human interbody spinal surgery
US20040068259A1 (en) * 1993-06-10 2004-04-08 Karlin Technology, Inc. Distractor for use in spinal surgery
US20040073217A1 (en) * 1993-06-10 2004-04-15 Karlin Technology, Inc. Osteogenic packing device and method
US20060142762A1 (en) * 1993-06-10 2006-06-29 Michelson Gary K Apparatus and method for sequential distraction
US20060036247A1 (en) * 1993-06-10 2006-02-16 Karlin Technology, Inc. Distractor for use in spinal surgery
US7264622B2 (en) 1993-06-10 2007-09-04 Warsaw Orthopedic, Inc. System for radial bone displacement
US20030153916A1 (en) * 1993-06-10 2003-08-14 Sofamor Danek Holdings, Inc. Method of inserting spinal implants with the use of imaging
US20020198532A1 (en) * 1993-06-10 2002-12-26 Sofamor Danek Holdings, Inc. Apparatus and method of inserting spinal implants
US7326214B2 (en) 1993-06-10 2008-02-05 Warsaw Orthopedic, Inc. Bone cutting device having a cutting edge with a non-extending center
US7887565B2 (en) 1993-06-10 2011-02-15 Warsaw Orthopedic, Inc. Apparatus and method for sequential distraction
US6875213B2 (en) 1993-06-10 2005-04-05 Sdgi Holdings, Inc. Method of inserting spinal implants with the use of imaging
US8206387B2 (en) 1994-05-27 2012-06-26 Michelson Gary K Interbody spinal implant inductively coupled to an external power supply
US6605089B1 (en) 1994-05-27 2003-08-12 Gary Karlin Michelson Apparatus and method for the delivery of electrical current for interbody spinal arthrodesis
US7935116B2 (en) 1994-05-27 2011-05-03 Gary Karlin Michelson Implant for the delivery of electrical current to promote bone growth between adjacent bone masses
US20090088857A1 (en) * 1994-05-27 2009-04-02 Gary Karlin Michelson Implant for the delivery of electrical current to promote bone growth between adjacent bone masses
US7455672B2 (en) 1994-05-27 2008-11-25 Gary Karlin Michelson Method for the delivery of electrical current to promote bone growth between adjacent bone masses
US20040024400A1 (en) * 1994-05-27 2004-02-05 Michelson Gary Karlin Method for the delivery of electrical current to promote bone growth between adjacent bone masses
US5658283A (en) * 1995-02-15 1997-08-19 Huebner; Randall J. External fixator for repairing fractures
US5662649A (en) * 1995-02-15 1997-09-02 Huebner; Randall J. External fixator for repairing fractures of distal radius and wrist
US5545162A (en) * 1995-02-15 1996-08-13 Huebner; Randall J. External fixator for repairing fractures of distal radius and wrist
US6162224A (en) * 1995-02-15 2000-12-19 Acumed, Inc. External fixator for repairing fractures of distal radius and wrist
US6171309B1 (en) 1995-02-15 2001-01-09 Acumed, Inc. External fixator for repairing fractures of distal radius and wrist
US6758849B1 (en) 1995-02-17 2004-07-06 Sdgi Holdings, Inc. Interbody spinal fusion implants
US20020138144A1 (en) * 1995-02-17 2002-09-26 Michelson Gary Karlin Threaded frusto-conical interbody spinal fusion implants
US6224595B1 (en) 1995-02-17 2001-05-01 Sofamor Danek Holdings, Inc. Method for inserting a spinal implant
US20020091390A1 (en) * 1995-02-27 2002-07-11 Michelson Gary Karlin Methods and instrumentation for the surgical correction of human thoracic and lumbar spinal disease from the lateral aspect of the spine
US7431722B1 (en) 1995-02-27 2008-10-07 Warsaw Orthopedic, Inc. Apparatus including a guard member having a passage with a non-circular cross section for providing protected access to the spine
US7207991B2 (en) 1995-02-27 2007-04-24 Warsaw Orthopedic, Inc. Method for the endoscopic correction of spinal disease
US5569254A (en) * 1995-04-12 1996-10-29 Midas Rex Pneumatic Tools, Inc. Surgical resection tool having an irrigation, lighting, suction and vision attachment
US5976134A (en) * 1995-06-01 1999-11-02 Huebner; Randall J. External fixator for repairing fractures
US20050165489A1 (en) * 1995-06-07 2005-07-28 Michelson Gary K. Frusto-conical spinal implant
US20110054529A1 (en) * 1995-06-07 2011-03-03 Gary Karlin Michelson Threaded interbody spinal fusion implant
US7828800B2 (en) 1995-06-07 2010-11-09 Warsaw Orthopedic, Inc. Threaded frusto-conical interbody spinal fusion implants
US8226652B2 (en) 1995-06-07 2012-07-24 Warsaw Orthopedic, Inc. Threaded frusto-conical spinal implants
US7291149B1 (en) 1995-06-07 2007-11-06 Warsaw Orthopedic, Inc. Method for inserting interbody spinal fusion implants
US8409292B2 (en) 1995-06-07 2013-04-02 Warsaw Orthopedic, Inc. Spinal fusion implant
US8679118B2 (en) 1995-06-07 2014-03-25 Warsaw Orthopedic, Inc. Spinal implants
US8057475B2 (en) 1995-06-07 2011-11-15 Warsaw Orthopedic, Inc. Threaded interbody spinal fusion implant
US7691148B2 (en) 1995-06-07 2010-04-06 Warsaw Orthopedic, Inc. Frusto-conical spinal implant
US20050165399A1 (en) * 1995-06-07 2005-07-28 Michelson Gary K. Frusto-conical spinal implant
US7942933B2 (en) 1995-06-07 2011-05-17 Warsaw Orthopedic, Inc. Frusto-conical spinal implant
WO1997024991A1 (en) * 1996-01-04 1997-07-17 Orsco International A driver
US6096042A (en) * 1996-01-04 2000-08-01 Herbert; Timothy James Driver
US5624440A (en) * 1996-01-11 1997-04-29 Huebner; Randall J. Compact small bone fixator
US6224603B1 (en) * 1998-06-09 2001-05-01 Nuvasive, Inc. Transiliac approach to entering a patient's intervertebral space
US6519319B1 (en) 1999-02-19 2003-02-11 Nuvasive, Inc. Image intensifier reticle system
US6200322B1 (en) * 1999-08-13 2001-03-13 Sdgi Holdings, Inc. Minimal exposure posterior spinal interbody instrumentation and technique
US20060064164A1 (en) * 2000-03-07 2006-03-23 Thelen Sarah L Method and apparatus for reducing femoral fractures
US7258692B2 (en) 2000-03-07 2007-08-21 Zimmer, Inc. Method and apparatus for reducing femoral fractures
US20030220641A1 (en) * 2000-03-07 2003-11-27 Thelen Sarah L. Method and apparatus for reducing femoral fractures
US20050203508A1 (en) * 2000-03-07 2005-09-15 Thelen Sarah L. Method and apparatus for reducing femoral fractures
US7488329B2 (en) 2000-03-07 2009-02-10 Zimmer Technology, Inc. Method and apparatus for reducing femoral fractures
US7485119B2 (en) 2000-03-07 2009-02-03 Zimmer Technology, Inc. Method and apparatus for reducing femoral fractures
US20070123995A1 (en) * 2000-03-07 2007-05-31 Zimmer Technology, Inc. Method and apparatus for reducing femoral fractures
US10507012B2 (en) * 2000-11-17 2019-12-17 Maquet Cardiovascular Llc Vein harvesting system and method
US20140371522A1 (en) * 2000-11-17 2014-12-18 Embro Corporation Vein harvesting system and method
DE10064975C1 (en) * 2000-12-23 2002-07-25 Aesculap Ag & Co Kg Drilling tool for a surgical drill
WO2002051319A3 (en) * 2000-12-23 2002-09-26 Aesculap Ag & Co Kg Drill protective sleeve with double-layer cover construction
US20040059317A1 (en) * 2000-12-23 2004-03-25 Aesculap Ag & Co. Kg Drilling tool for a surgical drill
US20030220646A1 (en) * 2002-05-23 2003-11-27 Thelen Sarah L. Method and apparatus for reducing femoral fractures
EP1410765A3 (en) * 2002-10-08 2005-09-07 Zimmer Technology, Inc. Method and apparatus for reducing femoral fractures
EP1410765A2 (en) * 2002-10-08 2004-04-21 Zimmer Technology, Inc. Method and apparatus for reducing femoral fractures
US20060052788A1 (en) * 2003-02-04 2006-03-09 Thelen Sarah L Expandable fixation devices for minimally invasive surgery
US20040181221A1 (en) * 2003-03-12 2004-09-16 Huebner Randall J. External fixator
US7147640B2 (en) 2003-03-12 2006-12-12 Acumed Llc External fixator
US20050059975A1 (en) * 2003-09-17 2005-03-17 Jonathan Fanger Variable depth drill with self-centering sleeve
US7141074B2 (en) * 2003-09-17 2006-11-28 Depuy Spine, Inc. Variable depth drill with self-centering sleeve
US20060229624A1 (en) * 2005-03-31 2006-10-12 Zimmer Technology, Inc. Orthopaedic cutting instrument and method
US7922720B2 (en) 2005-03-31 2011-04-12 Zimmer Technology, Inc. Orthopaedic cutting instrument and method
US20090177202A1 (en) * 2005-03-31 2009-07-09 Zimmer Technology, Inc. Orthopaedic cutting instrument and method
US20070093844A1 (en) * 2005-10-12 2007-04-26 Dye Donald W Calcar planers for minimally invasive surgery
US8282638B2 (en) 2006-05-23 2012-10-09 Ebi, Llc Instrumentation for fixation devices
US20070276401A1 (en) * 2006-05-23 2007-11-29 Choe Simon H Instrumentation for fixation devices
US7727236B2 (en) 2006-05-23 2010-06-01 Ebi, Llc Instrumentation for fixation devices
US20100234898A1 (en) * 2006-05-23 2010-09-16 Ebi, Llc Instrumentation for fixation devices
US20100076503A1 (en) * 2007-02-07 2010-03-25 N.M.B. Medical Applications Ltd Bone implant
US20130178860A1 (en) * 2012-01-06 2013-07-11 Stryker Trauma Sa Soft tissue protector and drill guide for an implantation kit
US9326779B2 (en) * 2012-01-06 2016-05-03 Stryker European Holdings I, Llc Soft tissue protector and drill guide for an implantation kit
US9572589B2 (en) 2012-07-10 2017-02-21 Stryker European Holdings I, Llc Drill guide
US10314598B2 (en) 2012-07-10 2019-06-11 Stryker European Holdings I, Llc Drill guide
US11083596B2 (en) * 2018-09-29 2021-08-10 Jan William Duncan Minimally invasive transforaminal lumbar interbody fusion

Similar Documents

Publication Publication Date Title
US3128768A (en) Surgical drill
AU623870B2 (en) Intramedullary intertrochanteric fracture fixation appliance and fitting device
US2243718A (en) Surgical drill
US2267925A (en) Fracture securing apparatus
US2801631A (en) Fracture screw adjusting means
US5306272A (en) Advancer for surgical instrument
US4691705A (en) Calculus crushing apparatus
US11553929B2 (en) Attachment for a powered surgical tool
US20190365550A1 (en) Guidewire Adjuster and Delivery-System Control Handle
US2821979A (en) Intramedullary splint
US4541423A (en) Drilling a curved hole
US2429356A (en) Surgical cutter guard
US2631584A (en) Fracture securing instrument
US4790304A (en) Self-locking pin device particularly useful for internally fixing bone fractures
US20040059317A1 (en) Drilling tool for a surgical drill
CN206403829U (en) Orthopedic spinal Minimally Invasive Surgery is bored
JP2000126189A (en) Operating part of treating device for endoscope
JP2020523176A5 (en)
US20190083147A1 (en) Instrument assembly for use with an expandable pedicle screw
US7850699B2 (en) Device for extraction of pins at fixation means for fixation of bone fragments at bone fractures
FR2342624A7 (en) Locking mechanism for telescopic shaft - has cone displaced by screw into split sleeve by relative tube rotation
CN219397551U (en) Puncture positioning and guiding device
US2299267A (en) Tool holder for surgical instruments
CN219289668U (en) Probe fixing device
US11806060B2 (en) Bone screw with internal extendable tang